Bioavailability of polycyclic aromatic hydrocarbons in Santos Bay (Brazil) and its adjacent continental shelf

Authors

  • Vinicius Faria Patire
  • Ana Cecília Rizzatti de Albergaria-Barbosa
  • Isana Souza Barreto
  • Satie Taniguchi
  • Wellington Silva Fernandez
  • June Ferraz Dias
  • Denis A. M. da Silva
  • Marcia Caruso Bícego

DOI:

https://doi.org/10.1590/

Keywords:

Biomarker of exposure, PAH metabolites, HPLC/F, fish metabolites, biomonitoring

Abstract

This study evaluated the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in Santos Bay (SB) and the
adjacent Santos Continental Shelf (SCS) in Brazil. Biliary metabolites were measured in several fish species to
establish a baseline for future monitoring programs. Bile samples from different species of fish were collected monthly
from July to December 2005 in SB, and in August 2005 and February 2006 on SCS. Metabolite concentrations
were determined using high-performance liquid chromatography with fluorescence detectors. Naphthalene,
phenanthrene, and benzo[a]pyrene metabolite concentrations ranged from 24 to 810 µg g-1 of bile, 1.8 to 68 µg g-1
of bile, and below the limit of quantitation to 1.3 µg g-1 of bile, respectively. Despite its high concentrations, the levels
of naphthalene metabolites were in regions of low-contamination, while benzo[a]pyrene metabolite were in the
same range as those reported in moderately contaminated areas, which may indicate pyrolytic contamination
by PAHs. No significant differences in the metabolite concentrations were found between the SB and the SCS
samples or during the periods of collection. Future studies with a single biomonitoring species should be conducted,
considering age, sex, and feeding condition of the individuals. The metabolite data presented in this study is an
important baseline information for this urbanized region, which hosts several sources of contaminants.

References

de Albergaria-Barbosa, A. C. R., Patire, V. F., Taniguchi, S.,

Fernandez, W. S., Dias, J. F. & Bícego, M. C. 2017.

Mugil curema as a PAH bioavailability monitor for

Atlantic west sub-tropical estuaries. Marine Pollution

Bulletin, 114(1), 609–614. DOI: https://doi.org/10.1016/

j.marpolbul.2016.09.039

de Albergaria-Barbosa, A. C. R., da Silva, D. A. M.,

da Silva Rocha, A. J., Taniguchi, S., Patire, V. F., Dias,

J. F., Fernandez, W. S. & Bícego, M. C. 2018. Evaluation

of polycyclic aromatic hydrocarbons bioavailability on

Santos Bay (Brazil) through levels of biliary metabolites.

Marine Pollution Bulletin, 129(2), 822–828. DOI:

https://doi.org/10.1016/j.marpolbul.2017.10.006

Anulación, B. F., Ylitalo, G. M., Sol, S. Y., da Silva, D. A. M.,

Lomax, D. P. & Johnson, L. L. 2020. Temporal trends

in aluminum smelter-derived polycyclic aromatic

hydrocarbons in outmigrant juvenile Chinook salmon

from Kitimat, British Columbia, Canada. Marine Pollution

Bulletin, 157, 111284. DOI: https://doi.org/10.1016/

j.marpolbul.2020.111284

Azevedo, J. S., Lopes, B., Katsumiti, A., Braga, E. S.,

Roche, H., Ribeiro, C. A. O. & Bebianno, M. J. 2012.

Evidence of contamination by oil and oil products in the

Santos-São Vicente estuary, São Paulo, Brazil. Brazilian

Journal of Oceanography, 60(2), 117–126. DOI:

https://doi.org/10.1590/s1679-87592012000200002

Barreto, I. S., de Albergaria-Barbosa, A. C. R., Patire, V. F.,

de Jesus Silva, M., Baldassin, P., Taniguchi, S.,

Montone, R. C., Gallo, H., Maranho, A. & Bícego, M. C.

Bioavailability of polycyclic aromatic hydrocarbons

to penguins on the coast of southeastern Brazil. Marine

Pollution Bulletin, 157, 111306. DOI: https://doi.org/

1016/j.marpolbul.2020.111306

Baumann, P. & Harshbarger, J. 1998. Long term trends

in liver neoplasm epizootics of brown bullhead in

the Black River, Ohio. Environmental Monitoring

and Assessment, 53, 213–223. DOI: https://doi.org/

1023/A:1005967631275

Beyer, J., Jonsson, G., Porte, C., Krahn, M. M. & Ariese, F.

Analytical methods for determining metabolites

of polycyclic aromatic hydrocarbon (PAH) pollutants

in fish bile: A review. Environmental Toxicology and

Pharmacology, 30(3), 224–244. DOI: https://doi.org/

1016/j.etap.2010.08.004

Black, J. J. 1983. Field and laboratory studies of

environmental carcinogenesis in Niagara River fish.

Journal of Great Lakes Research, 9(2), 326–334. DOI:

https://doi.org/10.1016/s0380-1330(83)71902-7

Bouloubassi, I. & Saliot, A. 1993. Investigation of

anthropogenic and natural organic inputs in estuarine

sediments using hydrocarbon markers (NAH,

LAB, PAH). Oceanologica Acta, 16(2), 145–161.

Britvić, S., Lucić, D. & Kurelec, B. 1993. Bile fluorescence

and some early biological effects in fish as indicators

of pollution by xenobiotics. Environmental Toxicology

and Chemistry, 12(4), 765–773. DOI: https://doi.org/

1002/etc.5620120418

Cetesb, S. P. 1999. Relatório anual da qualidade do ar no

estado de São Paulo 1998 (Relatórios ambientais).

São Paulo: Companhia de Tecnologia de Saneamento

Ambiental (Cetesb).

Collier, T. K., Anulación, B. F., Arkoosh, M. R., Dietrich, J. P.,

Incardona, J. P., Johnson, L. L., Ylitalo, G. M. &

Myers, M. S. 2013. Effects on fish of polycyclic aromatic

hydrocarbons (PAHS) and naphthenic acid exposures.

Fish physiology (Vol. 33, pp. 195–255). Elsevier. DOI:

https://doi.org/10.1016/b978-0-12-398254-4.00004-2

Collier, T. K. & Varanasi, U. 1991. Hepatic activities of

xenobiotic metabolizing enzymes and biliary levels

of xenobiotics in English sole (Parophrys vetulus)

exposed to environmental contaminants. Archives of

Environmental Contamination and Toxicology, 20(4),

–473. DOI: https://doi.org/10.1007/bf01065834

Colombo, J. C., Cappelletti, N., Lasci, J., Migoya, M. C.,

Speranza, E. & Skorupka, C. N. 2006. Sources, vertical

fluxes, and equivalent toxicity of aromatic hydrocarbons

in coastal sediments of the Río de la Plata estuary,

Argentina. Environmental Science &amp Technology,

(3), 734–740. DOI: https://doi.org/10.1021/es051672y

Eggensl, M. L., Vethaak, A. D., Leaverz, M. J.,

Horbach, G. J. M. J., Boon, J. P. & Seinen, W. 1996.

Differences in CYP1A response between flounder

(Platichthys flesus) and plaice (Pleuronectes platessa)

after long-term exposure to harbour dredged spoil in

a mesocosm study. Chemosphere, 32(7), 1357–1380.

DOI: https://doi.org/10.1016/0045-6535(96)00046-x

Escartín, E. & Porte, C. 1999a. Biomonitoring of PAH pollution

in high-altitude mountain lakes through the analysis of

PAHs bioavailability in a contaminated area

Ocean and Coastal Research 2023, v71(suppl 2):e23024 8

Patire et al.

fish bile. Environmental Science & Technology, 33(3),

–409. DOI: https://doi.org/10.1021/es980798a

Escartín, E. & Porte, C. 1999b. Hydroxylated PAHs in bile of

deep-sea fish. Relationship with xenobiotic metabolizing

enzymes. Environmental Science & Technology, 33(16),

–2714. DOI: https://doi.org/10.1021/es9902322

Fernández-Tajes, J., Flórez, F., Pereira, S., Rábade, T.,

Laffon, B. & Méndez, J. 2011. Use of three bivalve species

for biomonitoring a polluted estuarine environment.

Environmental Monitoring and Assessment, 177(1),

–300. DOI: https://doi.org/10.1007/s10661-010-1634-x

Fontes, M. K., de Campos, B. G., Cortez, F. S.,

Pusceddu, F. H., Moreno, B. B., Maranho, L. A.,

Lebre, D. T., Guimarães, L. L. & Pereira, C. D. S. 2019.

Seasonal monitoring of cocaine and benzoylecgonine in

a subtropical coastal zone (Santos Bay, Brazil). Marine

Pollution Bulletin, 149, 110545. DOI: https://doi.org/

1016/j.marpolbul.2019.110545

Fuchsman, P. C., Leigh, K. B. & Barber, T. R. 2001.

Ecological assessment of PAHs in fish. Sediments

guidance compendium. Palo Alto, CA: EPRI.

Guimarães, L. M., França, E. J. D., de Arruda, G. N. &

de Albergaria-Barbosa, A. C. R. 2020. Historical inputs

of polycyclic aromatic hydrocarbons in the preserved

tropical estuary of the Itapicuru River, Bahia, Brazil.

Marine Pollution Bulletin, 156, 111218. DOI: https://

doi.org/10.1016/j.marpolbul.2020.111218

Helcom. 2013. HELCOM core indicators: Final report of

the HELCOM CORESET project. Helsinki: Helsinki

Comission.

Hylland, K., Sandvik, M., Skåre, J. U., Beyer, J., Egaas, E. &

Goksøyr, A. 1996. Biomarkers in flounder (Platichthys

flesus): an evaluation of their use in pollution monitoring.

Marine Environmental Research, 42(1), 223–227.

DOI: https://doi.org/10.1016/0141-1136(95)00034-8

Kammann, U. 2007. PAH metabolites in bile fluids of

dab (Limanda limanda) and flounder (Platichthys

flesus): Spatial distribution and seasonal changes

(7 pp). Environmental Science and Pollution

Research — International, 14(2), 102–108. DOI:

https://doi.org/10.1065/espr2006.05.308

Kammann, U., Akcha, F., Budzinski, H., Burgeot, T.,

Gubbins, M. J., Lang, T., Menach, K. L., Vethaak, A. D. &

Hylland, K. 2017. PAH metabolites in fish bile: From

the Seine estuary to Iceland. Marine Environmental

Research, 124, 41–45. DOI: https://doi.org/10.1016/

j.marenvres.2016.02.014

Kim, B. S. M., Salaroli, A. B., de Lima Ferreira, P. A.,

Sartoretto, J. R., de Mahiques, M. M. & Figueira, R. C. L.

Spatial distribution and enrichment assessment

of heavy metals in surface sediments from Baixada

Santista, Southeastern Brazil. Marine Pollution

Bulletin, 103(1), 333–338. DOI: https://doi.org/

1016/j.marpolbul.2015.12.041

Krahn, M. M., Myers, M. S., Burrows, D. G. &

Malins, D. C. 1984. Determination of metabolites of

xenobiotics in the bile of fish from polluted waterways.

Xenobiotica; the Fate of Foreign Compounds in

Biological Systems, 14(8), 633–646. DOI: https://doi.org/

3109/00498258409151461

Krahn, M. M., Rhodes, L. D., Myers, M. S., Moore, L. K.,

MacLeod, W. D. & Malins, D. C. 1986. Associations

between metabolites of aromatic compounds in bile

and the occurrence of hepatic lesions in English sole

(Parophrys vetulus) from Puget Sound, Washington.

Archives of Environmental Contamination and Toxicology,

(1), 61–67. DOI: https://doi.org/10.1007/bf01055249

Krahn, M. M., Ylitalo, G. M., Buzitis, J., Bolton, J. L.,

Wigren, C. A., Chan, S.-L. & Varanasi, U. 1993.

Analyses for petroleum-related contaminants in marine

fish and sediments following the Gulf oil spill. Marine

Pollution Bulletin, 27, 285–292. DOI: https://doi.org/

1016/0025-326x(93)90035-i

Magalhães, C. A., Taniguchi, S., Lourenço, R. A. &

Montone, R. C. 2017. Organochlorine pesticides, PCBs,

and PBDEs in liver and muscle tissues of Paralonchurus

brasiliensis, Trichiurus lepturus and Cathorops spixii in

Santos Bay and surrounding area, São Paulo, Brazil.

Regional Studies in Marine Science, 16, 42–48. DOI:

https://doi.org/10.1016/j.rsma.2017.08.010

Martins, C. C., Bícego, M. C., Mahiques, M. M.,

Figueira, R. C. L., Tessler, M. G. & Montone, R. C.

Polycyclic aromatic hydrocarbons (PAHs) in a

large South American industrial coastal area (Santos

Estuary, Southeastern Brazil). Sources and depositional

history. Marine Pollution Bulletin, 63(5), 452–458.

DOI: https://doi.org/10.1016/j.marpolbul.2011.03.017

Martins, C. C., Mahiques, M. M., Bícego, M. C.,

Fukumoto, M. M. & Montone, R. C. 2007. Comparison

between anthropogenic hydrocarbons and magnetic

susceptibility in sediment cores from the Santos Estuary,

Brazil. Marine Pollution Bulletin, 54(2), 240–246.

DOI: https://doi.org/10.1016/j.marpolbul.2006.11.006

McCain, B. B., Malins, D. C., Krahn, M. M., Brown, D. W.,

Gronlund, W. D., Moore, L. K. & Chan, S.-L. 1990.

Uptake of aromatic and chlorinated hydrocarbons by

juvenile chinook salmon (Oncorhynchus tshawytscha)

in an urban estuary. Archives of Environmental

Contamination and Toxicology, 19(1), 10–16.

DOI: https://doi.org/10.1007/bf01059807

Medeiros, P. M. & Bícego, M. C. 2004a. Investigation

of natural and anthropogenic hydrocarbon inputs in

sediments using geochemical markers. I. Santos, SP –

Brazil. Marine Pollution Bulletin, 49(9), 761–769.

DOI: https://doi.org/10.1016/j.marpolbul.2004.06.001

Medeiros, P. M. & Bícego, M. C. 2004b. Investigation of natural

and anthropogenic hydrocarbon inputs in sediments

using geochemical markers. II. São Sebastião, SP –

Brazil. Marine Pollution Bulletin, 49(11), 892–899.

DOI: https://doi.org/10.1016/j.marpolbul.2004.06.002

Pulster, E. L., Gracia, A., Armenteros, M., ToroFarmer, G., Snyder, S. M., Carr, B. E., Schwaab, M. R.,

Nicholson, T. J., Mrowicki, J. & Murawski, S. A. 2020.

A first comprehensive baseline of hydrocarbon pollution

in Gulf of Mexico fishes. Scientific Reports, 10(1), 1–14.

DOI: https://doi.org/10.1038/s41598-020-62944-6

Rotchell, J., Bird, D. & Newton, L. 1999. Seasonal variation

in ethoxyresorufin O-deethylase (EROD) activity

in European eels Anguilla anguilla and flounders

Pleuronectes flesus from the Severn estuary and

Bristol channel. Marine Ecology Progress Series, 190,

–270. DOI: https://doi.org/10.3354/meps190263

da Silva, D. A. M., Buzitis, J., Krahn, M. M., Bícego, M. C. &

Pires-Vanin, A. M. S. 2006. Metabolites in bile of fish

from São Sebastião Channel, São Paulo, Brazil as

biomarkers of exposure to petrogenic polycyclic aromatic

PAHs bioavailability in a contaminated area

Ocean and Coastal Research 2023, v71(suppl 2):e23024 9

Patire et al.

compounds. Marine Pollution Bulletin, 52(2), 175–183.

DOI: https://doi.org/10.1016/j.marpolbul.2005.08.016

Silva, J. S., Alves, R. N., de Paulo, D. V., Jr., C. F. M.,

de Melo Alves, M. K. & Carvalho, P. S. M. 2021. Biliary

polycyclic aromatic hydrocarbons and enzymatic

biomarkers in Eugerres brasilianus along four tropical

estuaries. Marine Pollution Bulletin, 163, 111919.

DOI: https://doi.org/10.1016/j.marpolbul.2020.111919

Snyder, S. M., Olin, J. A., Pulster, E. L. & Murawski, S. A.

Spatial contrasts in hepatic and biliary PAHs in

Tilefish (Lopholatilus chamaeleonticeps) throughout

the Gulf of Mexico, with comparison to the Northwest

Atlantic. Environmental Pollution, 258, 113775.

DOI: https://doi.org/10.1016/j.envpol.2019.113775

Soclo, H. H., Garrigues, P. & Ewald, M. 2000. Origin of

polycyclic aromatic hydrocarbons (PAHs) in coastal

marine sediments: Case studies in Cotonou (Benin)

and Aquitaine (France) areas. Marine Pollution Bulletin,

(5), 387–396. DOI: https://doi.org/10.1016/s0025-

x(99)00200-3

Upshall, C., Payne, J. F. & Hellou, J. 1993. Induction of

MFO enzymes and production of bile metabolites in

rainbow trout (Oncorhynchus mykiss) exposed to waste

crankcase oil. Environmental Toxicology and Chemistry,

(11), 2105–2112. DOI: https://doi.org/10.1002/

etc.5620121118

Varanasi, U. 1989. Metabolism of polycyclic aromatic

hydrocarbons in the aquatic environment (1st ed.).

Boca Raton: CRC Press.

White, K. L. 1986. An overview of immunotoxicology

and carcinogenic polycyclic aromatic hydrocarbons.

Environmental Carcinogenesis Reviews, 4(2), 163–202.

DOI: https://doi.org/10.1080/10590508609373342

Yunker, M. B., Macdonald, R. W., Vingarzan, R.,

Mitchell, R. H., Goyette, D. & Sylvestre, S. 2002. PAHs in

the Fraser River basin: a critical appraisal of PAH ratios

as indicators of PAH source and composition. Organic

Geochemistry, 33(4), 489–515. DOI: https://doi.org/

1016/s0146-6380(02)00002-5

Downloads

Published

2024-04-10

How to Cite

Bioavailability of polycyclic aromatic hydrocarbons in Santos Bay (Brazil) and its adjacent continental shelf. (2024). Ocean and Coastal Research, 71(Suppl. 2). https://doi.org/10.1590/