Rare Earth Elements abundance, fractionation, and anomalies in the sediments of the Cananéia-Iguape Estuarine-Lagoon Complex in Brazil

Authors

  • Vitor G. Chiozzini
  • Deborah I. T. Fávaro
  • Elisabete S. Braga

DOI:

https://doi.org/10.1590/

Keywords:

REE Geochemistry, Estuarine RAMSAR Area, Trace Metals, Biogeochemistry, Phosphogypsum

Abstract

The Cananéia-Iguape Estuarine-Lagoon Complex (CIELC) is an extremely productive coastal ecosystem. It encloses
the Valo Grande channel, built 160 years ago, which introduces water from the Ribeira River directly into the estuarine
system, contributing to important biogeochemical changes in the region. Many nutrients arrive at the estuary through
this channel, as well as metals and other slightly soluble elements that become part of the sediments. This study
aims to evaluate the processes that govern the distribution of rare earth elements (REE) in the sediments of the
complex by using fractionation patterns, anomalies, and the geochemical signature of minerals to evaluate sources,
natural levels, and the possible anthropogenic forcing to which CIELC is subjected. ∑REE* ranged from 14.2 to 285
mg kg-1 and showed a distribution related to depositional/textural characteristics influenced by the regional and local
lithological setting and a possible contamination. The REE/Al ratio indicated enrichment in the sea adjacent to the
estuary and at stations in the Ribeira River and Valo Grande. While the Hf/Al ratio indicated natural enrichment related
to the presence of heavy minerals in most of these stations, this ratio fails to justify enrichment at some stations in
the northern part of the estuary and the Ribeira River. Fractionation patterns and anomalies allowed us to identify
the main heavy minerals related to REE enrichment at CIELC. Cerium (Ce) anomalies showed a possible relation
with biologically mediated Ce+3 to Ce+4 oxidation processes in the most productive areas of the estuary. Europium
(Eu) anomalies were strongly associated with different mineral assemblies in several CIELC sectors. Abundance,
fractionation patterns, and REE anomalies corroborate the categorization of CIELC sediments as part of a pristine
system in its southern region and as subject to anthropogenic influences in its northern area.

References

Allègre, C. & Michard, G. 1974. Introduction to Geochemistry.

Geophysics and astrophysics monographs (Vol. 10).

Boston: Reidel Publishing Company.

Al-Masri, M. S., Amin, Y., Ibrahim, S. & Al-Bich, F.

Distribution of some trace metals in Syrian

phosphogypsum. Applied Geochemistry, 19(5), 747–753.

DOI: https://doi.org/10.1016/j.apgeochem.2003.09.014

Almeida, F. F. M. 1976. The system of continental rifts

bordering the Santos Basin. Brazilian Academy of

Sciences, 48, 15–26.

Armstrong-Altrin, J., Lee, Y., Kasper-Zubillaga, J.,

Carranza-Edwards, A., Garcia, D., Eby, G., Balaram, V.

& Cruz-Ortiz, N. 2012. Geochemistry of beach sands

along the western Gulf of Mexico, Mexico: Implication

for provenance. Geochemistry, 72(4), 345–362. DOI:

https://doi.org/10.1016/j.chemer.2012.07.003

Balashov, Y. A., Ronov, A. B., Migdisov, A. A. & Turanskaya,

N. V. 1964. The effect of climate and facies environment in

the fractionation of the rare earths during sedimentation.

Geochemistry International, 10, 951–969.

REE abundance in estuarine sediments

Ocean and Coastal Research 2023, v71(suppl 1):e23041 21

Chiozzini et al.

Barcellos, R. L., Berbel, G. B. B., Braga, E. S. & Furtado,

V. V. 2005. Distribuição e características do fósforo

sedimentar do Sistema Estuarino Lagunar CananéiaIguape, Estado de São Paulo, Brasil. Geochimica

Brasiliensis, 19(1), 22–36.

Barcellos, R. L., Camargo, P. B., Galvão, A. & Weber, R. R.

Sedimentary organic matter in cores of the CananéiaIguape lagoonal-estuarine system, São Paulo estate,

Brazil. Journal of Coastal Research, (56), 1335–1339.

Bau, M. 1999. Scavenging of dissolved yttrium and rare

earths by precipitating iron oxyhydroxide: experimental

evidence for Ce oxidation, Y-Ho fractionation, and

lanthanide tetrad effect. Geochimica et Cosmochimica

Acta, 63(1), 67–77. DOI: https://doi.org/10.1016/s0016-

(99)00014-9

Bau, M. & Koschinsky, A. 2009. Oxidative scavenging

of cerium on hydrous Fe oxide: Evidence from

the distribution of rare earth elements and yttrium

between Fe oxides and Mn oxides in hydrogenetic

ferromanganese crusts. Geochemical Journal, 43(1),

–47. DOI: https://doi.org/10.2343/geochemj.1.0005

Benes, P., Stamberg, K., Vopalka, D., Siroky, L. &

Prochazkova, S. 2003. Kinetics of radioeuropium

sorption on Gorelben sand from aqueous solutions

and groundwater. Journal of Radioanalytical and

Nuclear Chemistry, 256, 465–472. DOI: https://doi.

org/10.1023/A:1024595515126

Bérgamo, A. L. 2000. Características da hidrografia,

circulação e transporte de sal: Barra de Cananéia, Sul

do Mar de Cananéia e Baía do Trapandé (MSc Thesis).

Universidade de Sao Paulo, Agencia USP de Gestao da

Informacao Academica (AGUIA), São Paulo. https://doi.

org/10.11606/d.21.2000.tde-27052004-190010

Borrego, J., López-González, N., Carro, B., Grande, J. A.,

De la Torre, M. L. & Valente, T. M. F. 2012. Rare-earthelement fractionation patterns in estuarine sediments as

a consequence of acid mine drainage: a case study in

SW Spain. Boletín Geológico y Minero, 123(1), 55–64.

Borrego, J., López-González, N., Carro, B. & Lozano-Soria,

O. 2004. Origin of the anomalies in light and middle REE

in sediments of an estuary affected by phosphogypsum

wastes (south-western Spain). Marine Pollution Bulletin,

(11–12), 1045–1053. DOI: https://doi.org/10.1016/j.

marpolbul.2004.07.009

Braga, E. S. & Chiozzini, V. G. 2012. Alteration on the

nitrogen balance on the Cananéia-Iguape estuarinelagoon complex (Brazil) in function of the anthropogenic

influence. In: Anais do II Workshop Antropicosta

Iberoamerica. Montevideo.

Burkov, V. V. & Podporina, E. K. 1967. Rare Earths in the

weathering crusts of granitoids: Doklady Akademii

Kauk, 177, 691–694. DOI: https://doi.org/10.1007/

s12583-014-0449-z

Buynevich, I., Fitzgerald, D. & Van Heteren, S. 2004.

Sedimentary records of intense storms in Holocene barrier

sequences, Maine, USA. Marine Geology, 210(1–4),

–148. DOI: https://doi.org/10.1016/j.margeo.2004.05.007

Byrne, R. & Kim, K.-H. 1990. Rare earth element scavenging

in seawater. Geochimica et Cosmochimica Acta,

(10), 2645–2656. DOI: https://doi.org/10.1016/0016-

(90)90002-3

Calvert, S. . & Pedersen, T. F. 2007. Elemental proxies

for paleoclimatic and palaeoceanographic variability in

marine sediments: interpretation and application. Dev.

Developments in Marine Geology, 1, 567–644. DOI:

https://doi.org/org/10.1016/S1572-5480(07)01019-6

Chaillou, G., Anschutz, P., Lavaux, G. & Blanc, G. 2006.

Rare earth elements in the modern sediments of the Bay

of Biscay (France). Marine Chemistry, 100(1–2), 39–52.

DOI: https://doi.org/10.1016/j.marchem.2005.09.007

CETESB (COMPANHIA DE TECNOLOGIA DE

SANEAMENTO AMBIENTAL DE SÃO PAULO). 2013.

Relatório de Qualidade das Águas Interiores do Estado

de São Paulo, 2012 (resreport). São Paulo: Secretaria

do Meio Ambiente.

Cunha-Lignon, M. 2001. Dinâmica do Manguezal no

Sistema Cananéia-Iguape, Estado de São Paulo –

Brasil. (mathesis). Instituto Oceanográfico, Universidade

de São Paulo, São Paulo.

Dellwig, O., Hinrichs, J., Hild, A. & Brumsack, H.-J. 2000.

Changing sedimentation in tidal flat sediments of the

southern North Sea from the Holocene to the present:

a geochemical approach. Journal of Sea Research,

(3–4), 195–208. DOI: https://doi.org/10.1016/s1385-

(00)00051-4

Elbaz-Poulichet, F. & Dupuy, C. 1999. Behaviour of rare

earth elements at the freshwater–seawater interface

of two acid mine rivers: the Tinto and Odiel (Andalucia,

Spain). Applied Geochemistry, 14(8), 1063–1072. DOI:

https://doi.org/10.1016/s0883-2927(99)00007-4

Elderfield, H., Upstill-Goddard, R. & Sholkovitz, E. 1990.

The rare earth elements in rivers, estuaries, and

coastal seas and their significance to the composition

of ocean waters. Geochimica et Cosmochimica Acta,

(4), 971–991. DOI: https://doi.org/10.1016/0016-

(90)90432-k

Elias, Md. S., Ibrahim, S., Samuding, K., Kantasamy, N.,

Rahman, S. & Hashim, A. 2019. Rare earth elements

(REEs) as pollution indicator in sediment of Linggi River,

Malaysia. Applied Radiation and Isotopes, 151, 116–123.

DOI: https://doi.org/10.1016/j.apradiso.2019.05.038

Erel, Y. & Stolper, E. 1993. Modeling of rare-earth element

partitioning between particles and solution in aquatic

environments. Geochimica et Cosmochimica Acta,

(3), 513–518. DOI: https://doi.org/10.1016/0016-

(93)90363-2

Fiket, Ž., Mikac, N. & Kniewald, G. 2017. Influence of the

geological setting on the REE geochemistry of estuarine

sediments: A case study of the Zrmanja River estuary

(eastern Adriatic coast). Journal of Geochemical

Exploration, 182, 70–79. DOI: https://doi.org/10.1016/j.

gexplo.2017.09.001

Folk, R.L. & Ward, W.C. 1957. A Study in the Significance

of Grain-Size Parameters. Journal of Sedimentary

Petrology, 27, 3–26.

Gianini, P. C. F. 1987. Sedimentação quaternária na

planície costeira de Peruíbe-Itanhaém (SP) (mathesis).

Instituto de Geociências, Universidade de São Paulo,

São Paulo.

Godwyn-Paulson, P., Jonathan, M., Rodríguez-Espinosa,

P. & Rodríguez-Figueroa, G. 2022. Rare earth element

enrichments in beach sediments from Santa Rosalia

REE abundance in estuarine sediments

Ocean and Coastal Research 2023, v71(suppl 1):e23041 22

Chiozzini et al.

mining region, Mexico: An index-based environmental

approach. Marine Pollution Bulletin, 174, 113271. DOI:

https://doi.org/10.1016/j.marpolbul.2021.113271

Goldstein, S. & Jacobsen, S. 1988. REE in the Great Whale

River estuary, northwest Quebec. Earth and Planetary

Science Letters, 88(3–4), 241–252. DOI: https://doi.

org/10.1016/0012-821x(88)90081-7

Guimarães, V. & Sígolo, J. B. 2008. Associação de

resíduos da metalurgia com sedimentos em suspensão

- Rio Ribeira de Iguape. Geologia USP. Série Científica,

(2), 1–10. DOI: https://doi.org/10.5327/z1519-

x2008000200001

Haley, B., Klinkhammer, G. & Mcmanus, J. 2004. Rare

earth elements in pore waters of marine sediments.

Geochimica et Cosmochimica Acta, 68(6), 1265–1279.

DOI: https://doi.org/10.1016/j.gca.2003.09.012

Hannigan, R., Dorval, E. & Jones, C. 2010. The rare earth

element chemistry of estuarine surface sediments in the

Chesapeake Bay. Chemical Geology, 272(1–4), 20–30.

DOI: https://doi.org/10.1016/j.chemgeo.2010.01.009

Henderson, P. 1984. General Geochemical Properties and

Abundances of the Rare Earth Elements. In: Henderson,

P. (ed.), Rare Earth Element Geochemistry (pp. 1–32).

Amsterdam, Netherlands: Elsevier. DOI: https://doi.

org/10.1016/b978-0-444-42148-7.50006-x

Hinrichs, J., Dellwig, O. & Brumsack, H. 2002. Lead in

sediments and suspended particulate matter of the

German Bight: natural versus anthropogenic origin.

Applied Geochemistry, 17(5), 621–632.

Hull, C. & Burnett, W. 1996. Radiochemistry of

Florida phosphogypsum. Journal of Environmental

Radioactivity, 32(3), 213–238. DOI: https://doi.

org/10.1016/0265-931x(95)00061-e

Humphris, S. 1984. The Mobility of the Rare Earth Elements

in the Crust. In: Henderson, P. (ed.), Rare Earth Element

Geochemistry (pp. 317–342). Amsterdam, Netherlands:

Elsevier. DOI: https://doi.org/10.1016/b978-0-444-42148-

50014-9

Johannesson, K. & Zhou, X. 1999. Origin of middle rare earth

element enrichments in acid waters of a Canadian High

Arctic lake. Geochimica et Cosmochimica Acta, 63(1), 153–

DOI: https://doi.org/10.1016/s0016-7037(98)00291-9

Kalis, A., Merkt, J. & Wunderlich, J. 2003. Environmental

changes during the Holocene climatic optimum in

central Europe - human impact and natural causes.

Quaternary Science Reviews, 22(1), 33–79. DOI:

https://doi.org/10.1016/s0277-3791(02)00181-6

Kechiched, R., Laouar, R., Bruguier, O., Kocsis, L., SalmiLaouar, S., Bosch, D., Ameur-Zaimeche, O., Foufou,

A. & Larit, H. 2020. Comprehensive REE + Y and

sensitive redox trace elements of Algerian phosphorites

(Tébessa, eastern Algeria): A geochemical study

and depositional environments tracking. Journal of

Geochemical Exploration, 208, 106396. DOI: https://doi.

org/10.1016/j.gexplo.2019.106396

Kolditz, K., Dellwig, O., Barkowski, J., Bahlo, R., Leipe,

T., Freund, H. & Brumsack, H.-J. 2012. Geochemistry

of Holocene salt marsh and tidal flat sediments on a

barrier island in the southern North Sea (Langeoog,

North-west Germany). Sedimentology, 59(2), 337–355.

DOI: https://doi.org/10.1111/j.1365-3091.2011.01252.x

Larsonneur, C., Bouysse, P. & Auffret, J.-P. 1982. The

superficial sediments of the English Channel and its

Western Approaches. Sedimentology, 29(6), 851–864.

DOI: https://doi.org/10.1111/j.1365-3091.1982.tb00088.x

Lawrence, M. & Kamber, B. 2006. The behaviour of the

rare earth elements during estuarine mixing—revisited.

Marine Chemistry, 100(1–2), 147–161. DOI: https://doi.

org/10.1016/j.marchem.2005.11.007

Leroy, J. & Turpin, L. 1988. REE, Th and U behaviour during

hydrothermal and supergene processes in a granitic

environment. Chemical Geology, 68(3–4), 239–251.

DOI: https://doi.org/org/10.1016/0009-2541(88)90024-1

Liu, J., Xiang, R., Chen, Z., Chen, M., Yan, W., Zhang, L.

& Chen, H. 2013. Sources, transport and deposition of

surface sediments from the South China Sea. Deep Sea

Research Part I: Oceanographic Research Papers, 71,

–102. DOI: https://doi.org/10.1016/j.dsr.2012.09.006

Ma, J.-L., Wei, G.-J., Xu, Y.-G., Long, W.-G. & Sun, W.-D.

Mobilization and re-distribution of major and trace

elements during extreme weathering of basalt in Hainan

Island, South China. Geochimica et Cosmochimica

Acta, 71(13), 3223–3237. DOI: https://doi.org/10.1016/j.

gca.2007.03.035

Mahiques, M. de, Figueira, R., Salaroli, A., Alves, D. &

Gonçalves, C. 2013. 150 years of anthropogenic metal

input in a Biosphere Reserve: the case study of the

Cananéia–Iguape coastal system, Southeastern Brazil.

Environmental Earth Sciences, 68(4), 1073–1087. DOI:

https://doi.org/10.1007/s12665-012-1809-6

Marmolejo-Rodríguez, A., Prego, R., Meyer-Willerer,

A., Shumilin, E. & Sapozhnikov, D. 2007. Rare earth

elements in iron oxy−hydroxide rich sediments from

the Marabasco River-Estuary System (pacific coast of

Mexico). REE affinity with iron and aluminium. Journal of

Geochemical Exploration, 94(1–3), 43–51. DOI: https://

doi.org/10.1016/j.gexplo.2007.05.003

Maulana, A., Yonezu, K. & Watanabe, K. 2014. Geochemistry

of rare earth elements (REE) in the weathered crusts

from the granitic rocks in Sulawesi Island, Indonesia.

Journal of Earth Science, 25(3), 460–472. DOI: https://

doi.org/10.1007/s12583-014-0449-z

Mclennan, S. 1989. Rare earth elements in sedimentary

rocks: influence of provenance and sedimentary

processes. In: Lipin, D. R. & McKay, G. A. (eds.),

Geochemistry and Mineralogy of Rare Earth Elements

(Vol. 21, pp. 169–200). Berlin: De Gruyter. DOI: https://

doi.org/10.1515/9781501509032-010

Miyao, S. Y., Nishihara, L. & Sarti, C. C. 1986.

Características físicas e químicas do sistema estuarinolagunar de Cananéia-Iguape. Boletim Do Instituto

Oceanográfico, 34, 23–26. DOI: https://doi.org/10.1590/

s0373-55241986000100003

Moeller, T. 1985. The chemistry of the lanthanides. New

York: Pergamon.

Nesbitt, H. W. 1979. Mobility and fractionation of rare

earth elements during weathering of a granodiorite.

Nature, 279(5710), 206–210. DOI: https://doi.

org/10.1038/279206a0

Oliveira, S., Silva, P., Mazzilli, B., Favaro, D. & Saueia,

C. 2007. Rare earth elements as tracers of sediment

contamination by phosphogypsum in the Santos estuary,

REE abundance in estuarine sediments

Ocean and Coastal Research 2023, v71(suppl 1):e23041 23

Chiozzini et al.

southern Brazil. Applied Geochemistry, 22(4), 837–850.

DOI: https://doi.org/10.1016/j.apgeochem.2006.12.017

Pérez-López, R., Macías, F., Cánovas, C., Sarmiento,

A. & Pérez-Moreno, S. 2016. Pollutant flows from

a phosphogypsum disposal area to an estuarine

environment: An insight from geochemical signatures.

Science of The Total Environment, 553, 42–51. DOI:

https://doi.org/10.1016/j.scitotenv.2016.02.070

Prajith, A., Rao, V. & Kessarkar, P. 2015. Controls on the

distribution and fractionation of yttrium and rare earth

elements in core sediments from the Mandovi estuary,

western India. Continental Shelf Research, 92, 59–71.

DOI: https://doi.org/10.1016/j.csr.2014.11.003

Prego, R., Caetano, M., Vale, C. & Marmolejo-Rodríguez,

J. 2009. Rare earth elements in sediments of the Vigo

Ria, NW Iberian Peninsula. Continental Shelf Research,

(7), 896–902. DOI: https://doi.org/10.1016/j.

csr.2009.01.009

Rao, W., Mao, C., Wang, Y., Huang, H. & Ji, J. 2017.

Using Nd-Sr isotopes and rare earth elements to

study sediment provenance of the modern radial

sand ridges in the southwestern Yellow Sea. Applied

Geochemistry, 81, 23–35. DOI: https://doi.org/10.1016/j.

apgeochem.2017.03.011

Rasmussen, B., Buick, R. & Taylor, W. 1998. Removal of

oceanic REE by authigenic precipitation of phosphatic

minerals. Earth and Planetary Science Letters,

(1–2), 135–149. DOI: https://doi.org/10.1016/s0012-

x(98)00199-x

Ribeira de Iguape and South Coast Hydrographic Basin

Committee, 2008. Relatório de Situação dos Recursos

Hídricos da Unidade de Gerenciamento n. 11: Bacia

Hidrográfica do Ribeira de Iguape e Litoral Sul. São

Paulo – SP.

Rolland, Y., Cox, S., Boullier, A.-M., Pennacchioni, G. &

Mancktelow, N. 2003. Rare earth and trace element

mobility in mid-crustal shear zones: insights from the

Mont Blanc Massif (Western Alps). Earth and Planetary

Science Letters, 214(1–2), 203–219. DOI: https://doi.

org/10.1016/s0012-821x(03)00372-8

Ross, J. L. S. 2002. A morfogênese da Bacia do Ribeira de

Iguape e os sistemas ambientais. GEOUSP – Espaço

e Tempo, 12.

Rutherford, P., Dudas, M. & Arocena, J. 1995. Radioactivity

and Elemental Composition of Phosphogypsum

Produced From Three Phosphate Rock Sources.

Waste Management & Research: The Journal for

a Sustainable Circular Economy, 13(5), 407–423. DOI:

https://doi.org/10.1177/0734242x9501300502

Rutherford, P., Dudas, M. & Samek, R. 1994. Environmental

impacts of phosphogypsum. Science of The Total

Environment, 149(1–2), 1–38. DOI: https://doi.

org/10.1016/0048-9697(94)90002-7

Saueia, C. H. R., Bourlegat, F. M. L., Mazzilli, B. P. & Fávaro,

D. I. T. 2012. Availability of metals and radionuclides

present in phosphogypsum and phosphate fertilizers

used in Brazil. Journal of Radioanalytical and Nuclear

Chemistry, 297(2), 189–195. DOI: https://doi.

org/10.1007/s10967-012-2361-2

Schäfer, J., Coynel, A., Turner, A. & Koch, B. 2016. The 13th

International Estuarine Biogeochemistry Symposium:

‘Estuaries and bays under anthropogenic pressure:

past-present-future’. Marine Chemistry, 185, 1–2. DOI:

https://doi.org/10.1016/j.marchem.2016.05.012

Schropp, S. J. & Windom, H. L. (eds.). 1988. Guide

to the Interpretation of Metal Concentrations in

Estuarine Sediments. Florida: Florida Department of

Environmental Protection.

Sholkovitz, E. 1993. The geochemistry of rare earth

elements in the Amazon River estuary. Geochimica et

Cosmochimica Acta, 57(10), 2181–2190. DOI: https://

doi.org/10.1016/0016-7037(93)90559-f

Shynu, R., Rao, V., Kessarkar, P. & Rao, T. 2011. Rare earth

elements in suspended and bottom sediments of the

Mandovi estuary, central west coast of India: Influence of

mining. Estuarine, Coastal and Shelf Science, 94(4), 355–

DOI: https://doi.org/10.1016/j.ecss.2011.07.013

Silva, P., Mazzilli, B. & Fávaro, D. 2005. Distribution of U and

Th decay series and rare earth elements in sediments of

Santos Basin: correlation with industrial activities. Journal

of Radioanalytical and Nuclear Chemistry, 264, 449–455.

DOI: https://doi.org/10.1007/s10967-005-0736-3

Slukovskii, Z., Guzeva, A. & Dauvalter, V. 2022. Rare earth

elements in surface lake sediments of Russian arctic:

Natural and potential anthropogenic impact to their

accumulation. Applied Geochemistry, 142, 105325.

DOI: https://doi.org/10.1016/j.apgeochem.2022.105325

Souza, L. A. P., Tessler, M. G. & Galli, V. L. 1996. O gráben

de Cananéia. Revista Brasileira de Geociências,

(3), 139–150. DOI: https://doi.org/10.25249/0375-

1996139150

Su, N., Yang, S., Guo, Y., Yue, W., Wang, X., Yin, P. & Huang,

X. 2017. Revisit of rare earth element fractionation during

chemical weathering and river sediment transport.

Geochemistry, Geophysics, Geosystems, 18(3),

–955. DOI: https://doi.org/10.1002/2016gc006659

SUDELPA (Superintendência do Desenvolvimento do Litoral

Paulista). 1987. Plano Básico de desenvolvimento autosustentado para a região lagunar de Iguape e Cananéia.

São Paulo: Superintendência do Desenvolvimento do

Litoral Paulista.

Suguio, K., Tessler, M. G., Furtado, V. V., Esteves, C.

A. & Souza, L. A. P. 1987. Perfilagens geofísicas e

sedimentação na área submersa entre Cananéia e

Barra de Cananéia. In: Simpósio sobre ecossistemas

da Costa Sul e Sudeste Brasileira (pp. 234–241). São

Paulo: Academia de Ciências do estado de São Paulo.

Tessler, M. G. 1988. Dinâmica sedimentar quaternária no

litoral sul paulista (phdthesis). Instituto de Geociências,

Universidade de São Paulo, São Paulo.

Tessler, M. G. & Furtado, V. V. 1983. Dinâmica de

sedimentação das feições de assoreamento da região

lagunar Cananéia-Iguape, Estado de São Paulo. Boletim

Do Instituto Oceanográfico, 32(2), 117–124. DOI:

https://doi.org/10.1590/s0373-55241983000200002

Tessler, M. G. & Souza, L. A. P. de. 1998. Dinâmica

sedimentar e feições sedimentares identificadas na

superfície de fundo do sistema Cananéia-Iguape, SP.

Revista Brasileira de Oceanografia, 46(1), 69–83. DOI:

https://doi.org/10.1590/s1413-77391998000100006

Tramonte, K., Figueira, R., De Lima Ferreira, P., Ribeiro,

A., Batista, M. & De Mahiques, M. 2016. Environmental

REE abundance in estuarine sediments

Ocean and Coastal Research 2023, v71(suppl 1):e23041 24

Chiozzini et al.

availability of potentially toxic elements in estuarine

sediments of the Cananéia–Iguape coastal system,

Southeastern Brazil. Marine Pollution Bulletin,

(1–2), 260–269. DOI: https://doi.org/10.1016/j.

marpolbul.2015.12.011

Tramonte, K., Figueira, R., Majer, A., De Lima Ferreira,

P., Batista, M., Ribeiro, A. & De Mahiques, M. 2018.

Geochemical behavior, environmental availability,

and reconstruction of historical trends of Cu, Pb,

and Zn in sediment cores of the Cananéia-Iguape

coastal system, Southeastern Brazil. Marine Pollution

Bulletin, 127, 1–9. DOI: https://doi.org/10.1016/j.

marpolbul.2017.11.016

Tranchida, G., Oliveri, E., Angelone, M., Bellanca, A.,

Censi, P., D’elia, M., Neri, R., Placenti, F., Sprovieri,

M. & Mazzola, S. 2011. Distribution of rare earth

elements in marine sediments from the Strait of

Sicily (western Mediterranean Sea): Evidence of

phosphogypsum waste contamination. Marine Pollution

Bulletin, 62(1), 182–191. DOI: https://doi.org/10.1016/j.

marpolbul.2010.11.003

Um, I. kwon., Man, S. C., Bahk, J. J. & Song, Y. H. 2013.

Discrimination of sediment provenance using rare earth

elements in the Ulleung Basin, East/Japan Sea. Marine

Geology, 346, 208–219. DOI: https://doi.org/10.1016/j.

margeo.2013.09.007

Veloso, H. P., Rangel-Filho, A. L. R. & Lima, J. C. A. 1991.

Classificação da vegetação brasileira, adaptada a um

sistema universal. Rio de Janeiro: IBGE.

Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K.,

Gopinath, S., Prakash, R., Ponnumani, G. & Babu, C.

Rare earth elements geochemistry of groundwater

from Shanmuganadhi, Tamilnadu, India: Chemical

weathering implications using geochemical massbalance calculations. Geochemistry, 80(4), 125668.

DOI: https://doi.org/10.1016/j.chemer.2020.125668

Weber, W. 1998. Geologia e Geocronologia da Ilha do

Cardoso, sudeste do Estado de São Paulo (mathesis).

Universidade de Sao Paulo, Agencia USP de Gestao da

Informacao Academica (AGUIA), São Paulo. https://doi.

org/10.11606/d.44.1998.tde-14102015-155051

Wedepohl, K. H. 1995. The composition of the

continental crust. Geochimica et Cosmochimica

Acta, 59(7), 1217–1232. DOI: https://doi.org/10.1180/

minmag.1994.58a.2.234

Wu, K., Liu, S., Kandasamy, S., Jin, A., Lou, Z., Li, J., Wu,

B., Wang, X., Abdrahim Mohamed, C. & Shi, X. 2019.

Grain-size effect on rare earth elements in Pahang River

and Kelantan River, Peninsular Malaysia: Implications

for sediment provenance in the southern South China

Sea. Continental Shelf Research, 189, 103977. DOI:

https://doi.org/10.1016/j.csr.2019.103977

Yang, S. Y., Jung, H. S., Choi, M. S. & Li, C. X. 2002. The

rare earth element compositions of the Changjiang

(Yangtze) and Huanghe (Yellow) river sediments. Earth

and Planetary Science Letters, 201(2), 407–419. DOI:

https://doi.org/10.1016/s0012-821x(02)00715-x

Yusoff, Z., Ngwenya, B. & Parsons, I. 2013. Mobility and

fractionation of REEs during deep weathering of

geochemically contrasting granites in a tropical setting,

Malaysia. Chemical Geology, 349–350, 71–86. DOI:

https://doi.org/10.1016/j.chemgeo.2013.04.016

Downloads

Published

2024-04-10

How to Cite

Rare Earth Elements abundance, fractionation, and anomalies in the sediments of the Cananéia-Iguape Estuarine-Lagoon Complex in Brazil. (2024). Ocean and Coastal Research, 71(Suppl. 1). https://doi.org/10.1590/