Vertical structure and variability of currents on the southern Brazilian inner shelf at 32°S

Authors

  • Julia Gil dos Santos
  • Carlos Alberto Eiras Garcia

DOI:

https://doi.org/10.1590/

Keywords:

Costal circulation, direct current measurements, tidal currents, south Brazilian inner shelf

Abstract

This study investigates the impact of winds, tides, and river discharges on the coastal current and salinity variability
of Southern Brazil’s inner shelf. Data on wind speed, current, surface salinity, and temperature were collected for
analysis from a metocean buoy of the Brazilian Coastal Monitoring System (SiMCosta). The observed current time
series can be interpreted as a sum of highly variable flows correlated with local wind stress, and a residual mean
current flowing southward along the coast at a few centimeters per second. Tidal currents were predominantly
diurnal, albeit negligible, representing approximately 1.7% of the current variance in the region. We observed a
prevalence of northwest winds and southeastward currents on the inner shelf, as well as an intermittent flow in both
the alongshore and cross-shore directions due to meteorological frontal system passages. The power spectrum of
both current components presented similar frequency patterns, indicating the prevalence of high-energy events in
periods of 3 to 10 days over the entire time series. The alongshore current is highly correlated (r=0.73, p<0.05) with
alongshore wind and a delay of 3 hours. In the low- (period >40 h) and high-frequency (period <40 h), the temporal
lags were of 5 and 3 hours, respectively, with correlations of 0.79 (p<0.05) and 0.60 (p<0.05). The wavelet analysis
has shown that high-energy events in alongshore wind stress are more common between August and October
and less often between February and March, with similar surface currents and salinity patterns. A decrease in
surface salinity during the winter season was observed due to the high level of Patos Lagoon’s outflow. Mean daily
salinity correlated negatively with Patos Lagoon’s outflow, however part of this variability is associated with the
intrusion of Patos Lagoon’s plume and the passage of frontal systems.

References

Beardsley, R. C. & Hart, J. 1978. A simple theoretical

model for the flow of an estuary onto a continental shelf.

Journal of Geophysical Research, 83(C2), 873. DOI:

https://doi.org/10.1029/jc083ic02p00873

Burrage, D., Wesson, J., Martinez, C., Pérez, T., Möller, O. &

Piola, A. 2008. Patos Lagoon outflow within the Río de la

Plata plume using an airborne salinity mapper: Observing

an embedded plume. Continental Shelf Research, 28(13),

–1638. DOI: https://doi.org/10.1016/j.csr.2007.02.014

Campos, E. J. D., Lorenzzetti, J. A., Stevenson, M. R. &

Stech, J. L. 1996. Penetration of waters from the Brazil–

Malvinas Confluence region along the South American

continental shelf up to 23°S. Anais Da Academia

Brasileira de Ciências, 68(supl. 1), 49–58.

Castelao, R. M. & Moller Jr, O. O. 2006. A modeling study of

Patos lagoon (Brazil) flow response to idealized wind and

river discharge: dynamical analysis. Brazilian Journal of

Oceanography, 54(1), 1–17. DOI: https://doi.org/10.1590/

s1679-87592006000100001

Castro, B. M. de, Brandini, F. P. & Pires-Vanin, A. M. S.

The Global Coastal Ocean: Interdisciplinary

Regional Studies and Syntheses: The Sea. (Vol. 14,

pp. 259–293). Cambridge: Harvard University Press.

Castro, B. M. & Lee, T. N. 1995. Wind-forced sea level

variability on the southeast Brazilian shelf. Journal of

Geophysical Research, 100(C8), 16045–16056. DOI:

https://doi.org/10.1029/95jc01499

Castro, B. M. & Miranda, L. B. 1998. Physical Oceanography

of the western Atlantic continental shelf between 41N

and 341S. In: Brink, K. & Robinson, A. (Eds.). The Sea:

The Global Coastal Ocean (Vol. 10, pp. 209–251).

New York: Wiley.

Chao, S.-Y. 1988a. River-Forced Estuarine Plumes. Journal

of Physical Oceanography, 18(1), 72–88.

Chao, S.-Y. 1988b. Wind-Driven Motion of Estuarine Plumes.

Journal of Physical Oceanography, 18(8), 1144–1166.

Chao, S.-Y. & Boicourt, W. C. 1986. Onset of Estuarine

Plumes. Journal of Physical Oceanography, 16(12),

–2149.

Costa, R. L. & Möller, O. O. 2011. Estudo da estrutura e da

variabilidade das correntes na área da plataformainterna

ao largo de Rio Grande (RS, Brasil), no sudoeste do

Atlântico Sul, durantea primavera-verão de 2006-2007.

Revista Da Gestão Costeira Integrada, 11(3), 273–281.

Fernandes, E. H., Dyer, K. R. & Niencheski, L. F. H. 2001.

Calibration and Validation of the ℡EMAC-2D Model to the

Patos Lagoon (Brazil). Journal of Coastal Research, (34),

–488.

Fernandes, E. H. L., Dyer, K. R. & Moller, O. O. 2005.

Spatial Gradients in the Flow of Southern Patos Lagoon.

Journal of Coastal Research, 21(4), 759–769.

Fernandes, E. H. L., Dyer, K. R., Moller, O. O. & Niencheski,

L. F. H. 2002. The Patos Lagoon hydrodynamics during

an El Niño event (1998). Continental Shelf Research,

(11–13), 1699–1713. DOI: https://doi.org/10.1016/

s0278-4343(02)00033-x

Fernandes, E. H. L., Mariño-Tapia, I., Dyer, K. R. & Möller, O. O.

The attenuation of tidal and subtidal oscillations in

the Patos Lagoon estuary. Ocean Dynamics, 54(3–4),

–359. DOI: https://doi.org/10.1007/s10236-004-0090-y

Framiñan, M. B. & Brown, O. B. 1996. Study of the Río de la

Plata turbidity front, Part 1: spatial and temporal distribution.

Continental Shelf Research, 16(10), 1259–1282. DOI:

https://doi.org/10.1016/0278-4343(95)00071-2

Garvine, R. W. 1984. Radial spreading of buoyant, surface

plumes in coastal waters. Journal of Geophysical

Research, 89(C2), 1989–1996. DOI: https://doi.org/

1029/jc089ic02p01989

Garvine, R. W. 1999. Penetration of Buoyant Coastal

Discharge onto the Continental Shelf: A Numerical

Model Experiment. Journal of Physical Oceanography,

(8), 1892–1909.

Green, J. A. M., Bowers, D. G. & Byrne, H. A. M. 2018.

A mechanistic classification of double tides. Ocean

Science Discussions. Copernicus GmbH. DOI: https://

doi.org/10.5194/os-2018-72

Guerrero, R. A., Acha, E. M., Framintexttildelowan, M. B. &

Lasta, C. A. 1997. Physical oceanography of the Río de

la Plata Estuary, Argentina. Continental Shelf Research,

(7), 727–742. DOI: https://doi.org/10.1016/s0278-

(96)00061-1

Guo, X. & Valle-Levinson, A. 2007. Tidal effects on estuarine

circulation and outflow plume in the Chesapeake Bay.

Continental Shelf Research, 27(1), 20–42. DOI: https://

doi.org/10.1016/j.csr.2006.08.009

Ikeda, M. 1984. Coastal flows driven by a local density flux.

Journal of Geophysical Research, 89(C5), 8008–8016.

DOI: https://doi.org/10.1029/jc089ic05p08008

Jaccon, G. & Cudo, K. J. 1989. Curva-chave: análise

e traçado (techreport). Brasília, DF: Departamento

Nacional de Águas e Energia Elétrica.

Kirincich, A. R. & Hebert, D. 2005. The structure of the

coastal density front at the outflow of Long Island Sound

during spring 2002. Continental Shelf Research, 25(9),

–1114. DOI: https://doi.org/10.1016/j.csr.2004.12.014

Lentz, S. J. 1995. Sensitivity of the inner-shelf circulation to

the form of the eddy viscosity profile. Journal of Physical

Oceanography. Journal of Physical Oceanography,

(1), 19–28.

Malaval, M. B. 1922. Travaux du port et de la barre de Rio

Grande, Brèsil. Paris: Eyrolles Editeurs.

Mann, K. H. & Lazier, J. R. N. 2005. Dynamics of Marine

Ecosystems (3rd ed.). Hoboken: Wiley. DOI: https://doi.org/

1002/9781118687901

Marques, W. C. 2005. Padrões de variabilidade temporal nas

forçantes da circulação e seus efeitos na dinâmica da

Lagoa dos Patos, Rio Grande do Sul, Brasil (mathesis).

Unidversidade Federal do Rio Grande, Rio Grande.

Marques, W. C., Fernandes, E. H. L., Moraes, B. C.,

Möller, O. O. & Malcherek, A. 2010. Dynamics of the

Patos Lagoon coastal plume and its contribution to the

deposition pattern of the southern Brazilian inner shelf.

Journal of Geophysical Research: Oceans, 115(C10).

DOI: https://doi.org/10.1029/2010jc006190

Marques, W. C., Fernandes, E. H., Monteiro, I. O. & Möller,

O. O. 2009. Numerical modeling of the Patos Lagoon

coastal plume, Brazil. Continental Shelf Research, 29(3),

–571. DOI: https://doi.org/10.1016/j.csr.2008.09.022

Brazilian coastal currents at 32o

S

Ocean and Coastal Research 2023, v71(suppl 2):e23027 22

Santos and Garcia

Matano, R. P., Palma, E. D. & Piola, A. R. 2010. The influence

of the Brazil and Malvinas Currents on the Southwestern

Atlantic Shelf circulation. Ocean Science, 6(4), 983–995.

DOI: https://doi.org/10.5194/os-6-983-2010

McClimans, T. A. 1988. Physical Processes in Estuaries. In:

Dronkers, J. & Leussen, W. (eds.), Physical Processes

in Estuaries (pp. 55–69). Berlin: Springer. DOI: https://

doi.org/10.1007/978-3-642-73691-9_4

Mendes, J. C. 1984. Elementos de estratigrafia. T.A. Queiroz.

Mendonça, L. F., Souza, R. B., Aseff, C. R. C., Pezzi, L. P.,

Möller, O. O. & Alves, R. C. M. 2017. Regional modeling

of the water masses and circulation annual variability

at the Southern Brazilian Continental Shelf. Journal of

Geophysical Research: Oceans, 122(2), 1232–1253.

DOI: https://doi.org/10.1002/2016jc011780

Miranda, L. B. 1972. Propriedades e variáveis físicas das

águas da Plataforma continental do Rio Grande do Sul.

(phdthesis). Instituto Oceanográfico da Universidade de

São Paulo, São Paulo.

Miranda, L. B. & Castro, B. M. 1979. Aplicação do diagrama

TS estatístico-volumétrico à análise das massas

de água da plataforma continental do Rio Grande

do Sul. Boletim do Instituto Oceanográfico. Instituto

Oceanográfico.

Mitchum, G. T. & Clarke, A. J. 1986. The Frictional Nearshore

Response to Forcing by Synoptic Scale Winds. Journal

of Physical Oceanography, 16(5), 934–946.

Moller, O. O., Castaing, P., Salomon, J.-C. & Lazure, P. 2001.

The Influence of Local and Non-Local Forcing Effects

on the Subtidal Circulation of Patos Lagoon. Estuaries,

(2), 297. DOI: https://doi.org/10.2307/1352953

Moller, O. O., Lorenzzentti, J. A., Stech, J. & Mata, M. M.

The Patos Lagoon summertime circulation and

dynamics. Continental Shelf Research, 16(3), 335–351.

DOI: https://doi.org/10.1016/0278-4343(95)00014-r

Möller, O. O., Piola, A. R., Freitas, A. C. & Campos, E. J.

D. 2008. The effects of river discharge and seasonal

winds on the shelf off southeastern South America.

Continental Shelf Research, 28(13), 1607–1624. DOI:

https://doi.org/10.1016/j.csr.2008.03.012

Motta, V. F. 1969. Relatório diagnóstico sobre a melhoria

e o aprofundamento do canal de acesso pela barra

do Rio Grande. (techreport). Porto Alegre: Instituto de

Pesquisas Hidráulicas da Universidade Federal do rio

Grande do Sul.

Palma, E. D., Matano, R. P. & Piola, A. R. 2008. A numerical

study of the Southwestern Atlantic Shelf circulation:

Stratified ocean response to local and offshore forcing.

Journal of Geophysical Research, 113(C11). DOI:

https://doi.org/10.1029/2007jc004720

Pawlowicz, R., Beardsley, B. & Lentz, S. 2002. Classical

tidal harmonic analysis including error estimates in

MATLAB using T_TIDE. Computers & Geosciences,

(8), 929–937. DOI: https://doi.org/10.1016/s0098-

(02)00013-4

Pereira, C. S. 1989. Seasonal variability in the coastal

circulation on the Brazilian continental shelf (29°S

°S). Continental Shelf Research, 9(3), 285–299.

Pimenta, F. M., Campos, E. J. D., Miller, J. L. & Piola, A. R.

A numerical study of the Plata River plume along

the southeastern South American continental shelf.

Brazilian Journal of Oceanography, 53(3–4), 129–146.

Piola, A. R., Campos, E. J. D., Möller, O. O., Charo, M. &

Martinez, C. 1999. Continental shelf water masses off

eastern South America – 20° to 40° S. In: Symposium

on Global Change Studies (pp. 9–12). Boston: American

Meteorology Society.

Piola, A. R., Campos, E. J. D., Möller, O. O., Charo, M. &

Martinez, C. 2000. Subtropical Shelf Front off eastern

South America. Journal of Geophysical Research:

Oceans, 105(C3), 6565–6578. DOI: https://doi.org/

1029/1999jc000300

Piola, A. R., Matano, R. P., Palma, E. D., Möller Jr., O.

O. & Campos, E. 2005. The influence of the Plata

River discharge on the western South Atlantic shelf.

Geophysical Research Letters, 32(1). DOI: https://doi.org/

1029/2004gl021638

Piola, A. R., Möller, O. O., Guerrero, R. A. & Campos, E.

J. D. 2008. Variability of the subtropical shelf front off

eastern South America: Winter 2003 and summer 2004.

Continental Shelf Research, 28(13), 1639–1648. DOI:

https://doi.org/10.1016/j.csr.2008.03.013

Piola, A. R. & Rivas, A. 1997. El Mar Argentino e sus

Recursos Pesqueros. In: Boschi, E. (ed.) (Vol. 1,

pp. 119–132). Buenos Aires: Instituto Nacional de

Investigación y Desarrollo Pesquero.

Silva, D. V. da, Oleinik, P. H., Costi, J., Kirinus, E. de P.,

Marques, W. C. & Moller, O. O. 2022. Variability of the

Spreading of the Patos Lagoon Plume Using Numerical

Drifters. Coasts, 2(2), 51–69. DOI: https://doi.org/

3390/coasts2020004

Soares, I. D., Kourafalou, V. & Lee, T. N. 2007. Circulation

on the western South Atlantic continental shelf:

Numerical process studies on buoyancy. Journal of

Geophysical Research, 112(C4). DOI: https://doi.org/

1029/2006jc003618

Stevenson, M. R., Dias-Brito, D., Stech, J. L. & Kampel, M.

How do cold water biota arrive in a tropical bay

near Rio de Janeiro, Brazil? Continental Shelf Research,

(13), 1595–1612. DOI: https://doi.org/10.1016/s0278-

(98)00029-6

Thomson, R. E. & Emery, W. J. 2014. Data Analysis

Methods in Physical Oceanography. Elsevier. DOI:

https://doi.org/10.1016/c2010-0-66362-0

Torrence, C. & Compo, G. P. 1998. A Practical Guide

to Wavelet Analysis. Bulletin of the American

Meteorological Society, 79(1), 61–78.

Yankovsky, A. E. & Chapman, D. C. 1997. A Simple Theory

for the Fate of Buoyant Coastal Discharges. Journal of

Physical Oceanography, 27(7), 1386–1401.

Zavialov, P., Möller, O. & Campos, E. 2002. First direct

measurements of currents on the continental shelf

of Southern Brazil. Continental Shelf Research,

(14), 1975–1986. DOI: https://doi.org/10.1016/

s0278-4343(02)00049-3

Zavialov, P. O., Ghisolfi, R. D. & Garcia, C. A. E. 1998.

An inverse model for seasonal circulation in the Southern

Brazilian shelf: near surface velocity from the heat budget.

Journal of Physical Oceanography, 28(4), 545–562.

Downloads

Published

2024-04-10

How to Cite

Vertical structure and variability of currents on the southern Brazilian inner shelf at 32°S. (2024). Ocean and Coastal Research, 71(Suppl. 2). https://doi.org/10.1590/