Meteorological and potential climatic influence on high cyanobacterial biomass within Patos Lagoon (southern Brazil): A case study of the summer of 2019–2020

Authors

  • Beatriz Feltrin Caneve
  • Márcio Silva de Souza
  • Eliana Veleda Klering
  • Felipe de Lucia Lobo
  • Elisa Helena Leão Fernandes
  • João Sarkis Yunes

DOI:

https://doi.org/10.1590/

Keywords:

Freshwater environment, Wind-driven hydrodynamics, Rainfall, Satellite-Derived biomass index, Climate variation

Abstract

Cyanobacterial blooms are a potential threat to human communities and ecosystems. Since the late 1980s, researchers have reported harmful cyanobacterial colonies in Patos Lagoon (PL), the largest coastal lagoon in South America. Most studies concerning harmful blooms in PL have focused on its biology and on its southernmost estuarine region, with little information about its displacement inside the lagoon and the influence of physical forces on its dynamics. This study uses satellite-derived information (normalized difference chlorophyll-a index – NDCI), river discharge data, and meteorological data (wind speed and direction, rainfall, and air temperature) to analyze two bloom episodes in PL, during the austral summer of 2019/2020, specifically in its larger, limnic portion. A 30-year meteorological time series was used to contrast the same summer period. Two remote sensing images from Sentinel-2 were taken of PL margins, near their central portion. The summer of 2019/2020 was drier when compared with the historical data, characterizing low river discharge. This environmental condition was coupled with high temperature, which implies thermal stratification in summer even at 2-m depth sites, which might have promoted cyanobacterial growth and accumulation inside PL. Moreover, weak winds (<<6 m s−1) seemed to accumulate cyanobacterial patches on the water surface, including after vertical mixing caused by strong winds (>6 m s−1). The NDCI values represented the two days of blooms, with higher values occurring under higher water temperatures and low wind speeds.

References

Abreu, P. C., Hartmann, C. & Odebrecht, C. 1995. Nutrientrich saltwater and its influence on the phytoplankton of

the patos lagoon estuary, Southern Brazil. Estuarine,

Coastal and Shelf Science, 40(2), 219–229. DOI:

https://doi.org/10.1016/s0272-7714(05)80006-x

Aguilera, L., Santos, A. L. F. D. & Rosman, P. C. C. 2020.

On characteristic hydraulic times through hydrodynamic

modelling: discussion and application in Patos Lagoon

(RS). Ambiente e Água, 15(2). DOI: https://doi.org/

4136/ambi-agua.2456

Andrade, M. M., Abreu, P. C., Ávila, R. A. & Möller, O. O.

Importance of winds, freshwater discharge

and retention time in the space–time variability of

phytoplankton biomass in a shallow microtidal estuary.

Regional Studies in Marine Science, 50, 102161. DOI:

https://doi.org/10.1016/j.rsma.2022.102161

Aubriot, L., Zabaleta, B., Bordet, F., Sienra, D., Risso, J.,

Achkar, M. & Somma, A. 2020. Assessing the origin

of a massive cyanobacterial bloom in the Río de la

Plata (2019): Towards an early warning system. Water

Research, 181, 115944. DOI: https://doi.org/10.1016/j.

watres.2020.115944

Baumgarten, M. da G. Z., Niencheski, L. F. H. & Veeck, L.

Nutrientes na coluna da agua e na agua intersticial

de sedimentos de uma enseada rasa estuarina com

aportes de origem antropica (RS-Brasil). Atlantica

(Rio Grande), 23, 101–116.

Bitencourt, L. P., Fernandes, E. H., Silva, P. D. da & Möller,

O. 2020. Spatio-temporal variability of suspended

sediment concentrations in a shallow and turbid lagoon.

Journal of Marine Systems, 212, 103454. DOI: https://

doi.org/10.1016/j.jmarsys.2020.103454

Bortolin, E. C., Weschenfelder, J., Fernandes, E. H.,

Bitencourt, L. P., Möller, O. O., García-Rodríguez, F. &

Toldo, E. 2020. Reviewing sedimentological and

hydrodynamic data of large shallow coastal lagoons for

defining mud depocenters as environmental monitoring

sites. Sedimentary Geology, 410, 105782. DOI: https://

doi.org/10.1016/j.sedgeo.2020.105782

Caballero, I., Fernández, R., Escalante, O. M., Mamán, L. &

Navarro, G. 2020. New capabilities of Sentinel-2A/B

satellites combined with in situ data for monitoring

small harmful algal blooms in complex coastal waters.

Scientific Reports, 10(1), 8743. DOI: https://doi.org/

1038/s41598-020-65600-1

Carpenter, S. R., Caraco, N. F., Corell, D. L., Howarth,

R. W., Sharpey, A. N. & Smith, V. H. 1998. Nonpoint

pollution of surface waters with phosphorus and

nitrogen. Ecological Applications, 8(3), 559–568.

Cloern, J. E. 2001. Our evolving conceptual model of

the coastal eutrophication problem. Marine Ecology

Progress Series, 210, 223–253.

Devercelli, M. 2009. Changes in phytoplankton morphofunctional groups induced by extreme hydroclimatic

events in the Middle Paraná River (Argentina).

Hydrobiologia, 639(1), 5–19. DOI: https://doi.org/

1007/s10750-009-0020-6

Devercelli, M. & O’Farrell, I. 2013. Factors affecting the

structure and maintenance of phytoplankton functional

groups in a nutrient rich lowland river. Limnologica, 43(2),

–78. DOI: https://doi.org/10.1016/j.limno.2012.05.001

Fernandes, E. H. L., Dyer, K. R., Moller, O. O. & Niencheski,

L. F. H. 2002. The Patos Lagoon hydrodynamics during

an El Niño event (1998). Continental Shelf Research,

Meteorological and climatic influence on cyanobacteria

Ocean and Coastal Research 2023, v71(suppl 2):e23026 15

Canever et al.

(11–13), 1699–1713. DOI: https://doi.org/10.1016/

s0278-4343(02)00033-x

Ferreira, A. H. F., Minillo, A., Silva, L. de M., Yunes, J. S.

Ocorrência de Anabaena spiroides (cianobactéria)

no estuário da Lagoa dos Patos (RS, Brasil) no verãooutono de 1998. Atlântica, 26(1), 17–26.

Fujita, C. C. & Odebrecht, C. 2007. Short term variability of

chlorophyll a and phytoplankton composition in a shallow

area of the Patos Lagoon estuary (Southern Brazil).

Atlântica, 29(2), 93–106.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S.,

Thau, D. & Moore, R. 2017. Google Earth Engine:

Planetary-scale geospatial analysis for everyone.

Remote Sensing of Environment, 202, 18–27. DOI:

https://doi.org/10.1016/j.rse.2017.06.031

Haraguchi, L., Carstensen, J., Abreu, P. C. & Odebrecht, C.

Long-term changes of the phytoplankton

community and biomass in the subtropical shallow Patos

Lagoon Estuary, Brazil. Estuarine, Coastal and Shelf

Science, 162, 76–87. DOI: https://doi.org/10.1016/j.

ecss.2015.03.007

Ho, J. C. & Michalak, A. M. 2017. Phytoplankton

blooms in Lake Erie impacted by both long-term and

springtime phosphorus loading. Journal of Great

Lakes Research, 43(3), 221–228. DOI: https://doi.

org/10.1016/j.jglr.2017.04.001

Kalikoski, D. C. & Vasconcellos, M. 2012. Case study of the

technical, socio-economic and environmental conditions

of small-scale fisheries in the estuary of Patos Lagoon,

Brazil. Rome: FAO.

Kennish, M. J. & Pearl, H. W. (eds.). 2010. Coastal Lagoons:

Critical Habitats of Environmental Change. Abingdon:

CRC Press.

King, K. W., Williams, M. R. & Fausey, N. R. 2015.

Contributions of Systematic Tile Drainage to WatershedScale Phosphorus Transport. Journal of Environmental

Quality, 44(2), 486–494. DOI: https://doi.org/10.2134/

jeq2014.04.0149

Kiss, K. T. & Ács, É. 2002. Nature conservation oriented algal

biodiversity monitoring investigations in the main arm and

some dead arms of the River Tisza II. Phytoplankton. In:

Limnological Reports (Vol. 34, pp. 163–171). Tulcea:

International Association for Danube Research.

Kjerfve, B. 1994. Coastal Lagoons. In: Coastal Lagoon

Process (pp. 1–8). Amsterdam: Elsevier.

Lehman, P. W., Boyer, G., Hall, C., Waller, S. & Gehrts,

K. 2005. Distribution and toxicity of a new colonial

Microcystis aeruginosa bloom in the San Francisco Bay

Estuary, California. Hydrobiologia, 541(1), 87–99. DOI:

https://doi.org/10.1007/s10750-004-4670-0

Lobo, F. de L., Nagel, G. W., Maciel, D. A., Carvalho, L. A. S.

de, Martins, V. S., Barbosa, C. C. F. & Novo, E. M. L. de

M. 2021. AlgaeMAp: Algae Bloom Monitoring Application

for Inland Waters in Latin America. Remote Sensing,

(15), 2874. DOI: https://doi.org/10.3390/rs13152874

Marreto, R. N., Baumgarten, M. da G. Z. & WallnerKersanach, M. 2017. Trophic quality of waters in the

Patos Lagoon estuary: a comparison between its

margins and the port channel located in Rio Grande,

RS, Brazil. Acta Limnologica Brasiliensia, 29(0). DOI:

https://doi.org/10.1590/s2179-975x10716

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,

Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb,

L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,

Matthews, J. B. R., Maycock, T. K., Waterfield, T.,

Yelekçi, O., Yu, R., & Zho, B. (eds.). 2021. Climate

Change 2021: The Physical Science Basis. Contribution

of Working Group I to the Sixth Assessment Report

of the Intergovernmental Panel on Climate Change.

Cambridge: Cambridge University Press.

Mendes, C. R. B., Odebrecht, C., Tavano, V. M. & Abreu,

P. C. 2017. Pigment-based chemotaxonomy of

phytoplankton in the Patos Lagoon estuary (Brazil) and

adjacent coast. Marine Biology Research, 13(1), 22–35.

DOI: https://doi.org/10.1080/17451000.2016.1189082

Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S.,

Bosch, N. S., Bridgeman, T. B., Chaffin, J. D., Cho, K.,

Confesor, R., Daloğlu, I., DePinto, J. V., Evans, M. A.,

Fahnenstiel, G. L., He, L., Ho, J. C., Jenkins, L.,

Johengen, T. H., Kuo, K. C., LaPorte, E., Liu, X.,

McWilliams, M. R., Moore, M. R., Posselt, D. J.,

Richards, R. P., Scavia, D., Steiner, A. L., Verhamme, E.,

Wright, D. M. & Zagorski, M. A. 2013. Record-setting

algal bloom in Lake Erie caused by agricultural and

meteorological trends consistent with expected future

conditions. Proceedings of the National Academy of

Sciences, 110(16), 6448–6452. DOI: https://doi.org/

1073/pnas.1216006110

Mishra, S. & Mishra, D. R. 2012. Normalized difference

chlorophyll index: A novel model for remote estimation of

chlorophyll-a concentration in turbid productive waters.

Remote Sensing of Environment, 117, 394–406. DOI:

https://doi.org/10.1016/j.rse.2011.10.016

Mishra, S., Stumpf, R. P., Schaeffer, B. A., Werdell, P. J.,

Loftin, K. A. & Meredith, A. 2019. Measurement of

Cyanobacterial Bloom Magnitude using Satellite

Remote Sensing. Scientific Reports, 9(1). DOI: https://

doi.org/10.1038/s41598-019-54453-y

Möller, O. O. & Castaing, P. 1999. Hydrographical

Characteristics of the Estuarine Area of Patos

Lagoon (30°S, Brazil). In: Estuaries of South America

(pp. 83–100). Springer Berlin Heidelberg. DOI: https://

doi.org/10.1007/978-3-642-60131-6_5

Moller, O. O., Castaing, P., Salomon, J.-C. & Lazure, P. 2001.

The Influence of Local and Non-Local Forcing Effects

on the Subtidal Circulation of Patos Lagoon. Estuaries,

(2), 297. DOI: https://doi.org/10.2307/1352953

Möller, O. O., Castello, J. P. & Vaz, A. C. 2009. The Effect

of River Discharge and Winds on the Interannual

Variability of the Pink Shrimp Farfantepenaeus

paulensis Production in Patos Lagoon. Estuaries and

Coasts, 32(4), 787–796. DOI: https://doi.org/10.1007/

s12237-009-9168-6

Odebrecht, C., Abreu, P. C., Bemvenuti, C. E., Copertino,

M., Muelbert, J. H., Vieira, J. P. & Seeliger, U. 2010.

The Patos Lagoon estuary: Biotic responses to natural

and anthropogenic impacts in the last decades (1979–

In: Kennish, M. J. & Paerl, H. W. (eds.). Coastal

Lagoons: Critical habitats of environmental change

(pp. 437–459). Abingdon: CRC Press.

Odebrecht, C., Abreu, P. C., Möller, O. O., Niencheski, L.

F., Proença, L. A. & Torgan, L. C. 2005. Drought effects

on pelagic properties in the shallow and turbid Patos

Meteorological and climatic influence on cyanobacteria

Ocean and Coastal Research 2023, v71(suppl 2):e23026 16

Canever et al.

Lagoon, Brazil. Estuaries, 28(5), 675–685. DOI: https://

doi.org/10.1007/bf02732906

Odebrecht, C., Selliger, U., Coutinho, R. & Torgan, L. C.

Florações de Microcystis (cianobactérias) na

Lagoa dos Patos, RS. In: Anais do simpósio sobre

ecossistemas da costa sul e sudeste brasileira (Vol. 2,

pp. 280–287). Canadéia: ACIESP.

Paerl, H. W. 2017. Controlling harmful cyanobacterial blooms

in a climatically more extreme world: management options

and research needs. Journal of Plankton Research, 39(5),

–771. DOI: https://doi.org/10.1093/plankt/fbx042

Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R.,

McCarthy, M. J., Newell, S. E., Qin, B. & Scott, J. T.

Mitigating cyanobacterial harmful algal blooms in

aquatic ecosystems impacted by climate change and

anthropogenic nutrients. Harmful Algae, 54, 213–222.

DOI: https://doi.org/10.1016/j.hal.2015.09.009

Paerl, H. W. & Huisman, J. 2009. Climate change: a catalyst

for global expansion of harmful cyanobacterial blooms.

Environmental Microbiology Reports, 1(1), 27–37. DOI:

https://doi.org/10.1111/j.1758-2229.2008.00004.x

Paerl, H. W. & Otten, T. G. 2013. Harmful Cyanobacterial

Blooms: Causes, Consequences, and Controls.

Microbial Ecology, 65(4), 995–1010. DOI: https://doi.org/

1007/s00248-012-0159-y

Paerl, H. W. & Paul, V. J. 2012. Climate change: Links

to global expansion of harmful cyanobacteria. Water

Research, 46(5), 1349–1363. DOI: https://doi.org/

1016/j.watres.2011.08.002

Paerl, H. W., Yin, K. & O’Brien, T. D. 2015. SCOR Working

Group 137: “Global Patterns of Phytoplankton Dynamics

in Coastal Ecosystems”: An introduction to the special

issue of Estuarine, Coastal and Shelf Science.

Estuarine, Coastal and Shelf Science, 162, 1–3. DOI:

https://doi.org/10.1016/j.ecss.2015.07.011

Reichwaldt, E. S. & Ghadouani, A. 2012. Effects of rainfall

patterns on toxic cyanobacterial blooms in a changing

climate: Between simplistic scenarios and complex

dynamics. Water Research, 46(5), 1372–1393. DOI:

https://doi.org/10.1016/j.watres.2011.11.052

Reynolds, C. S. & Davies, P. S. 2001. Sources and

bioavailability of phosphorus fractions in freshwaters:

a British perspective. Biological Reviews of the

Cambridge Philosophical Society, 76(1), 27–64. DOI:

https://doi.org/10.1017/s1464793100005625

Seeliger, U.; Odebrecht, C.; Castello, J.P. 1998. Os

Ecossistemas Costeiro e Marinho do Extremo Sul do

Brasil. Rio Grande, Ecoscientia. 332p.

SEMA. 2015. Plano da Bacia Hidrográfica do Rio Camaquã.

Accessed: https://sema.rs.gov.br/l030-bh-rio-camaqua

Sokal, R. R. & Rohlf, F. J. 1994. Biometry: The Principles and

Practice of Statistics in Biological Research (3rd ed.).

New York: W. H. Freeman.

Song, R., Muller, J.-P., Kharbouche, S., Yin, F., Woodgate, W.,

Kitchen, M., Roland, M., Arriga, N., Meyer, W., Koerber, G.,

Bonal, D., Burban, B., Knohl, A., Siebicke, L., Buysse, P.,

Loubet, B., Leonardo, M., Lerebourg, C. & Gobron, N. 2020.

Validation of Space-Based Albedo Products from Upscaled

Tower-Based Measurements Over Heterogeneous and

Homogeneous Landscapes. Remote Sensing, 12(5), 833.

DOI: https://doi.org/10.3390/rs12050833

Souza, M. S. de, Muelbert, J. H., Costa, L. D. F., Klering,

E. V. & Yunes, J. S. 2018. Environmental Variability

and Cyanobacterial Blooms in a Subtropical Coastal

Lagoon: Searching for a Sign of Climate Change

Effects. Frontiers in Microbiology, 9. DOI: https://doi.org/

3389/fmicb.2018.01727

Távora, J., Fernandes, E. H., Bitencourt, L. P. & Orozco, P.

M. S. 2020. El-Niño Southern Oscillation (ENSO) effects

on the variability of Patos Lagoon Suspended Particulate

Matter. Regional Studies in Marine Science, 40, 101495.

DOI: https://doi.org/10.1016/j.rsma.2020.101495

Thompson, P. A., O’Brien, T. D., Paerl, H. W., Peierls, B. L.,

Harrison, P. J. & Robb, M. 2015. Precipitation as a driver

of phytoplankton ecology in coastal waters: A climatic

perspective. Estuarine, Coastal and Shelf Science, 162,

–129. DOI: https://doi.org/10.1016/j.ecss.2015.04.004

Vaz, A. C., Junior, O. O. M. & Almeida, T. L. de. 2011.

Análise quantitativa da descarga dos rios afluentes da

Lagoa dos Patos. Atlântica, 28(1), 13–24.

Viégas, V. R. 2021. Mecanismos para a gestão integrada

entre a bacia hidrográfica e a zona costureira:

diagnóstico da sub-bacia hidrográfica do Arroio Teixeira

em Tapes/RS (mathesis). Universidade Federal do Rio

Grande do Sul, Porto Alegre.

Watanabe, F., Alcântara, E., Bernardo, N., Andrade, C. de,

Gomes, A. C., Carmo, A. do, Rodrigues, T. & Rotta, L. H.

Mapping the chlorophyll-a horizontal gradient in

a cascading reservoirs system using MSI Sentinel-2A

images. Advances in Space Research, 64(3), 581–590.

DOI: https://doi.org/10.1016/j.asr.2019.04.035

Watanabe, F., Alcântara, E., Rodrigues, T., Rotta, L.,

Bernardo, N., Imai, N., Sayuri, F. & Watanabe, Y. 2018.

Remote sensing of the chlorophyll-a based on OLI/

Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir,

Brazil). Anais Da Academia Brasileira de Ciências,

(2 suppl 1), 1987–2000. DOI: https://doi.org/10.1590/

-3765201720170125

Xavier, A. C., King, C. W. & Scanlon, B. R. 2016. Daily

gridded meteorological variables in Brazil (1980-2013).

International Journal of Climatology, 36(6), 2644–2659.

DOI: https://doi.org/10.1002/joc.4518

Yin, F., Lewis, P., Gomez-Dans, J. & Wu, Q. 2019. Bayesian

atmospheric correction over land: Sentinel-2/MSI and

Landsat 8/OLI. Geoscientific Model Development, 15,

–7976. DOI: https://doi.org/10.31223/osf.io/ps957

Yunes, J. S. 2009. Florações de microcystis na lagoa dos

patos e o seu estuário: 20 Anos de Estudos. Oecologia

Australis, 13(2), 313–318. DOI: https://doi.org/10.4257/

oeco.2009.1302.06

Yunes, J. S., Niencheski, L. F. H., Salomon, P. S., Parise, M.,

Beattie, K. A., Raggett, S. L. & Codd, G. A. 1998. Effect

of nutrient balance and physical factors on blooms of

toxic cyanobacteria in the Patos Lagoon, southern

Brazil. SIL Proceedings, 1922-2010, 26(4), 1796–1800.

DOI: https://doi.org/10.1080/03680770.1995.11901048

Downloads

Published

2024-04-10

How to Cite

Meteorological and potential climatic influence on high cyanobacterial biomass within Patos Lagoon (southern Brazil): A case study of the summer of 2019–2020. (2024). Ocean and Coastal Research, 71(Suppl. 2). https://doi.org/10.1590/