Influences of strong and moderate ENSO events on the Maranhão precipitation from the western equatorial Atlantic SST anomalies

Authors

  • Laisa Alves Malheiros Soares
  • Cláudia Klose Parise
  • Adilson Matheus Borges Machado
  • Camila Bertoletti Carpenedo
  • Thalita Mirian Santos Furtado
  • Helen Nébias Barreto
  • Leonardo Gonçalves de Lima
  • Hugo Leonardo Silva Sousa

DOI:

https://doi.org/10.1590/

Keywords:

El Niño, Interannual Variability, Zonal Teleconnection, Maranhão Climate, Precipitation Variability

Abstract

This study analyzed the influence of strong and moderate El Niño-Southern Oscillation (ENSO) events on
the seasonal and interannual variabilities of the sea surface temperature (SST) in the Western Equatorial
Atlantic (WEA) Ocean and how the precipitation over the state of Maranhão, in Brazil, responds to the zonal
teleconnection. To evaluate the ENSO magnitude and phase in the four Niño regions (1+2, 3, 3.4, and 4),
the SODA 3.3.1 oceanic reanalysis database for the period from 1980 to 2015 was used. Our results showed
that the La Niña phase with moderate magnitude was the most predominant among the 70 events analyzed,
with  Niño 3.4 presenting the highest number (20) of ENSO events (both positive and negative phases).
At  lag  =  0, we found that significant negative correlations prevailed between the WEA SST anomalies and
ENSO index, with the region of Niño 3.4 showing the most significant correlations (r = −0.25). The whole events
of El Niño and La Niña were, respectively, accompanied by a cooling and a heating of up to −0.6°C or +0.8°C
in the WEA Ocean. The WEA SST anomalies during El Niño and La Niña events have, respectively, reduced
and increased the precipitation in Maranhão around ± 100 mm in a quarter. Strong El Niño events influence a
greater precipitation deficit in Maranhão than moderate El Niño events. Moderate La Niña events have more
pronounced influence on the precipitation over Maranhão than strong La Niña events do, especially on the
negative anomalies. Our results showed that the central, northern, and eastern tip sectors of the state are the
most affected by this zonal teleconnection. We concluded that ENSO’s significant influences on the WEA SST
seasonal variability, added to the performance of the Atlantic Meridional Mode (Soares 2019), determine the
quality of the rainy season (March–April–May) in the state of Maranhão

References

Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R.,

Ngar-Cheung Lau & Scott, J. D. 2002. The Atmospheric

Bridge: The Influence of ENSO Teleconnections on

Air–Sea Interaction over the Global Oceans. Journal of

Climate, 15(16), 2205–2231.

Alves, J. B., Servain, J. & Campos, J. N. B. 2009.

Relationship between ocean climatic variability

and rain-fed agriculture in northeast Brazil. Climate

Research, 38, 225–236. DOI: https://doi.org/10.3354/

cr00786

Andreoli, R. V., Oliveira, S. S. de, Kayano, M. T., Viegas, J.,

Souza, R. A. F. de & Candido, L. A. 2016. The influence

of different El Niño types on the South American rainfall.

International Journal of Climatology, 37(3), 1374–1390.

DOI: https://doi.org/10.1002/joc.4783

Araújo, R. G., Andreoli, R. V., Candido, L. A., Kayano, M. T. &

Souza, R. A. F. de. 2013. A influência do evento El Niño -

Oscilação Sul e Atlântico Equatorial na precipitação

sobre as regiões norte e nordeste da América do Sul.

Acta Amazonica, 43(4), 469–480. DOI: https://doi.org/

1590/s0044-59672013000400009

Braga, C. C., Amanajás, J. C., Cerqueira, H. D. V. & Vitorino,

M. I. 2014. The Role of the Tropical Atlantic and Pacific

Oceans SST in Modulating the Rainfall of Paraíba State,

Brazil. Revista Brasileira de Geofísica, 32(1), 97–107.

DOI: https://doi.org/10.22564/rbgf.v32i1.399

Cabos, W., Vara, A. de la & Koseki, S. 2019. Tropical

Atlantic Variability: Observations and Modeling.

Atmosphere, 10(9), 502. DOI: https://doi.org/10.3390/

atmos10090502

Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R.,

Taschetto, A. S., Garreaud, R. D., Dewitte, B., Poveda, G.,

Ham, Y.-G., Santoso, A., Ng, B., Anderson, W., Wang, G.,

Geng, T., Jo, H.-S., Marengo, J. A., Alves, L. M., Osman, M.,

Li, S., Wu, L., Karamperidou, C., Takahashi, K. & Vera, C.

Climate impacts of the El Niño–Southern Oscillation

on South America. Nature Reviews Earth &amp

mathsemicolon Environment, 1(4), 215–231. DOI:

https://doi.org/10.1038/s43017-020-0040-3

Influence of ENSO on precipitation in Maranhão

Ocean and Coastal Research 2023, v71(suppl 2):e23043 18

Soares et al.

Hastenrath, S. & Heller, L. 1977. Dynamics of climatic

hazards in northeast Brazil. Quarterly Journal of the

Royal Meteorological Society, 103(435), 77–92. DOI:

https://doi.org/10.1002/qj.49710343505

He, S., Yu, J.-Y., Yang, S. & Fang, S.-W. 2020. ENSO’s

impacts on the tropical Indian and Atlantic Oceans via

tropical atmospheric processes: observations versus

CMIP5 simulations. Climate Dynamics, 54(11–12),

–4640. DOI: https://doi.org/10.1007/s00382-020-

-w

Hirst, A. C. & Hastenrath, S. 1983. Atmosphere-Ocean

Mechanisms of Climate Anomalies in the Angola-Tropical

Atlantic Sector. Journal of Physical Oceanography,

(7), 1146–1157.

Hounsou-Gbo, A., Servain, J., Junior, F. das C. V., Martins,

E. S. P. R. & Araújo, M. 2020. Summer and winter

Atlantic Niño: connections with ENSO and implications.

Climate Dynamics, 55(11–12), 2939–2956. DOI:

https://doi.org/10.1007/s00382-020-05424-x

Hounsou-Gbo, G. A., Servain, J., Araujo, M., Martins, E. S.,

Bourlès, B. & Caniaux, G. 2016. Oceanic Indices for

Forecasting Seasonal Rainfall over the Northern Part

of Brazilian Northeast. American Journal of Climate

Change, 5(2), 261–274. DOI: https://doi.org/10.4236/

ajcc.2016.52022

Huang, B., Schopf, P. S. & Shukla, J. 2004. Intrinsic Ocean–

Atmosphere Variability of the Tropical Atlantic Ocean.

Journal of Climate, 17(11), 2058–2077.

Kayano, M. T., Andreoli, R. V., Garcia, S. R. & Souza,

R. A. F. de. 2018. How the two nodes of the tropical

Atlantic sea surface temperature dipole relate the

climate of the surrounding regions during austral

autumn. International Journal of Climatology, 38(10),

–3941. DOI: https://doi.org/10.1002/joc.5545

Kayano, M. T., Capistrano, V. B., Andreoli, R. V. & Souza,

R. A. F. de. 2016. A further analysis of the tropical Atlantic

SST modes and their relations to north-eastern Brazil

rainfall during different phases of Atlantic Multidecadal

Oscillation. International Journal of Climatology, 36(12),

–4018. DOI: https://doi.org/10.1002/joc.4610

Kidson, J. W. 1975. Tropical Eigenvector Analysis and the

Southern Oscillation. Monthly Weather Review, 103(3),

–196.

Latif, M. & Barnett, T. P. 1995. Interactions of the Tropical

Oceans. The Journal of Climate, 8(4), 952–964.

Latif, M. & Grötzner, A. 2000. The equatorial Atlantic

oscillation and its response to ENSO. Climate Dynamics,

(2–3), 213–218. DOI: https://doi.org/10.1007/

s003820050014

Lübbecke, J. F., Böning, C. W., Keenlyside, N. S. & Xie,

S.-P. 2010. On the connection between Benguela and

equatorial Atlantic Niños and the role of the South

Atlantic Anticyclone. Journal of Geophysical Research,

(C9). DOI: https://doi.org/10.1029/2009jc005964

Lübbecke, J. F. & McPhaden, M. J. 2012. On the

Inconsistent Relationship between Pacific and Atlantic

Niños. Journal of Climate, 25(12), 4294–4303. DOI:

https://doi.org/10.1175/jcli-d-11-00553.1

Lübbecke, J. F., Rodríguez-Fonseca, B., Richter, I.,

Martín-Rey, M., Losada, T., Polo, I. & Keenlyside,

N. S. 2018. Equatorial Atlantic variability—Modes,

mechanisms, and global teleconnections. WIREs

Climate Change, 9(4). DOI: https://doi.org/10.1002/wcc.527

Merle, J., Fieux, M. & Hisard, P. 1980. Annual signal and

interannual anomalies of sea surface temperature in the

eastern equatorial Atlantic Ocean. In: Oceanography

and Surface Layer Meteorology in the B/C Scale

(pp. 77–101). Amsterdam: Elsevier. DOI: https://doi.org/

1016/b978-1-4832-8366-1.50023-6

Münnich, M. & Neelin, J. D. 2005. Seasonal influence

of ENSO on the Atlantic ITCZ and equatorial South

America. Geophysical Research Letters, 32(21). DOI:

https://doi.org/10.1029/2005gl023900

Nascimento, F. das C. A. do, Braga, C. C. & Araújo,

F. R. da C. D. 2017. Análise Estatística dos Eventos Secos

e Chuvosos de Precipitação do Estado do Maranhão.

Revista Brasileira de Meteorologia, 32(3), 375–386. DOI:

https://doi.org/10.1590/0102-77863230005

Nicholson, S. E. & Selato, J. C. 2000. A influência de

La Niña na precipitação africana. Jornal Internacional

de Climatologia, 20(14), 1761–1776.

NOAA. 2019a. Cold & Warm Episodes by Season.

Accessed: https://origin.cpc.ncep.noaa.gov/products/

analysis_monitoring/ensostuff/ONI_v5.php

NOAA. 2019b. El niño regions. Accessed: https://www.cpc.

ncep.noaa.gov/products/analysis_monitoring/ensostuff/

nino_regions.shtml

Nogues-Paegle, J., Mechoso, C. R., Fu, R., Berbery, E. H.,

Chao, W. C., Chen, T.-C., Cook, K., Diaz, A. F.,

Enfield, D., Ferreira, R., Grimm, A. M., Kousky, V.,

Liebmann, B., Marengo, J. A., Mo, K., Neelin, J. D.,

Paegle, J., Robertson, A. W., Seth, A., Vera, C. S. &

Zhou, J. 2002. Progress in Pan American CLIVAR

Research: Understanding the South American

Monsoon. Meteorologica, 27, 3–32.

Philander, S. G. H. 1986. Unusual conditions in the tropical

Atlantic Ocean in 1984. Nature, 322(6076), 236–238.

DOI: https://doi.org/10.1038/322236a0

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery,

B. P. 1992. Numerical Recipes in C: the art of

scientific computing (2nd ed.). Cambridge: Cambridge

University Press.

Rodrigues, R. R., Haarsma, R. J., Campos, E. J. D. &

Ambrizzi, T. 2011. The Impacts of Inter–El Niño

Variability on the Tropical Atlantic and Northeast Brazil

Climate. Journal of Climate, 24(13), 3402–3422. DOI:

https://doi.org/10.1175/2011jcli3983.1

Rodrigues, R. R. & McPhaden, M. J. 2014. Why did the 2011-

La Niña cause a severe drought in the Brazilian

Northeast? Geophysical Research Letters, 41(3), 1012–

DOI: https://doi.org/10.1002/2013gl058703

Rodríguez-Fonseca, B., Suárez-Moreno, R., Ayarzagüena, B.,

López-Parages, J., Gómara, I., Villamayor, J.,

Mohino, E., Losada, T. & Castaño-Tierno, A. 2016.

A Review of ENSO Influence on the North Atlantic.

A Non-Stationary Signal. Atmosphere, 7(7), 87. DOI:

https://doi.org/10.3390/atmos7070087

Saravanan, R. & Chang, P. 2000. Interaction between

tropical Atlantic variability and El Niño–Southern

Oscillation. Journal of Climate, 13(13), 2177–2194.

Sasaki, D. K. 2014. Mudanças dos Modos de Variabilidade do

Atlântico Tropical no Século XX (mathesis). Universidade

Influence of ENSO on precipitation in Maranhão

Ocean and Coastal Research 2023, v71(suppl 2):e23043 19

Soares et al.

de Sao Paulo, Instituto Oceanográfico, São Paulo. https://

doi.org/10.11606/d.21.2014.tde-10032015-151036

Servain, J. 1991. Simple climatic indices for the tropical

Atlantic Ocean and some applications. Journal of

Geophysical Research, 96(C8), 15137–15146. DOI:

https://doi.org/10.1029/91jc01046

Servain, J., Joël Picaut & Merle, J. 1982. Evidence of

Remote Forcing in the Equatorial Atlantic Ocean.

Journal of Physical Oceanography, 12(5), 457–463.

Servain, J., Wainer, I., McCreary, J. P. & Dessier, A. 1999.

Relationship between the equatorial and meridional

modes of climatic variability in the tropical Atlantic.

Geophysical Research Letters, 26(4), 485–488. DOI:

https://doi.org/10.1029/1999gl900014

Soares, L. A. M. 2019. Influência de teleconexão

Pacífico–Atlântico e de modos locais na variabilidade

da temperatura da superfície do mar do Atlântico

Equatorial Ocidental e impactos sobre a precipitação no

estado do Maranhão (mathesis). Universidade Federal

do Maranhão, São Luís.

Stone, R. C., Hammer, G. L. & Marcussen, T. 1996.

Prediction of global rainfall probabilities using phases

of the Southern Oscillation Index. Nature, 384(6606),

–255. DOI: https://doi.org/10.1038/384252a0

Tedeschi, R. G., Grimm, A. M. & Cavalcanti, I. F. A. 2016.

Influence of Central and East ENSO on extreme events

of precipitation in South America during austral spring

and summer. International Journal of Climatology, 35(8),

–2064. DOI: https://doi.org/10.1002/joc.4106

Trenberth, K. E. 1984. Signal versus noise in the Southern

Oscillation. Monthly Weather Review, 112(2), 326–332.

Uvo, C. B., Repelli, C. A., Zebiak, S. E. & Kushnir, Y. 1998.

The relationships between Tropical Pacific and Atlantic

SST and northeast Brazil monthly precipitation. Journal

of Climate, 11(4), 551–562.

Wang, C., Xie, S.-P. & Carton, J. A. 2004. A global survey of

ocean–atmosphere interaction and climate variability. In:

Wang, C., Xie, S., & Carton, J. A. (eds.), Earth’s climate:

the ocean–atmosphere interaction (Vol. 147, pp. 1–19).

Washington, DC: American Geophysical Union.

Wu, L., Zhang, Q. & Liu, Z. 2004. Toward Understanding

Tropical Atlantic Variability Using Coupled Modeling

Surgery. In: Wang, C., Xie, S., & Carton, J. A. (eds.),

Earth’s climate: the ocean–atmosphere interaction

(Vol. 147, pp. 157–170). Hoboken: American Geophysical

Union. DOI: https://doi.org/10.1029/147gm09

Zebiak, S. E. 1993. Air–Sea Interaction in the Equatorial

Atlantic Region. Journal of Climate, 6(8), 1567–1586.

Zhou, J. & Lau, K.-M. 2001. Principal modes of interannual

and decadal variability of summer rainfall over South

America. International Journal of Climatology, 21(13),

–1644. DOI: https://doi.org/10.1002/joc.700

Downloads

Published

2024-04-10

How to Cite

Influences of strong and moderate ENSO events on the Maranhão precipitation from the western equatorial Atlantic SST anomalies. (2024). Ocean and Coastal Research, 71(Suppl. 2). https://doi.org/10.1590/