Water temperature modulation to prevent the South American rock mussel (Perna perna) from spawning during depuration

Authors

  • Felipe Matarazzo Suplicy
  • Robson V. de Souza
  • Giustino Tribuzi

DOI:

https://doi.org/10.1590/

Keywords:

Condition index, Meat yield, Mollusks, Purification

Abstract

Sewage pollution is an increasing problem for Perna perna mussel farmers in Brazil, and there is an urgent
need to adopt post-harvest treatments, such as depuration, to reduce the associated microbiological risks.
However, depuration of this species has been discouraged by experiences showing that the animals usually
spawn during this procedure, bringing difficulties for water treatment and making them lighter, weakened, and
undesirable to be traded as a live product. This study aimed at developing a protocol to prevent mussels from
spawning by modulating the water temperature during depuration. For one year (from 2021-07-07 to 2022-
06-29), market-size mussels harvested from the Brazilian southern coast were divided into groups of five and
immersed during 50 hours in sets of experimental units (15 L acrylic aquariums) that emulated depuration
tanks with different water temperatures (ranging from 8°C to 31°C). During this period, the experimental units
were inspected nine times to check for spawning/spawned mussels. Analysis of the overall results showed
that 21 (95.5%) out of the 22 assays resulted in mussels spawning and that this behavior was mostly recorded
(80.3%) within the first 5:30 hours of the assays. The models developed (binary logistic regression) indicate
that conditioning the depuration water to temperatures 5°C lower than those registered at the harvest site holds
the potential to reduce the chances of spawning by more than 50%, and these chances drop to 8.2% when this
difference reaches 10°C. Further studies are needed to show how reducing water temperature during depuration
influences its efficiency in terms of pathogen reduction, aiming to define the best protocol to optimize microbial
removal and minimize spawning. 

References

Butt, A. A., Aldridge, K. E. & Sanders, C. V. 2004. Infections

related to the ingestion of seafood Part I: Viral and

bacterial infections. The Lancet. Infectious Diseases,

, 201-212. DOI: https://doi.org/10.1016/S1473-

(04)00969-7.

CIDASC. (Defesa Sanitária Animal). 2022, 4 April.

Resultados das Análises Microbiológicas em Moluscos

Bivalves Mapa de Situação Microbiológica. Available

at: http://www.cidasc.sc.gov.br/defesasanitariaanimal/

resultado-de-analise-microbiologica/. Access date:

April 2022.

De Bravo, M. I. S., Chung, K. S. & Pérez, J. E. 1998.

Salinity and temperature tolerances of the green and

brown mussels, Perna viridis and Perna perna (Bivalvia:

Mytilidae). Revista de Biologia Tropical, 46, 121-125.

De Souza, R. V., Rupp, G. S., De Campos, C. J. A. &

Lee, R. 2014. Moluscos bivalves: medidas de controle

microbiológico para atender às exigências da União

Europeia. Florianópolis, Epagri.

De Souza, R. V., De Campos, C. J. A., Garbossa, L.

H. P., Vianna, L. F. De N., Vanz, A., Rupp, G. S. &

Seiffert, W. 2018. A critical analysis of the international

legal framework regulating the microbiological

classification of bivalve shellfish production areas.

Reviews in Aquaculture, 10, 1025-1033. DOI: https://

doi.org/10.1111/raq.12222.

De Souza, R. V., Moresco, V., Miotto, M., Souza, D. S. M. &

De Campos, C. J. A. 2022a. Prevalence, distribution

and environmental effects on faecal indicator bacteria

and pathogens of concern in commercial shellfish

production areas in a subtropical region of a developing

country (Santa Catarina, Brazil). Environmental

Monitoring and Assessment, 194, 286. DOI: https://doi.

org/10.1007/s10661-022-09950-5.

De Souza, R. V., Moresco, V., Miotto, M.,

Souza, D. S. M., Campos, C. & Suplicy, F. M. 2022b.

Depuração e tratamento térmico para redução dos níveis

de patógenos em moluscos bivalves produzidos em

Santa Catarina, Brasil. Agropecuária Catarinense, 35,

-82. DOI: https://doi.org/10.52945/rac.v35i2.1351

FAO (Food and Agriculture Organization of United Nations)

& WHO (World Health Organization). 2018. Technical

guidance for the development of the growing area

aspects of bivalve mollusc sanitation programmes.

Rome, FAO: WHO.

Guimarães Filho, C. E. F., Calixto, F. A. A., Kasnowski, M. C. &

Mesquita, E. F. M. 2022. Analysis of microbiological

contaminants in mussel Perna perna (Linnaeus, 1758),

before and after depuration, from mariculture of the

lowland coast, Rio de Janeiro, Brazil. Food Science and

Technology, 42. DOI: https://doi.org/10.1590/fst.64121.

Lees, D., Younger, A. & Doré, B. Depuration and relaying.

In: Rees, G., Pond, K., Kay, D., Bartram, J. & Santo

Domingo, J. (eds.). Safe Management of Shellfish and

Harvest Waters. Geneva: World Health Organization;

London: IWA Publishing.

Lee, R., Lovatelli, A. & Ababouch, L. 2008. Bivalve

depuration: fundamental and practice aspects (FAO

Fisheries Technical Paper, No. 511). Rome, FAO.

Lees, D. 2000. Viruses and bivalve shellfish. International

Journal of Food Microbiology, 59, 81-116. DOI: https://

doi.org/10.1016/S0168-1605(00)00248-8.

Luneta, J. E. 1969. Fisiologia da reprodução de mexilhões

Mytilus perna L. (Mollusca: Lamellibranchia). Boletim

da Faculdade de Filosofia, Ciências e Letras da

Universidade de São Paulo. Zoologia e Biologia

Marinha, 26, 33-111.

Power, U. F. & Collins, J. K. 1989. Differential depuration

of Poliovirus, Escherichia coli, and a coliphage by

the common mussel, Mytilus edulis. Applied and

Environmental Microbiology, 55, 1386-1390.

Rees, G., Pond, K., Kay, D., Bartram, J. & Domingo, J. S.

(eds.). 2010. Safe Management of Shellfish and Harvest

Waters. London, World Health Organization.

Reddy, N. A. & Menon, N. R. 1979. Effects of ammonia and

ammonium on tolerance and byssogenesis in Perna

viridis. Marine Ecology Progress Series, 1, 315-321.

Richards, G. P. 1988. Microbial purification of shellfish:

A review of depuration and relaying. Journal of Food

Protection, 51, 218-251.

Seed, R. & Suchanek, T. 1992. Population and community

ecology of Mytilus. In: Gosling, E. (ed.) The Mussel

Mytilus: Ecology, Physiology, Genetics and Culture.

San Diego: Elsevier.

Silvestri, F., Cordeiro, G. B. & Costa, P. M. S. 2018.

Parâmetros reprodutivos do mexilhão Perna perna

(L. 1758) em fazendas marinhas na Ilha Grande (RJ).

Acta of Fisheries and Aquatic Resources, 6, 43-49.

Suplicy, F. M. 1999. Depuração do mexilhão Perna perna

(L. 1758). In: Oceanos: Fonte de Alimentos. Prêmio

Jovem Cientista 1997. Brasília, DF: CNPq, Fundação

Roberto Marinho, Grupo Gerdau.

Suplicy, F. M. (Org.). 2019. Plano Estratégico para

o Desenvolvimento Sustentável da Maricultura

Catarinense (2018-2028). Florianópolis, Epagri.

UK Food Standards Agency, 2016. Guidance for Local

Authority Authorized Officers on the Inspection of

Purification Systems for Live Bivalve Mollusks in

England Wales and Northern Ireland. London: UK Food

Standard Agency.

Zardi, G. I., Mcquaid, C. D., Teske, P. R. & Barker, N. P. 2007.

Unexpected genetic structure of mussel populations

in South Africa: Indigenous Perna perna and invasive

Mytilus galloprovincialis. Marine Ecology Progress

Series, 337, 135-144. DOI: https://doi.org/10.3354/

meps337135.

Zippay, M. L. & Helmuth, B. 2012. Effects of temperature change

on mussel, Mytilus. Integrative Zoology, 7, 312-327.

DOI: https://doi.org/10.1111/j.1749K4877.2012.00310.x

Downloads

Published

2024-05-08

How to Cite

Water temperature modulation to prevent the South American rock mussel (Perna perna) from spawning during depuration. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/