Inorganic carbon assimilation by planktonic community in Santos Basin, Southwestern Atlantic Ocean

Authors

  • Deborah S. Kutner
  • Jeff S. Bowman
  • Flávia M. P. Saldanha-Corrêa
  • Mateus G. Chuqui
  • Pedro M. Tura
  • Daniel L. Moreira
  • Frederico P. Brandini
  • Camila N. Signori

DOI:

https://doi.org/10.1590/

Keywords:

Primary production, Photoautotrophy, Chemoautotrophy, Carbon Cycle, Microbial dynamics

Abstract

Primary production is essential in shaping biogeochemical cycles and microbial and ecosystem dynamics. The
distribution of chemosynthetic rates in pelagic zones and their participation in the carbon cycle, especially when
compared to photosynthetic rates in the Southwestern Atlantic Ocean, are poorly constrained. This study aimed
to measure pelagic photo- and chemosynthetic productivity and to analyze their spatial distribution and abiotic
drivers. Samples for photosynthesis experiments collected at the surface and deep chlorophyll maximum (DCM)
were incubated with 14C-bicarbonate at eight light levels, simulating in situ conditions. Samples for chemosynthesis
experiments were collected throughout the water column, from the surface, DCM, 250 m, 900 m, 1,200 m, and
2,300 m, and were incubated in the dark. Rates were analyzed using statistical tests to verify spatial differences
between groups of samples and generalized linear models to identify correlations with environmental variables
(temperature, salinity, density, mixed layer depth, dissolved oxygen, nitrite, nitrate, silicate, phosphate, turbidity,
CDOM, and phycoerythrin and chlorophyll-a concentrations). Moreover, both processes were integrated from the
surface to the DCM and compared at the same stations to determine the relative contribution in the epipelagic zone.
The photosynthetic and chemosynthetic rates were, on average, 3.00 ± 3.26 mg C m-3 h-1 and 0.97 ± 1.22 mg C m-3
h-1, respectively. In most stations, chemosynthesis represented an average of 10.2% of total primary productivity,
but surpassed photosynthesis in three experiments (reaching 63.4 – 78.8%). Photosynthesis displayed a clear
offshore-onshore gradient, along with correlated CDOM concentrations, indicating an autochthonous production
of the latter. Chemosynthesis, on the other hand, exhibited high variability and lack of prediction by studied
environmental variables, with isolated points of substantially higher activity.

References

Aguiar, V., Neto, J. & Rangel, C. 2011. Eutrophication

and hypoxia in four streams discharging in Guanabara

Bay, RJ, Brazil, a case study. Marine Pollution Bulletin,

(8), 1915–1919. DOI: https://doi.org/10.1016/j.

marpolbul.2011.04.035

Aidar-Aragão, E., Teixeira, C. & Vieira, A. 1980. Produção

primária e concentração de clorofila-a na costa brasileira

(Lat. 22o

’S - Long. 41o

’W a Lat. 28o

’S - Long.

o

’W). Boletim Do Instituto Oceanográfico, 29(2), 9–14.

DOI: https://doi.org/10.1590/s0373-55241980000200003

Baltar, F. & Herndl, G. 2019. Ideas and perspectives: Is dark

carbon fixation relevant for oceanic primary production

estimates? Biogeosciences, 16(19), 3793–3799. DOI:

https://doi.org/10.5194/bg-16-3793-2019

Bergo, N., Signori, C., Amado, A., Brandini, F. & Pellizari, V. 2017.

The Partitioning of Carbon Biomass among the Pico- and

Nano-plankton Community in the South Brazilian Bight

during a Strong Summer Intrusion of South Atlantic

Central Water. Frontiers in Marine Science, 4, 238.

DOI: https://doi.org/10.3389/fmars.2017.00238

Bird, R. E. & Hulstrom, R. L. 1981. A Simplified Clear Sky

Model for Direct and Diffuse Insolation on Horizontal

Surfaces (techreport No. SERI/TR-642-761). Golden:

Solar Energy Research Institute.

Bowman, J., Kavanaugh, M., Doney, S. & Ducklow, H.

Recurrent seascape units identify key ecological

processes along the western Antarctic Peninsula.

Global Change Biology, 24(7), 3065–3078. DOI: https://

doi.org/10.1111/gcb.14161

Planktonic photo- and chemoautotrophy in Santos Basin

Ocean and Coastal Research 2023, v71(suppl 3):e23006 16

Kutner et al.

Brandini, F. 1990b. Hydrography and characteristics of

the phytoplankton in shelf and oceanic waters off

southeastern Brazil during winter (July/August 1982) and

summer (February/March 1984). Hydrobiologia, 196(2),

–148. DOI: https://doi.org/10.1007/bf00006105

Brandini, F. 1990a. Produção primária e características

fotossintéticas do fitoplâncton na região sueste do Brasil.

Brazilian Journal of Oceanography, 38(2), 147–159.

DOI: https://doi.org/10.1590/s1679-87591990000200004

Brandini, F., Nogueira, M., Simião, M., Codina, J. &

Noernberg, M. 2014. Deep chlorophyll maximum

and plankton community response to oceanic bottom

intrusions on the continental shelf in the South Brazilian

Bight. Continental Shelf Research, 89, 61–75. DOI:

https://doi.org/10.1016/j.csr.2013.08.002

Brandini, F., Tura, P. & Santos, P. 2018. Ecosystem

responses to biogeochemical fronts in the South Brazil

Bight. Progress in Oceanography, 164, 52–62. DOI:

https://doi.org/10.1016/j.pocean.2018.04.012

Casamayor, E., García-Cantizano, J., Mas, J. & PedrósAlió, C. 2001. Primary production in estuarine oxic/

anoxic interfaces: contribution of microbial dark CO2

fixation in the Ebro River Salt Wedge Estuary. Marine

Ecology Progress Series, 215, 49–56. DOI: https://doi.

org/10.3354/meps215049

Casamayor, E., García-Cantizano, J. & Pedrós-Alió, C. 2008.

Carbon dioxide fixation in the dark by photosynthetic

bacteria in sulfide-rich stratified lakes with oxic-anoxic

interfaces. Limnology and Oceanography, 53(4),

–1203. DOI: https://doi.org/10.4319/lo.2008.53.4.1193

Castro, B. 2014. Summer/winter stratification variability in

the central part of the South Brazil Bight. Continental

Shelf Research, 89, 15–23. DOI: https://doi.org/

1016/j.csr.2013.12.002

Crawley, M. J. 2015. Statistics: an introduction using R (2nd

ed.). Sussex: John Wiley & Sons, Inc.

Dottori, M., Sasaki, D. K., Silva, D. A., Giovannino, S. R.,

Pinto, A. P., Gnamah, M., Santos, A. D., Silveira, I. C. A.,

Belo, W. C., Martins, R. P. & Moreira, D. L. 2023.

Hydrographic structure of the continental shelf in Santos

Basin and its causes: The SANAGU and SANSED

campaigns (2019). Ocean and Coastal Research,

(Suppl 3).

Dunne, J., Sarmiento, J. & Gnanadesikan, A. 2007. A

synthesis of global particle export from the surface

ocean and cycling through the ocean interior and on

the seafloor. Global Biogeochemical Cycles, 21(4). DOI:

https://doi.org/10.1029/2006gb002907

Enrich-Prast, A., Bastviken, D., Crill, P., Santoro, A.,

Signori, C. & Sanseverino, A. 2014. Reference Module

in Earth Systems and Environmental Sciences. Elsevier.

DOI: https://doi.org/org/10.1016/B978-0-12-409548-9.

-0

Farías, L., Fernández, C., Faúndez, J., Cornejo, M. &

Alcaman, M. 2009. Chemolithoautotrophic production

mediating the cycling of the greenhouse gases N2

O and

CH4

in an upwelling ecosystem. Biogeosciences, 6(12),

–3069. DOI: https://doi.org/10.5194/bg-6-3053-

Field, C., Behrenfeld, M., Randerson, J. & Falkowski, P.

Primary Production of the Biosphere: Integrating

Terrestrial and Oceanic Components. Science,

(5374), 237–240. DOI: https://doi.org/10.1126/

science.281.5374.237

Fogg, G. 1983. The Ecological Significance of Extracellular

Products of Phytoplankton Photosynthesis. Botanica

Marina, 26(1), 3–14. DOI: https://doi.org/10.1515/

botm.1983.26.1.3

Fox, J. & Weisberg, S. 2019. An R Companion to Applied

Regression (3rd ed.). Thousand Oaks: Sage. Accessed:

https://socialsciences.mcmaster.ca/jfox/Books/

Companion/

Frazão, L., Penninck, S., Michelazzo, L., Moreno, G.,

Guimarães, C., Lopes, R. & Signori, C. 2021. Microbial

ecology of the South Atlantic Subtropical Gyre: a stateof-the-art review of an understudied ocean region.

Ocean and Coastal Research, 69. DOI: https://doi.

org/10.1590/2675-2824069.20026lrf

Frouin, R. & Pinker, R. 1995. Estimating Photosynthetically

Active Radiation (PAR) at the earth’s surface from

satellite observations. Remote Sensing of Environment,

(1), 98–107. DOI: https://doi.org/org/10.1016/0034-

(94)00068-X

Gaeta, S. A. & Brandini, F. P. 2006. O Ambiente

Oceanográfico da plataforma continental e do talude na

região sudeste-sul do Brasil. In: Rossi-Wongtschowski,

C. L. B. & Madureira, L. S. P. (eds.) (pp. 219–264). São

Paulo: Edusp.

Gonçalves-Araujo, R., Röttgers, R., Haraguchi, L. &

Brandini, F. 2019. Hydrography-Driven Variability of

Optically Active Constituents of Water in the South

Brazilian Bight: Biogeochemical Implications. Frontiers

in Marine Science, 6, 716. DOI: https://doi.org/10.3389/

fmars.2019.00716

Gonzalez-Rodriguez, E. 1994. Yearly variation in primary

productivity of marine phytoplankton from Cabo Frio

(RJ, Brazil) region. Hydrobiologia, 294(2), 145–156.

DOI: https://doi.org/10.1007/bf00016855

Gonzalez-Rodriguez, E., Valentin, J., André, D. & Jacob,

S. 1992. Upwelling and downwelling at Cabo Frio

(Brazil): comparison of biomass and primary production

responses. Journal of Plankton Research, 14(2),

–306. DOI: https://doi.org/10.1093/plankt/14.2.289

Grasshoff, K., Kremling, K. & Ehrhardt, M. 2009. Methods

of Seawater Analysis (3rd ed.). Weinheim: Wiley-VCH.

Guenther, M., Paranhos, R., Rezende, C., GonzalezRodriguez, E. & Valentin, J. 2008. Dynamics of bacterial

carbon metabolism at the entrance of a tropical eutrophic

bay influenced by tidal oscillation. Aquatic Microbial

Ecology, 50, 123–133. DOI: https://doi.org/10.3354/

ame01154

Guerra, L., Paiva, A. & Chassignet, E. 2018. On the

translation of Agulhas rings to the western South Atlantic

Ocean. Deep Sea Research Part I: Oceanographic

Research Papers, 139, 104–113. DOI: https://doi.

org/10.1016/j.dsr.2018.08.005

Guisan, A., Edwards, T. & Hastie, T. 2002. Generalized

linear and generalized additive models in studies of

species distributions: setting the scene. Ecological

Modelling, 157(2–3), 89–100.

Planktonic photo- and chemoautotrophy in Santos Basin

Ocean and Coastal Research 2023, v71(suppl 3):e23006 17

Kutner et al.

Herndl, G. & Reinthaler, T. 2013. Microbial control of the

dark end of the biological pump. Nature Geoscience,

(9), 718–724. DOI: https://doi.org/10.1038/ngeo1921

Herndl, G., Reinthaler, T., Teira, E., Van Aken, H., Veth,

C., Pernthaler, A. & Pernthaler, J. 2005. Contribution

of Archaea to Total Prokaryotic Production in the

Deep Atlantic Ocean. Applied and Environmental

Microbiology, 71(5), 2303–2309. DOI: https://doi.

org/10.1128/aem.71.5.2303-2309.2005

IOC, SCOR, & IAPSO. 2010. The international

thermodynamic equation of seawater – 2010:

Calculation and use of thermodynamic properties (56th

ed.). London: UNESCO.

Karl, D. M. 2007. Microbial oceanography: paradigms,

processes and promise. Nature Reviews Microbiology,

(10), 759–769. DOI: https://doi.org/10.1038/nrmicro1749

Kirchman, D. L. 2012. Processes in microbial ecology.

Oxford: Oxford University Press.

Kirk, J. T. O. 2011. Light and photosynthesis in aquatic

ecosystems (3rd ed.). Cambridge: Cambridge University

Press.

Lange, P., Moser, G., Teixeira de Lima, D., Rodrigues, S.,

Fernandes, L. & S, N. 2022. An unprecedented harmful

algae bloom on the beaches of Rio, Brazil. Harmful

Algae News (IOC-UNESCO), (70).

Laxenaire, R., Speich, S., Blanke, B., Chaigneau, A.,

Pegliasco, C. & Stegner, A. 2018. Anticyclonic Eddies

Connecting the Western Boundaries of Indian and

Atlantic Oceans. Journal of Geophysical Research:

Oceans, 123(11), 7651–7677. DOI: https://doi.

org/10.1029/2018jc014270

Li, W. K. W., Irwin, B. D. & Dickie, P. M. 1993. Dark

fixation of 14C: Variations related to biomass and

productivity of phytoplankton and bacteria. Limnology

and Oceanography, 38(3), 483–494. DOI: https://doi.

org/10.4319/lo.1993.38.3.0483

Longhurst, A. & Harrison, W. 1989. The biological pump:

Profiles of plankton production and consumption in the

upper ocean. Progress in Oceanography, 22(1), 47–123.

DOI: https://doi.org/org/10.1016/0079-6611(89)90010-4

Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill,

C. 1995. An estimate of global primary production in

the ocean from satellite radiometer data. Journal of

Plankton Research, 17(6), 1245–1271. DOI: https://doi.

org/10.1093/plankt/17.6.1245

López-Urrutia, Á., San Martin, E., Harris, R. & Irigoien, X.

Scaling the metabolic balance of the oceans.

Proceedings of the National Academy of Sciences,

(23), 8739–8744. DOI: https://doi.org/10.1073/

pnas.0601137103

Lutz, V., Segura, V., Dogliotti, A., Tavano, V., Brandini, F.,

Calliari, D., Ciotti, A., Villafañe, V., Schloss, I., Corrêa,

F., Benavides, H. & Cantonnet, D. 2018. Overview

on Primary Production in the Southwestern Atlantic.

In: Hoffmeyer, M. S., Sabatini, M. E., Brandini, F. P.,

Calliari, D. L., & Santinelli, N. H. (eds.), Plankton

Ecology of the Southwestern Atlantic (pp. 101–126).

Cham: Springer International Publishing. DOI: https://

doi.org/10.1007/978-3-319-77869-3_6

Marañón, E., Behrenfeld, M., González, N., Mouriño, B. &

Zubkov, M. 2003. High variability of primary production

in oligotrophic waters of the Atlantic Ocean: uncoupling

from phytoplankton biomass and size structure. Marine

Ecology Progress Series, 257, 1–11. DOI: https://doi.

org/10.3354/meps257001

Markager, S. 1998. Dark uptake of inorganic14C in

oligotrophic oceanic waters. Journal of Plankton

Research, 20(9), 1813–1836. DOI: https://doi.org/

1093/plankt/20.9.1813

Merchant, S. & Helmann, J. 2012. Elemental economy:

microbial strategies for optimizing growth in the face of

nutrient limitation. Advances in Microbial Physiology,

, 91–210. DOI: https://doi.org/org/10.1016/B978-0-

-398264-3.00002-4

Middelburg, J. 2011. Chemoautotrophy in the ocean.

Geophysical Research Letters, 38(24). DOI: https://doi.

org/10.1029/2011gl049725

Moreira, D. L., Dalto, A. G., Figueiredo Jr, A. G., Valerio, A.

M., Bonecker, A. C. T., Signori, C. N., Namiki, C., Sasaki,

D. K., Pupo, D. V., Silva, D. A., Kutner, D. S., DuqueCastaño, D. C., Marcon, E. H., Gallotta, F. D. C., Paula, F.

S., Gallucci, F., Roque, G. C. F., Campos, G. S., Fonseca,

..., G. & Souza, S. H. M. 2023. Multidisciplinary Scientific

Cruises for Environmental Characterization in Santos

Basin. Ocean and Coastal Research, 71(Suppl 3).

Moreira, J. L. P., Madeira, C. V., Gil, J. A. & Machado,

M. A. P. 2007. Bacias Sedimentares Brasileiras:

Cartas Estratigráficas - Bacia de Santos. Boletim de

Geociências Da Petrobras, 15(2), 531–549.

Morel, A. 1991. Light and marine photosynthesis: a spectral

model with geochemical and climatological implications.

Progress in Oceanography, 26(3), 263–306. DOI:

https://doi.org/org/10.1016/0079-6611(91)90004-6

Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre,

P., Mcglinn, D., Minchin, P., Hara, R., Simpson, G.,

Solymos, P., Stevens, M., Szoecs, E. & Wagner, H.

vegan: Community Ecology Package. Accessed:

https://CRAN.R-project.org/package=vegan

Organelli, E. & Claustre, H. 2019. Small Phytoplankton

Shapes Colored Dissolved Organic Matter Dynamics

in the North Atlantic Subtropical Gyre. Geophysical

Research Letters, 46(21), 12183–12191. DOI: https://

doi.org/10.1029/2019gl084699

Passos, J. G., Soares, L. F., Sumida, P. Y. G., Bendia, A. G.,

Nakamura, F. M., Pellizari, V. H. & Signori, C. N. 2022.

Contribution of chemoautotrophy and heterotrophy to

the microbial carbon cycle in the Southwestern Atlantic

Ocean. Ocean and Coastal Research, 70(suppl 2). DOI:

https://doi.org/10.1590/2675-2824070.22137jgp

Platt, T., Gallegos, C. L. & Harrison, W. G. 1980.

Photoinhibition of photosynthesis in natural assemblages

of marine phytoplankton. Journal of Marine Research,

, 687–701.

Poole, H. & Atkins, W. 1929. Photo-electric Measurements

of Submarine Illumination throughout the Year. Journal

of the Marine Biological Association of the United

Kingdom, 16(1), 297–324. DOI: https://doi.org/10.1017/

s0025315400029829

Prakash, A., Sheldon, R. & Sutcliffe, W. 1991. Geographic

variation of oceanic 14 C dark uptake. Limnology

and Oceanography, 36(1), 30–39. DOI: https://doi.

org/10.4319/lo.1991.36.1.0030

Planktonic photo- and chemoautotrophy in Santos Basin

Ocean and Coastal Research 2023, v71(suppl 3):e23006 18

Kutner et al.

R Core Team. 2021. A language and environment for

statistical computing (Version 4.1.2). Accessed: https://

www.R-project.org/

Regaudie-de-Gioux, A. & Duarte, C. M. 2012. Temperature

dependence of planktonic metabolism in the ocean.

Global Biogeochemical Cycles, 26(1). DOI: https://doi.

org/10.1029/2010GB003907

Reinthaler, T., Van Aken, H. & Herndl, G. 2010. Major

contribution of autotrophy to microbial carbon cycling in

the deep North Atlantic’s interior. Deep Sea Research

Part II: Topical Studies in Oceanography, 57(16), 1572–

DOI: https://doi.org/10.1016/j.dsr2.2010.02.023

Schlitzer, R. 2021. Ocean Data View. Accessed: https://odv.

awi.de/

Signori, C., Felizardo, J. & Enrich-Prast, A. 2020. Bacterial

production prevails over photo- and chemosynthesis in

a eutrophic tropical lagoon. Estuarine, Coastal and Shelf

Science, 243, 106889. DOI: https://doi.org/10.1016/j.

ecss.2020.106889

Signori, C., Valentin, J., Pollery, R. & Enrich-Prast, A.

Temporal Variability of Dark Carbon Fixation

and Bacterial Production and Their Relation with

Environmental Factors in a Tropical Estuarine System.

Estuaries and Coasts, 41(4), 1089–1101. DOI: https://

doi.org/10.1007/s12237-017-0338-7

Silveira, I., Napolitano, D. & Farias, I. 2020. Water Masses

and Oceanic Circulation of the Brazilian Continental

Margin and Adjacent Abyssal Plain. In: Sumida, P. Y. G.,

Bernardino, A. F., & De Léo, F. C. (eds.) Brazilian Marine

Biodiversity. (pp. 7–36). Berlim: Springer International

Publishing. DOI: https://doi.org/10.1007/978-3-030-53222-2_2

Silveira, I. C. A., Lazaneo, C. Z., Amorim, J. P. M.,

Borges-Silva, M., Bernardo, P. S., Martins, R. C.,

Santos, D. M. C., Dottori, M., Belo, W. C., Martins, R. P. &

Moreira, D. L. 2023. Oceanographic conditions of the

continental slope and deep waters in Santos Basin:

the SANSED cruise (winter 2019). Ocean and Coastal

Research, 71(suppl 3).

Sorokin, J. 1964. On the Trophic Role of Chemosynthesis

in Water Bodies. Internationale Revue Der Gesamten

Hydrobiologie Und Hydrographie, 49(2), 307–324. DOI:

https://doi.org/10.1002/iroh.19640490205

Steemann-Nielsen, E. 1952. The Use of Radio-active

Carbon (C14) for Measuring Organic Production in the

Sea. ICES Journal of Marine Science, 18(2), 117–140.

DOI: https://doi.org/10.1093/icesjms/18.2.117

Synergy Software. KaleidaGraph, Version 4.0 for Windows.

Reading, PA, USA. Accessed: https://www.synergy.com/

Teixeira, C. 1973. Introdução aos métodos para medir a

produção primária do fitoplâncton marinho. Boletim Do

Instituto Oceanográfico, 22(0), 59–92. DOI: https://doi.

org/10.1590/s0373-55241973000100004

Thimijan, R. W. & Heins, R. D. 1983. Photometric,

Radiometric, and Quantum Light Units of Measure: A

Review of Procedures for Interconversion. Hortscience,

(6), 818–822.

Thornton, D. 2014. Dissolved organic matter (DOM) release

by phytoplankton in the contemporary and future ocean.

European Journal of Phycology, 49(1), 20–46. DOI:

https://doi.org/10.1080/09670262.2013.875596

Vicente, T., Yamashita, C., Sousa, S. & Ciotti, A. 2021.

Evaluation of the relationship between biomass of living

(stained) benthic foraminifera and particulate organic

matter vertical flux in an oligotrophic region, Campos

Basin, southeastern Brazilian continental margin.

Journal of Sea Research, 176, 102110. DOI: https://doi.

org/10.1016/j.seares.2021.102110

Vieira, A. & Teixeira, C. 1981. Excreção de materia orgânica

dissolvida por populações fitoplanctônicas da costa leste

e sudeste do Brasil. Boletim Do Instituto Oceanográfico,

(1), 9–25. DOI: https://doi.org/10.1590/s0373-5524

Villac, M. & Tenenbaum, D. 2010. The phytoplankton

of Guanabara Bay, Brazil: I. historical account of its

biodiversity. Biota Neotropica, 10(2), 271–293. DOI:

https://doi.org/10.1590/s1676-06032010000200030

Welschmeyer, N. 1994. Fluorometric analysis of chlorophyll

a in the presence of chlorophyll b and pheopigments.

Limnology and Oceanography, 39(8), 1985–1992. DOI:

https://doi.org/10.4319/lo.1994.39.8.1985

Wickham, H. 2016. ggplot2: Elegant Graphics for Data

Analysis. New York: Oxford University Press.

Yakimov, M., La Cono, V., Smedile, F., Crisafi, F., Arcadi, E.,

Leonardi, M., Decembrini, F., Catalfamo, M., Bargiela, R.,

Ferrer, M., Golyshin, P. & Giuliano, L. 2014. Heterotrophic

bicarbonate assimilation is the main process of de

novoorganic carbon synthesis in hadal zone of the

Hellenic Trench, the deepest part of Mediterranean Sea.

Environmental Microbiology Reports, 6(6), 709–722.

DOI: https://doi.org/10.1111/1758-2229.12192

Zhou, W., Liao, J., Guo, Y., Yuan, X., Huang, H., Yuan, T.

& Liu, S. 2017. High dark carbon fixation in the tropical

South China Sea. Continental Shelf Research, 146,

–88. DOI: https://doi.org/10.1016/j.csr.2017.08.005

Downloads

Published

2024-04-10

How to Cite

Inorganic carbon assimilation by planktonic community in Santos Basin, Southwestern Atlantic Ocean. (2024). Ocean and Coastal Research, 71(Suppl. 3). https://doi.org/10.1590/