Biogenic composition of calcium carbonate over the past 140,000 years: clues from a marine core in the Santos Basin

Authors

  • Mariana Oliva Tomazella
  • Guilherme Augusto Pedrão
  • Juliana Pereira Quadros
  • Felipe Antonio de Lima Toledo
  • Karen Badaraco Costa

DOI:

https://doi.org/10.1590/

Keywords:

Glacial-Interglacial Cycles, South Atlantic, Paleoceanography, Dissolution; Microfossils, Geochemistry

Abstract

This study aimed to investigate the biogenic composition of calcium carbonate (CaCO 3) in pelagic sediments in the Santos Basin over the past 140,000 years. The content and composition of CaCO 3 in different sediment fractions were evaluated, including the bulk sample, coarse fraction (foraminifera), medium fraction (juvenile foraminifera and fragments), and fine fraction (nannofossils), to determine the contribution of each fraction to the carbonated sediment composition. We found that variations in CaCO 3 levels were closely linked to glacial and interglacial periods, with higher values during interglacial periods and lower values during glacial periods. The main factor controlling the variation in CaCO 3 was dissolution, which was mainly linked to the influx of more corrosive southern water masses. Fluctuations in CaCO 3 levels were influenced by variations in productivity and dilution caused by terrigenous sediments. Nevertheless, it is noteworthy that both processes held a relatively minor impact compared to dissolution. Productivity primarily contributed to increased dissolution rates. During periods of low sea levels, dilution by terrigenous sediments became significant (similarly, the influence of the La Plata River plume was notable). However, due to the limited presence of riverine supply in the study area, which contributes directly to major dilution influences, fluctuations in terrigenous materials were considered of lesser magnitude than those caused by dissolution. The nannofossils were found to be the largest contributor to the total CaCO 3 composition, as they were the fraction least affected by the dissolution process. Overall, our results provide insights into the factors influencing CaCO 3 accumulation in marine sediments and can be used as a tool to determine changes between climatic cycles over time.

References

Arz, H. W., Pätzold, J. & Wefer, G. 1998. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quaternary Research, 50(2), 157-166. DOI: https://doi.org/10.1006/qres.1998.1992

» https://doi.org/10.1006/qres.1998.1992

Arz, H. W., Pätzold, J., & Wefer, G. 1999. The deglacial history of the western tropical Atlantic as inferred from high resolution stable isotope records off northeastern Brazil. Earth and Planetary Science Letters, 167(1-2), 105-117. DOI: https://doi.org/10.1016/s0012-821x(99)00025-4

» https://doi.org/10.1016/s0012-821x(99)00025-4

Arz, H. W., Gerhardt, S., Pätzold, J. & Röhl, U. 2001. Millennial-scale changes of surface- and deep-water flow in the western tropical Atlantic linked to northern hemisphere high-latitude climate during the Holocene. Geology, 29(3), 239. DOI: https://doi.org/10.1130/0091-7613(2001)029<0239:mscosa>2.0.co;2

» https://doi.org/10.1130/0091-7613(2001)029

Bachu, S. 2000. Sequestration of CO₂ in geological media: Criteria and approach for site selection in response to climate change. Energy Conversion and Management, 41(9), 953-970. DOI: https://doi.org/10.1016/s0196-8904(99)00149-1

» https://doi.org/10.1016/s0196-8904(99)00149-1

Bainbridge, A. E. & Geosecs. 1981. Hydrographic measurements during the GEOSECS Atlantic expedition. PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.824122

» https://doi.org/10.1594/PANGAEA.824122

Balch, W. M., Drapeau, D. T. & Fritz, J. J. 2000. Monsoonal forcing of calcification in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 47(7-8), 1301-1337. DOI: https://doi.org/10.1016/s0967-0645(99)00145-9

» https://doi.org/10.1016/s0967-0645(99)00145-9

Baumann, K., Böckel, B. & Frenz, M. 2004. Coccolith contribution to south Atlantic carbonate sedimentation. Coccolithophores, 367-402. DOI: https://doi.org/10.1007/978-3-662-06278-4_14

» https://doi.org/10.1007/978-3-662-06278-4_14

Behling, H., W. Arz, H., Pätzold, J. & Wefer, G. 2000. Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1. Quaternary Science Reviews, 19(10), 981-994. DOI: https://doi.org/10.1016/s0277-3791(99)00046-3

» https://doi.org/10.1016/s0277-3791(99)00046-3

Berger, W. H. 1973. Deep-sea carbonates; Pleistocene dissolution cycles. The Journal of Foraminiferal Research, 3(4), 187-195. DOI: https://doi.org/10.2113/gsjfr.3.4.187

» https://doi.org/10.2113/gsjfr.3.4.187

Berger, W. H., Bonneau, M. C. & Parker, F. L. 1982. Foraminifera on the deep-sea floor-lysocline and dissolution rate. Oceanologica Acta, 5(2), 249-258. Available from: https://archimer.ifremer.fr/doc/00120/23161/

» https://archimer.ifremer.fr/doc/00120/23161/

Bischoff, W. D., Bishop, F. C. & Mackenzie, F. T. 1983. Biogenically produced magnesian calcite; inhomogeneities in chemical and physical properties; comparison with synthetic phases. American Mineralogist, 68(11-12), 1183-1188.

Blaauw, M. & Christen, J. A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3). DOI: https://doi.org/10.1214/11-ba618

» https://doi.org/10.1214/11-ba618

Bordin, L. H., Machado, E. D., Carvalho, M., Freire, A. S. & Fonseca, A. L. 2019. Nutrient and carbon dynamics under the water mass seasonality on the continental shelf at the south Brazil bight. Journal of Marine Systems, 189, 22-35. DOI: https://doi.org/10.1016/j.jmarsys.2018.09.006

» https://doi.org/10.1016/j.jmarsys.2018.09.006

Brandini, F. P., Tura, P. M. & Santos, P. P. 2018. Ecosystem responses to biogeochemical fronts in the south Brazil bight. Progress in Oceanography, 164, 52-62. DOI: https://doi.org/10.1016/j.pocean.2018.04.012

» https://doi.org/10.1016/j.pocean.2018.04.012

Broecker, W. S., Turekian, K. K. & Heezen, B. C. 1958. The relation of deep sea [Atlantic Ocean] sedimentation rates to variations in climate. American Journal of Science, 256(7), 503-517. DOI: https://doi.org/10.2475/ajs.256.7.503

» https://doi.org/10.2475/ajs.256.7.503.

Broecker, W. S. 1982. Glacial to interglacial changes in ocean chemistry. Progress in Oceanography, 11(2), 151-197. DOI: https://doi.org/10.1016/0079-6611(82)90007-6

» https://doi.org/10.1016/0079-6611(82)90007-6

Broecker, W. S. & Peng, T. 1986. Carbon cycle: 1985 glacial to interglacial changes in the operation of the global carbon cycle. Radiocarbon, 28(2A), 309-327. DOI: https://doi.org/10.1017/s0033822200007414

» https://doi.org/10.1017/s0033822200007414

Broecker, W. S. & Clark, E. 1999. CaCO₃ size distribution: A paleocarbonate ion proxy? Paleoceanography, 14(5), 596-604. DOI: https://doi.org/10.1029/1999pa900016

» https://doi.org/10.1029/1999pa900016

Broecker, W. S. & Clark, E. 2001. Reevaluation of the CaCO₃ size index paleocarbonate ion proxy. Paleoceanography, 16(6), 669-671. DOI: https://doi.org/10.1029/2001pa000660

» https://doi.org/10.1029/2001pa000660

Broecker, W. 2003. The oceanic CaCO₃ cycle. Treatise on Geochemistry, 529-549. DOI: https://doi.org/10.1016/b0-08-043751-6/06119-3

» https://doi.org/10.1016/b0-08-043751-6/06119-3

Broecker, W. 2009. Wally’s quest to understand the ocean’s CaCO₃ cycle. Annual Review of Marine Science, 1(1), 1-18. DOI: https://doi.org/10.1146/annurev.marine.010908.163936

» https://doi.org/10.1146/annurev.marine.010908.163936

Buitenhuis, E., Van Bleijswijk, J., Bakker, D. & Veldhuis, M. 1996. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Marine Ecology Progress Series, 143, 271-282. DOI: https://doi.org/10.3354/meps143271

» https://doi.org/10.3354/meps143271

Campos, E. J., Gonçalves, J. E. & Ikeda, Y. 1995. Water mass characteristics and geostrophic circulation in the south Brazil bight: Summer of 1991. Journal of Geophysical Research: Oceans, 100(C9), 18537-18550. DOI: https://doi.org/10.1029/95jc01724

» https://doi.org/10.1029/95jc01724

Campos, E. J., Lentini, C. A., Miller, J. L. & Piola, A. R. 1999. Interannual variability of the sea surface temperature in the south Brazil bight. Geophysical Research Letters, 26(14), 2061-2064. DOI: https://doi.org/10.1029/1999gl900297

» https://doi.org/10.1029/1999gl900297

Charles, C. D. & Fairbanks, R. G. 1990. Glacial to interglacial changes in the isotopic gradients of Southern Ocean surface water. Geological History of the Polar Oceans: Arctic versus Antarctic, 519-538. DOI: https://doi.org/10.1007/978-94-009-2029-3_30

» https://doi.org/10.1007/978-94-009-2029-3_30

Chiu, T. & Broecker, W. S. 2008. Toward better paleocarbonate ion reconstructions: New insights regarding the CaCO₃ size index. Paleoceanography, 23(2). DOI: https://doi.org/10.1029/2008pa001599

» https://doi.org/10.1029/2008pa001599

Ciotti, Á. M., Odebrecht, C., Fillmann, G. & Moller, O. O. 1995. Freshwater outflow and subtropical convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Continental Shelf Research, 15(14), 1737-1756. DOI: https://doi.org/10.1016/0278-4343(94)00091-z

» https://doi.org/10.1016/0278-4343(94)00091-z

Cirano, M., Mata, M. M., Campos, E. J. & Deiró, N. F. 2006. A circulação Oceânica de larga-escala na região oeste do Atlântico Sul com base no modelo de circulação global OCCAM. Revista Brasileira de Geofísica, 24(2), 209-230. DOI: https://doi.org/10.1590/s0102-261x2006000200005

» https://doi.org/10.1590/s0102-261x2006000200005

Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. 2002. The role of the thermohaline circulation in abrupt climate change. Nature, 415(6874), 863-869. DOI: https://doi.org/10.1038/415863a

» https://doi.org/10.1038/415863a

Cronin, T. M., Demartino, D. M., Dwyer, G. S. & Rodriguez-Lazaro, J. (1999). Deep-sea ostracode species diversity: Response to late Quaternary climate change. Marine Micropaleontology, 37(3-4), 231-249. DOI: https://doi.org/10.1016/s0377-8398(99)00026-2

» https://doi.org/10.1016/s0377-8398(99)00026-2

Crowley, T. J. 1983. Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years. Marine Geology, 51(1-2), 1-14. DOI: https://doi.org/10.1016/0025-3227(83)90085-3

» https://doi.org/10.1016/0025-3227(83)90085-3

Curry, W. B. & Crowley, T. J. 1987. The δ¹³C of equatorial Atlantic surface waters: Implications for ice age pCO₂ levels. Paleoceanography, 2(5), 489-517. DOI: https://doi.org/10.1029/pa002i005p00489

» https://doi.org/10.1029/pa002i005p00489

Curry, W. B. & Oppo, D. W. 2005. Glacial water mass geometry and the distribution of δ¹³C of ΣCO₂ in the western Atlantic Ocean. Paleoceanography, 20(1). DOI: https://doi.org/10.1029/2004pa001021

» https://doi.org/10.1029/2004pa001021

De Mahiques, M. M., Tessler, M. G., Maria Ciotti, A., Da Silveira, I. C., E Sousa, S. H., Figueira, R. C., Tassinari, C. C., Furtado, V. V. & Passos, R. F. 2004. Hydrodynamically driven patterns of recent sedimentation in the shelf and upper slope off southeast Brazil. Continental Shelf Research, 24(15), 1685-1697. DOI: https://doi.org/10.1016/j.csr.2004.05.013

» https://doi.org/10.1016/j.csr.2004.05.013

De Mahiques, M. M., Coaracy Wainer, I. K., Burone, L., Nagai, R., De Mello E Sousa, S. H., Lopes Figueira, R. C., Almeida Da Silveira, I. C., Bícego, M. C., Vicente Alves, D. P. & Hammer, Ø. 2009. A high-resolution Holocene record on the southern Brazilian shelf: Paleoenvironmental implications. Quaternary International, 206(1-2), 52-61. DOI: https://doi.org/10.1016/j.quaint.2008.09.010

» https://doi.org/10.1016/j.quaint.2008.09.010

Dittert, N., Baumann, K., Bickert, T., Henrich, R., Huber, R., Kinkel, H. & Meggers, H. 1999. Carbonate dissolution in the deep-sea: Methods, quantification and Paleoceanographic application. Use of Proxies in Paleoceanography, 255-284. DOI: https://doi.org/10.1007/978-3-642-58646-0_10

» https://doi.org/10.1007/978-3-642-58646-0_10

Ducklow, H., Steinberg, D. & Buesseler, K. 2001. Upper ocean carbon export and the biological pump. Oceanography, 14(4), 50-58. DOI: https://doi.org/10.5670/oceanog.2001.06

» https://doi.org/10.5670/oceanog.2001.06

Dymond, J. & Collier, R. 1988. Biogenic particle fluxes in the equatorial Pacific: Evidence for both high and low productivity during the 1982‐1983 El Nino. Global Biogeochemical Cycles, 2(2), 129-137. DOI: https://doi.org/10.1029/gb002i002p00129

» https://doi.org/10.1029/gb002i002p00129

Emílsson, I. 1961. The shelf and coastal waters off southern Brazil. Boletim do Instituto Oceanográfico, 11(2), 101-112. DOI: https://doi.org/10.1590/s0373-55241961000100004

» https://doi.org/10.1590/s0373-55241961000100004

Falkowski, P. G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO₂ in the ocean. Nature, 387(6630), 272-275. DOI: https://doi.org/10.1038/387272a0

» https://doi.org/10.1038/387272a0

Farrell, J. W. & Prell, W. L. 1989. Climatic change and CaCO₃ preservation: An 800,000-year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography, 4(4), 447-466. DOI: https://doi.org/10.1029/pa004i004p00447

» https://doi.org/10.1029/pa004i004p00447

Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J. & Millero, F. J. 2004. Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans. Science, 305(5682), 362-366. DOI: https://doi.org/10.1126/science.1097329

» https://doi.org/10.1126/science.1097329

Figueiredo, T. S., Santos, T. P., Costa, K. B., Toledo, F., Albuquerque, A. L., Smoak, J. M., Bergquist, B. A. & Silva-Filho, E. V. 2020. Effect of deep southwestern subtropical Atlantic Ocean circulation on the biogeochemistry of mercury during the last two glacial/interglacial cycles. Quaternary Science Reviews, 239, 106368. DOI: https://doi.org/10.1016/j.quascirev.2020.106368

» https://doi.org/10.1016/j.quascirev.2020.106368

Frenz, M., Baumann, K., Boeckel, B., Hoppner, R. & Henrich, R. 2005. Quantification of foraminifer and coccolith carbonate in south Atlantic surface sediments by means of carbonate grain-size distributions. Journal of Sedimentary Research, 75(3), 464-475. DOI: https://doi.org/10.2110/jsr.2005.036

» https://doi.org/10.2110/jsr.2005.036

Frenz, M. & Henrich, R. 2006. Carbonate dissolution revealed by silt grain‐size distribution: Comparison of Holocene and last glacial maximum sediments from the pelagic south Atlantic. Sedimentology, 54(2), 391-404. DOI: https://doi.org/10.1111/j.1365-3091.2006.00841.x

» https://doi.org/10.1111/j.1365-3091.2006.00841.x

Gaeta, S. A. & Brandini, F. P. 2006. Produção primária do fitoplâncton na região entre o Cabo de São Tomé (RJ) e o Chuí (RS). O ambiente oceanográfico da plataforma continental e do talude na região sudeste-sul do Brasil, São Paulo, SP, Brasil, EDUSP, 219-264.

Gardner, J. V. 1975. Late Pleistocene carbonate dissolution cycles in the eastern equatorial Atlantic. In: Sliter, W. V., Bé, A. W. & Berger, W. H. Dissolution of deep-sea carbonates (pp. 129-141). Lawrence: Cushman Foundation for Foraminiferal Research Inc.

Gonzales, M. V., de Almeida, F. K., Costa, K. B., Santarosa, A. C., Camillo, E., de Quadros, J. P. & Toledo, F. A. 2017. Help index: Hoeglundina elegans preservation index for marine sediments in the western south Atlantic. The Journal of Foraminiferal Research, 47(1), 56-69. DOI: https://doi.org/10.2113/gsjfr.47.1.56

» https://doi.org/10.2113/gsjfr.47.1.56

Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., Collins, J. A. & Chiessi, C. M. 2012. Distribution of major elements in Atlantic surface sediments (36°N–49°S): Imprint of terrigenous input and continental weathering. Geochemistry, Geophysics, Geosystems, 13(1). DOI: https://doi.org/10.1029/2011gc003785

» https://doi.org/10.1029/2011gc003785

Govin, A., Chiessi, C. M., Zabel, M., Sawakuchi, A. O., Heslop, D., Hörner, T., Zhang, Y. & Mulitza, S. 2014. Terrigenous input off northern South America driven by changes in Amazonian climate and the north Brazil current retroflection during the last 250 Ka. Climate of the Past, 10(2), 843-862. DOI: https://doi.org/10.5194/cp-10-843-2014

» https://doi.org/10.5194/cp-10-843-2014

Gyllencreutz, R., Mahiques, M., Alves, D. & Wainer, I. 2010. Mid- to late-Holocene paleoceanographic changes on the southeastern Brazilian shelf based on grain size records. The Holocene, 20(6), 863-875. DOI: https://doi.org/10.1177/0959683610365936

» https://doi.org/10.1177/0959683610365936

Hales, B. 2003. Respiration, dissolution, and the lysocline. Paleoceanography, 18(4). DOI: https://doi.org/10.1029/2003pa000915

» https://doi.org/10.1029/2003pa000915

Hassenkam, T., Johnsson, A., Bechgaard, K. & Stipp, S. L. 2011. Tracking single coccolith dissolution with picogram resolution and implications for CO₂ sequestration and ocean acidification. Proceedings of the National Academy of Sciences, 108(21), 8571-8576. DOI: https://doi.org/10.1073/pnas.1009447108

» https://doi.org/10.1073/pnas.1009447108

Hay, W. 1970. Calcareous Nannofossils from cores recovered on leg 4. Initial Reports of the Deep Sea Drilling Project. DOI: https://doi.org/10.2973/dsdp.proc.4.123.1970

» https://doi.org/10.2973/dsdp.proc.4.123.1970

Hays, J. D. & Perruzza, A. 1972. The significance of calcium carbonate oscillations in eastern equatorial Atlantic deep-sea sediments for the end of the Holocene warm interval. Quaternary Research, 2(3), 355-362. DOI: https://doi.org/10.1016/0033-5894(72)90058-0

» https://doi.org/10.1016/0033-5894(72)90058-0

Honjo, S. 1975. Dissolution of suspended coccoliths in the deep-sea water column and sedimentation of coccolith ooze. In: Sliter, W. V., Bé, A. W., & Berger, W. H. (1975). Dissolution of deep-sea carbonates.

Honjo, S. 1976. Coccoliths: Production, transportation and sedimentation. Marine Micropaleontology, 1, 65-79. DOI: https://doi.org/10.1016/0377-8398(76)90005-0

» https://doi.org/10.1016/0377-8398(76)90005-0

Honjo, S., Manganini, S. J. & Cole, J. J. 1982. Sedimentation of biogenic matter in the deep ocean. Deep Sea Research Part A. Oceanographic Research Papers, 29(5), 609-625. DOI: https://doi.org/10.1016/0198-0149(82)90079-6

» https://doi.org/10.1016/0198-0149(82)90079-6

Kullenberg, B. 1953. Absolute chronology of deep-sea sediments and the deposition of clay on the ocean floor. Tellus, 5(3), 302-305. DOI: https://doi.org/10.1111/j.2153-3490.1953.tb01058.x

» https://doi.org/10.1111/j.2153-3490.1953.tb01058.x

Lea, D. W., Martin, P. A., Pak, D. K. & Spero, H. J. 2002. Reconstructing a 350ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a cocos ridge core. Quaternary Science Reviews, 21(1-3), 283-293. DOI: https://doi.org/10.1016/s0277-3791(01)00081-6

» https://doi.org/10.1016/s0277-3791(01)00081-6

Leite, Y. L., Costa, L. P., Loss, A. C., Rocha, R. G., Batalha-Filho, H., Bastos, A. C., Quaresma, V. S., Fagundes, V., Paresque, R., Passamani, M. & Pardini, R. 2016. Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proceedings of the National Academy of Sciences, 113(4), 1008-1013. DOI: https://doi.org/10.1073/pnas.1513062113

» https://doi.org/10.1073/pnas.1513062113

Lessa, D. V., Santos, T. P., Venancio, I. M., Santarosa, A. C., Dos Santos Junior, E. C., Toledo, F. A., Costa, K. B. & Albuquerque, A. L. 2019. Eccentricity-induced expansions of Brazilian coastal upwelling zones. Global and Planetary Change, 179, 33-42. DOI: https://doi.org/10.1016/j.gloplacha.2019.05.002

» https://doi.org/10.1016/j.gloplacha.2019.05.002

Lisiecki, L. E. & Raymo, M. E. 2005. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ¹⁸O records. Paleoceanography, 20(1). DOI: https://doi.org/10.1029/2004pa001071

» https://doi.org/10.1029/2004pa001071

Mathias, G. L., Nagai, R. H., Trindade, R. I. & de Mahiques, M. M. 2014. Magnetic fingerprint of the late Holocene inception of the Rio de La Plata plume onto the southeast Brazilian shelf. Palaeogeography, Palaeoclimatology, Palaeoecology, 415, 183-196. DOI: https://doi.org/10.1016/j.palaeo.2014.03.034

» https://doi.org/10.1016/j.palaeo.2014.03.034

Mathias, G. L., Roud, S. C., Chiessi, C. M., Campos, M. C., Dias, B. B., Santos, T. P., Albuquerque, A. L., Toledo, F. A., Costa, K. B. & Maher, B. A. 2021. A multi‐proxy approach to unravel late Pleistocene sediment flux and bottom water conditions in the western south Atlantic Ocean. Paleoceanography and Paleoclimatology, 36(4). DOI: https://doi.org/10.1029/2020pa004058

» https://doi.org/10.1029/2020pa004058

Millero, F. J. 1996. Chemical oceanography (2nd ed.). London: CRC Press.

Milliman, J. D. 1993. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochemical Cycles, 7(4), 927-957. DOI: https://doi.org/10.1029/93gb02524

» https://doi.org/10.1029/93gb02524

Nagai, R. H., Sousa, S. H., Lourenço, R. A., Bícego, M. C. & Mahiques, M. M. 2010. Paleoproductivity changes during the late Quaternary in the southeastern Brazilian upper continental margin of the southwestern Atlantic. Brazilian Journal of Oceanography, 58(spe1), 31-41. DOI: https://doi.org/10.1590/s1679-87592010000500004

» https://doi.org/10.1590/s1679-87592010000500004

Naik, S. S., Godad, S. P., Naidu, P. D., Tiwari, M. & Paropkari, A. L. 2014. Early- to late-Holocene contrast in productivity, OMZ intensity and calcite dissolution in the eastern Arabian Sea. The Holocene, 24(6), 749-755. DOI: https://doi.org/10.1177/0959683614526936

» https://doi.org/10.1177/0959683614526936

Olausson, E. 1965. Climatological, geoeconomical and paleooceanographical aspects on carbonate deposition. Progress in Oceanography, 4, 245-265. DOI: https://doi.org/10.1016/0079-6611(65)90053-4

» https://doi.org/10.1016/0079-6611(65)90053-4

Olausson, E. 1971, June. 29. QUATERNARY CORRELATIONS AND THE GEOCHEMISTRY OF OOZES. In: The Micropalaeontology of Oceans: Proceedings of the Symposium Held in Cambridge from 10 to 17 September 1967 Under the Title’Micropalaeontology of Marine Bottom Sediments’ (p. 375). Cambridge: Cambridge University Press.

Pedrão, G. A., Costa, K. B., Toledo, F. A., Tomazella, M. O. & Jovane, L. 2021. Semi-quantitative analysis of major elements and minerals: Clues from a late Pleistocene core from campos basin. Applied Sciences, 11(13), 6206. DOI: https://doi.org/10.3390/app11136206

» https://doi.org/10.3390/app11136206

Pedrão, G. A., Hirama, M. V., Tomazella, M. O., Albuquerque, A. L., Chiessi, C. M., Costa, K. B. & Toledo, F. A. 2022. Marine Paleoproductivity from the last glacial maximum to the Holocene in the southwestern Atlantic: A Coccolithophore assemblage and geochemical proxy perspective. Frontiers in Earth Science, 10. DOI: https://doi.org/10.3389/feart.2022.846245

» https://doi.org/10.3389/feart.2022.846245

Pereira, L. S., Arz, H. W., Pätzold, J. & Portilho‐Ramos, R. C. 2018. Productivity evolution in the south Brazilian bight during the last 40,000 years. Paleoceanography and Paleoclimatology, 33(12), 1339-1356. DOI: https://doi.org/10.1029/2018pa003406

» https://doi.org/10.1029/2018pa003406

Peterson, R. G. & Stramma, L. 1991. Upper-level circulation in the south Atlantic Ocean. Progress in Oceanography, 26(1), 1-73. DOI: https://doi.org/10.1016/0079-6611(91)90006-8

» https://doi.org/10.1016/0079-6611(91)90006-8

Petró, S. M. & Burone, L. 2018. Changes in water masses in the late Quaternary recorded at Uruguayan continental slope (South Atlantic Ocean) / Mudanças nas massas de água durante o Quaternário tardio registadas no talude continental Uruguaio (Oceano Atlântico Sul). Journal of Sedimentary Environments, 3(4), 280-289. DOI: https://doi.org/10.12957/jse.2018.39156

» https://doi.org/10.12957/jse.2018.39156

Petró, S. M., Costa, E. O., Pivel, M. A. & Coimbra, J. C. 2018. Lysocline and CCD fluctuations record in pelotas basin during the late Quaternary. Anuário do Instituto de Geociências - UFRJ, 41(2), 710-719. DOI: https://doi.org/10.11137/2018_2_710_719

» https://doi.org/10.11137/2018_2_710_719

Petró, S. M., Pivel, M. A. & Coimbra, J. C. 2021. Evidence of supra-lysoclinal dissolution of pelagic calcium carbonate in the late Quaternary in the western south Atlantic. Marine Micropaleontology, 166, 102013. DOI: https://doi.org/10.1016/j.marmicro.2021.102013

» https://doi.org/10.1016/j.marmicro.2021.102013

Piola, A. R., Campos, E. J., Möller, O. O., Charo, M. & Martinez, C. 2000. Subtropical shelf front off eastern South America. Journal of Geophysical Research: Oceans, 105(C3), 6565-6578. DOI: https://doi.org/10.1029/1999jc000300

» https://doi.org/10.1029/1999jc000300

Pivel, M., Santarosa, A., Toledo, F. & Costa, K. 2013. The Holocene onset in the southwestern south Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 164-172. DOI: https://doi.org/10.1016/j.palaeo.2013.01.014

» https://doi.org/10.1016/j.palaeo.2013.01.014

Pogge Von Strandmann, P. A., Forshaw, J. & Schmidt, D. N. 2014. Modern and Cenozoic records of seawater magnesium from foraminiferal mg isotopes. Biogeosciences, 11(18), 5155-5168. DOI: https://doi.org/10.5194/bg-11-5155-2014

» https://doi.org/10.5194/bg-11-5155-2014

Portilho-Ramos, R. D., Pinho, T. M., Chiessi, C. M. & Barbosa, C. F. 2019. Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin. Climate of the Past, 15(3), 943-955. DOI: https://doi.org/10.5194/cp-15-943-2019

» https://doi.org/10.5194/cp-15-943-2019

Rahmstorf, S. 2002. Ocean circulation and climate during the past 120,000 years. Nature, 419(6903), 207-214. DOI: https://doi.org/10.1038/nature01090

» https://doi.org/10.1038/nature01090

Ramaswamy, V. & Gaye, B. 2006. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 53(2), 271-293. DOI: https://doi.org/10.1016/j.dsr.2005.11.003

» https://doi.org/10.1016/j.dsr.2005.11.003

Rühlemann, C., Müller, P. J. & Schneider, R. R. 1999. Organic carbon and carbonate as Paleoproductivity proxies: Examples from high and low productivity areas of the tropical Atlantic. Use of Proxies in Paleoceanography, 315-344. DOI: https://doi.org/10.1007/978-3-642-58646-0_12

» https://doi.org/10.1007/978-3-642-58646-0_12

Santos, T. P., Lessa, D. O., Venancio, I. M., Chiessi, C. M., Mulitza, S., Kuhnert, H., Govin, A., Machado, T., Costa, K. B., Toledo, F., Dias, B. B. & Albuquerque, A. L. 2017. Prolonged warming of the Brazil current precedes deglaciations. Earth and Planetary Science Letters, 463, 1-12. DOI: https://doi.org/10.1016/j.epsl.2017.01.014

» https://doi.org/10.1016/j.epsl.2017.01.014

Santos, T. P., Ballalai, J. M., Franco, D. R., Oliveira, R. R., Lessa, D. O., Venancio, I. M., Chiessi, C. M., Kuhnert, H., Johnstone, H. & Albuquerque, A. L. 2020. Asymmetric response of the subtropical western south Atlantic thermocline to the dansgaard-oeschger events of marine isotope stages 5 and 3. Quaternary Science Reviews, 237, 106307. DOI: https://doi.org/10.1016/j.quascirev.2020.106307

» https://doi.org/10.1016/j.quascirev.2020.106307

Schiebel, R. 2002. Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochemical Cycles, 16(4). DOI: https://doi.org/10.1029/2001gb001459

» https://doi.org/10.1029/2001gb001459

Schmiedl, G. & Mackensen, A. 1997. Late Quaternary paleoproductivity and deep water circulation in the eastern south Atlantic Ocean: Evidence from benthic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1-4), 43-80. DOI: https://doi.org/10.1016/s0031-0182(96)00137-x

» https://doi.org/10.1016/s0031-0182(96)00137-x

Schott, W. 1935. Die Sedimente des äquatorialen Atlantischen Ozeans. I. Lieferung B. Die Foraminiferen in dem äquatorialen Teil des Atlantischen Ozeans. Deutsche-Atlantische Expedition, 11(6), 43-134.

Shackleton, N. J., Hall, M. A., Line, J. & Shuxi, C. 1983. Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature, 306(5941), 319-322. DOI: https://doi.org/10.1038/306319a0

» https://doi.org/10.1038/306319a0

Silveira, I. C., Schmidt, A. C., Campos, E. J., Godoi, S. S. & Ikeda, Y. 2000. A Corrente do Brasil AO Largo Da costa leste brasileira. Revista Brasileira de Oceanografia, 48(2), 171-183. DOI: https://doi.org/10.1590/s1413-77392000000200008

» https://doi.org/10.1590/s1413-77392000000200008

Stein, R. 1991. Accumulation of organic carbon in marine sediments: Results from the Deep Sea Drilling Project/Ocean drilling program (DSDP/ODP). Berlin: Springer.

Suárez-Ibarra, J. Y., Frozza, C. F., Palhano, P. L., Petró, S. M., Weinkauf, M. F. & Pivel, M. A. 2022. Calcium carbonate dissolution triggered by high productivity during the last glacial–interglacial interval in the deep western south Atlantic. Frontiers in Earth Science, 10. DOI: https://doi.org/10.3389/feart.2022.830984

» https://doi.org/10.3389/feart.2022.830984

Thompson, P. R. & Saito, T. 1974. Pacific Pleistocene sediments: Planktonic foraminifera dissolution cycles and geochronology. Geology, 2(7), 333. DOI: https://doi.org/10.1130/0091-7613(1974)2%3C333:ppspfd%3E2.0.co;2

» https://doi.org/10.1130/0091-7613(1974)2

Thunell, R. C. 1976. Calcium carbonate dissolution history in late Quaternary deep-sea sediments, western Gulf of Mexico. Quaternary Research, 6(2), 281-297. DOI: https://doi.org/10.1016/0033-5894(76)90055-7

» https://doi.org/10.1016/0033-5894(76)90055-7

Toledo, F. A., Costa, K. B. & Pivel, M. A. 2007. Salinity changes in the western tropical south Atlantic during the last 30 kyr. Global and Planetary Change, 57(3-4), 383-395. DOI: https://doi.org/10.1016/j.gloplacha.2007.01.001

» https://doi.org/10.1016/j.gloplacha.2007.01.001

Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B. & Wolff, E. W. (2013). The Antarctic ice core chronology (AICC2012): An optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate of the Past, 9(4), 1733-1748. DOI: https://doi.org/10.5194/cp-9-1733-2013

» https://doi.org/10.5194/cp-9-1733-2013

Volat, J., Pastouret, L. & Vergnaud-Grazzini, C. 1980. Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: A review. Marine Geology, 34(1-2), 1-28. DOI: https://doi.org/10.1016/ 0025-3227(80)90138-3

» https://doi.org/10.1016/0025-3227(80)90138-3

Volk, T. & Hoffert, M. I. 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO₂ changes. The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Present, 99-110. DOI: https://doi.org/10.1029/gm032p0099

» https://doi.org/10.1029/gm032p0099

Westbroek, P., Brown, C. W., Bleijswijk, J. V., Brownlee, C., Brummer, G. J., Conte, M., Egge, J., Fernández, E., Jordan, R., Knappertsbusch, M., Stefels, J., Veldhuis, M., Van Der Wal, P. & Young, J. 1993. A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global and Planetary Change, 8(1-2), 27-46. DOI: https://doi.org/10.1016/0921-8181(93)90061-r

» https://doi.org/10.1016/0921-8181(93)90061-r

Zamelczyk, K., Rasmussen, T. L., Husum, K., Haflidason, H., De Vernal, A., Ravna, E. K., Hald, M. & Hillaire-Marcel, C. 2012. Paleoceanographic changes and calcium carbonate dissolution in the central Fram strait during the last 20 Ka. Quaternary Research, 78(3), 405-416. DOI: https://doi.org/10.1016/j.yqres.2012.07.006

» https://doi.org/10.1016/j.yqres.2012.07.006

Ziveri, P., Broerse, A. T., Van Hinte, J. E., Westbroek, P. & Honjo, S. 2000. The fate of coccoliths at 48°N 21°W, northeastern Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 47(9-11), 1853-1875. DOI: https://doi.org/10.1016/s0967-0645(00)00009-6

» https://doi.org/10.1016/s0967-0645(00)00009-6

Downloads

Published

2024-04-10

How to Cite

Biogenic composition of calcium carbonate over the past 140,000 years: clues from a marine core in the Santos Basin. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/