Erosion vulnerability and risk on Amazon estuarine beaches (Marajó Island, Brazil)
DOI:
https://doi.org/10.1590/2675-2824073.24020Keywords:
Coastal erosion, Geoprocessing, Amazon coast, Marine spatial planning, Ocean decadeAbstract
As the coastal zone is dynamic and subject to change from both natural and anthropogenic drivers, coastal vulnerability assessment is an essential tool for marine spatial planning, adaptation and mitigation of impacts. The eastern coastal environments of Marajó Island, the largest river-estuarine island in the world, are partially anthropized and vulnerable to erosion due to global (changes in sea level) and local (high-energy conditions on a tide-dominated coast) processes. It hosts diverse traditional communities which rely on the ecosystem services provided by the coast, as well as growing touristic activity and urbanization on the east coast. Here, vulnerability to erosion (Low: 0 to 5; Moderate: 6 to 10; High: 11 to 16) and risk level was assessed on two distinct estuarine beaches on the eastern coast of Marajó Island: Praia Grande and Barra Velha. A semi-quantitative analysis considered human occupation and natural parameters using remote sensing and in situ data collection techniques. Results indicated that Barra Velha beach has moderate vulnerability to erosion (value 10) in the northwestern sector and high vulnerability (value 11) in the southeastern sector, due to high erosion rates. These results were more evident by a shoreline analysis over a 16-year period (2003 to 2019: ~10 m/year). Praia Grande has moderate vulnerability to erosion (value 9) and is a more stable beach. Coastal risk to property and infrastructure was low at Praia Grande and at the southeastern sector of Barra Velha, where urbanization is incipient (15% to 17%; and absent, respectively). Moderate coastal risk was detected for the northwestern sector of Barra Velha where coastal development takes the form of controlled occupation (7% occupancy) due to its location in an environmental conservation area.
Downloads
References
Abuodha, P. A. & Woodroffe, C. D. 2006. Assessing vulnerability of coasts to climate change: A review of approaches and their application to the Australian coast. UOW Library, 1–18. Accessed: https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1189&context=scipapers
Alexandrakis, G. & Poulos, S. Ε. 2014. An holistic approach to beach erosion vulnerability assessment. Scientific Reports, 4(1), 6078. DOI: https://doi.org/10.1038/srep06078
ANP. 2020. Agência Nacional do Petróleo, Gás Natural e Biocombustível. (http://www.anp.gov.br). Accessed on 30 Apr 2020.
Andrade, T. S., Sousa, P. H. G. de O. & Siegle, E. 2019. Vulnerability to beach erosion based on a coastal processes approach. Applied Geography, 102, 12–19. DOI: https://doi.org/10.1016/j.apgeog.2018.11.003
Baltazar, L. R. S., Menezes, M. O. B. & Rollnic, M. 2011. Contributions to the understanding of physical oceanographic processes of the Marajó Bay - PA, north Brazil. Journal of Coastal Research, 1443–1447. Accessed: http://repositorio.ufc.br/handle/riufc/66866
Barbosa, G. V., Rennó, C. V. & Franco, E. M. S. 1974. Departamento nacional da produção mineral. Projeto RADAMBRASIL. Folha SA. 22-Belém; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. In: Geomorfologia (pp. 1–36). Rio de Janeiro: DNPM.
Bosom, E. & Jiménez, J. A. 2011. Probabilistic coastal vulnerability assessment to storms at regional scale – application to Catalan beaches (NW Mediterranean). Natural Hazards and Earth System Sciences, 11(2), 475–484. DOI: https://doi.org/10.5194/nhess-11-475-2011
Brasil. 2004. Decreto no 5.300 de 7 de dezembro de 2004.
Cutter, S. L. 2011. A ciência da vulnerabilidade: modelos, métodos e indicadores. Revista Crítica de Ciências Sociais, (93), 59–69. DOI: https://doi.org/10.4000/rccs.165
Dolliver, H. A. S. 2012. Using google earth to teach geomorphology. In: Google earth and virtual visualizations in geoscience education and research. Geological Society of America. DOI: https://doi.org/10.1130/2012.2492(32)
Elliott, M., Cutts, N. D. & Trono, A. 2014. A typology of marine and estuarine hazards and risks as vectors of change: A review for vulnerable coasts and their management. Ocean & Coastal Management, 93, 88–99. DOI: https://doi.org/10.1016/j.ocecoaman.2014.03.014
El-Robrini, M., Ranieri, L. A., Silva, P. V. M., Alves, M. A. M. S., Guerreiro, J. S., Oliveira, R. R. S., Silva, M. S. F., Amora, P. B. C., El-Robrini, M. H. S. & Fenzl, N. 2018. Panorama da erosão costeira no Brasil. In: Panorama da erosão costeira no Brasil (pp. 65–166). Brasília: Ministério do Meio Ambiente.
Ferreira, G. P. 2013. Caracterização hidrodinâmica e do transporte de sedimentos na região fluvio-estuarina do rio Paracauari, Ilha de Marajó, Pará (Master’s dissertation). Federal University of Pernambuco, Recife, 1–104 pp. Retrieved from https://repositorio. ufpe.br/handle/123456789/10624
França, C. F. & E Souza Filho, P. W. M. 2006. Compartimentação morfológica da margem leste da Ilha de Marajó: Zona costeira dos municípios de Soure e Salvaterra – Estado do Pará. Revista Brasileira de Geomorfologia, 7(1). DOI: https://doi.org/10.20502/rbg.v7i1.58
França, C. F. de & Souza Filho, P. W. M. 2003. Análise das mudanças morfológicas costeiras de médio período na margem leste da Ilha de Marajó (PA) em imagem Landsat. Revista Brasileira de Geociências, 33(2), 127–136. DOI: https://doi.org/10.25249/0375-7536.200333S2127136
França, C. F. de, Souza Filho, P. W. M. e & El-Robrini, M. 2007. Análise faciológica e estratigráfica da planície costeira de Soure (margem leste da ilha de Marajó-PA), no trecho compreendido entre o canal do Cajuúna e o estuário Paracauari. Acta Amazonica, 37(2), 261–268. DOI: https://doi.org/10.1590/S0044-59672007000200013
França, M. C., Francisquini, M. I., Cohen, M. C. L., Pessenda, L. C. R., Rossetti, D. F., Guimarães, J. T. F. & Smith, C. B. 2012. The last mangroves of Marajó Island — Eastern Amazon: Impact of climate and/or relative sea-level changes. Review of Palaeobotany and Palynology, 187, 50–65. DOI: https://doi.org/10.1016/j.revpalbo.2012.08.007
Gomes, C. P. 2012. Interação de Ucides cordatus Linnaeus, 1763 em manguezais da Ilha de Marajó: Coastal vulnerability and beach morphodynamics Ocean and Coastal Research 2025, v73:e25005 19 Sousa et al. uma abordagem ecológica. Thesis, Graduate Program in Zoology (Doctoral). Federal University of Pará, Belém, 1–144 pp. Retrieved from https://repositorio.ufpa.br/jspui/handle/2011/7400
Gornitz, V. M., Daniels, R. C., White, T. W. & Birdwell, K. R., 1994. The development of a coastal risk assessment database: Vulnerability to sea-level rise in the U.S. southeast. Journal of Coastal Research, (12), 327–338.
Gouldby, B., Samuels, P., Klijn, F., Messner, F., Sayers, P., Schanze, J. & Wallingford, H. R. 2009. Title language of risk - Project definitions. Accessed: https://www.researchgate.net/publication/242717023_Title_Language_of_Risk_-_Project_definitions
Hoang, V., Thanh, T., Viet, N. & Tanaka, H. 2015. Shoreline change at the Da Rang River Mouth, Vietnam. ICMBio. Plano de manejo da reserva extrativista marinha de Soure (2018). Accessed: https://www.gov.br/icmbio/ptbr/assuntos/biodiversidade/unidade-de-conservacao/unidades-de-biomas/marinho/lista-de-ucs/resexmarinha-de-soure
INPE. Instituto nacional de pesquisas espaciais. Aquecimento global pode reduzir Ilha de Marajó (2016). Accessed: http://www.inpe.br/noticias/noticia.php?%20Cod_Noticia=607#:~:text=Com%202%20metros%20de%20eleva%C3%A7%C3%A3o,da%20ilha%20pode%20ser%20inundada
IOC. United nations decade of ocean science for sustainable development (2023). Accessed: https://www.oceandecade.org
Iwama, A. Y., Batistella, M., Ferreira, Lúcia da Costa, Alves, D. S. & Ferreira, Leila da Costa. 2016. Risk, vulnerability and adaptation to climate change:An interdisciplinary approach. Ambiente & Sociedade, 19(2), 93–116. DOI: https://doi.org/10.1590/1809-4422ASOC137409V1922016
Kuleli, T. 2010. Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environmental Monitoring and Assessment, 167(1), 387–397. DOI: https://doi.org/10.1007/s10661-009-1057-8
Lima, A. M. M. de, Oliveira, L. L. de, Fontinhas, R. L. & Lima, R. J. da S. 2005. Ilha do Marajó: Revisão histórica, hidroclimatologia, bacias hidrográficas e propostas de gestão. Holos Environment, 5(1), 65. DOI: https://doi.org/10.14295/holos.v5i1.331
Lins-de-Barros, F. M. & Milanés, C. B. 2020. Os limites espaciais da zona costeira para fins de gestão a partir de uma perspectiva integrada. In: Gestão ambiental e sustentabilidade em áreas costeiras e marinhas: conceitos e práticas (pp. 22–50). Rio de Janeiro: Instituto Virtual para o Desenvolvimento Sustentável. Accessed: https://www.researchgate.net/publication/342747749_Os_limites_espaciais_da_zona_costeira_para_fins_de_gestao_a_partir_de_uma_perspectiva_integrada
Lins-de-Barros, F. M., Klumb-Oliveira L.A. & Lima R.F. 2018. Avaliação histórica da ocorrência de ressacas marinhas e danos associados entre os anos de 1979 e 2013 no litoral do estado do Rio de Janeiro (Brasil). Revista de Gestão Costeira Integrada, 18, 85-102. DOI: https://doi.org/10.5894/rgci-n146
Lisbôa, T. de F. P. 2011. Vulnerabilidade ambiental da orla costeira do município de Salvaterra, Ilha de Marajó-PA, no trecho compreendido entre a foz do rio Paracauari e a ponta do Tapariuaçu. Revista Brasileira de Geografia Física, 4(1), 74. DOI: https://doi.org/10.26848/rbgf. v4i1.232663
Lloyd, M. G., Peel, D. & Duck, R. W. 2013. Towards a social–ecological resilience framework for coastal planning. Land Use Policy, 30(1), 925–933. DOI: https://doi.org/10.1016/j.landusepol.2012.06.012
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G. & Aarninkhof, S. 2018. The state of the world’s beaches. Scientific Reports, 8(1), 6641. DOI: https://doi.org/10.1038/s41598-018-24630-6
Martins, K. A., de Souza Pereira, P., Silva-Casarín, R. & Neto, A. V. N. 2017. The influence of climate change on coastal erosion vulnerability in northeast Brazil. Coastal Engineering Journal, 59(2), 1740007-1-1740007–25. DOI: https://doi.org/10.1142/S0578563417400071
Menezes, M. O. B., Freitas, P. P., Baltazar, L. R. S., Rollnic, M. & Pinheiro, L. 2013. Estuarine processes in macro-tides of Amazon estuaries: A Study of Hydrodynamics and Hydrometeorology in the Marajó Bay (Pará-Brazil). Journal of Coastal Research, 165, 1176–1181. DOI: https://doi.org/10.2112/SI65-199.1
Mota, L. S. O. & Souza, R. M. 2017. Vulnerabilidade à erosão costeira e riscos associados à ocupação: estudo de caso do município de Aracaju/Sergipe, Brasil. Territorium, (25 (I)), 89–102. DOI: https://doi.org/10.14195/1647-7723_25-1_7
Muehe, D. 2001. Critérios morfodinâmicos para o estabelecimento de limites da orla costeira para fins de gerenciamento. Revista Brasileira de Geomorfologia, 2(1). DOI: https://doi.org/10.20502/rbg.v2i1.6 Muehe, D. 2006. Erosion in the Brazilian coastal zone: An overview. Journal of Coastal Research, 43–48. Accessed: https://www.researchgate.net/publication/295766358_Erosion_in_the_Brazilian_coastal_zone_An_overview?enrichId=rgreq-366299e93a2e3a86ebf87717234a874e-XXX&enrichSource=Y292ZXJQYWdlOzI5NTc2NjM1ODtBUzo5MzY0MDc0MDUxNjY1OTVAMTYwMDI2ODMzMTY3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
Nascimento, D. M. C. & Dominguez, J. M. L. 2009. Avaliação da vulnerabilidade ambiental como instrumento de gestão costeira nos municípios de Belmonte e Canavieiras, Bahia. Revista Brasileira de Geociências, 39(3), 395–408. DOI: https://doi.org/10.25249/0375-7536.2009394395408
Nguyen, T. T. X., Bonetti, J., Rogers, K. & Woodroffe, C. D. 2016. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean & Coastal Management, 123, 18–43. DOI: https://doi.org/10.1016/j.ocecoaman.2015.11.022
Oliveira, D. M. & Frédou, F. L. 2011. Caracterização e dinâmica espaço-temporal da atividade pesqueira na baía de Marajó – Estuário Amazônico. Accessed: https://api.semanticscholar.org/CorpusID:134617225
Parthasarathy, A. & Natesan, U. 2015. Coastal vulnerability assessment: a case study on erosion and coastal change along Tuticorin, Gulf of Mannar. Natural Hazards, Coastal vulnerability and beach morphodynamics Ocean and Coastal Research 2025, v73:e25005 20 Sousa et al. 75(2), 1713–1729. DOI: https://doi.org/10.1007/s11069- 014-1394-y
Pearlman, J., Buttigieg, P. L., Bushnell, M., Delgado, C., Hermes, J., Heslop, E., Hörstmann, C., Isensee, K., Karstensen, J., Lambert, A., Lara-Lopez, A., Muller-Karger, F., Munoz Mas, C., Pearlman, F., Pissierssens, P., Przeslawski, R., Simpson, P., van Stavel, J. & Venkatesan, R. 2021. Evolving and sustaining ocean best practices to enable interoperability in the UN decade of ocean science for sustainable development. Frontiers in Marine Science, 8. DOI: https://doi.org/10.3389/fmars.2021.619685
Pendleton, E. A., Barras, J. A., Williams, S. J. & Twichell, D. C. 2010. Coastal vulnerability assessment of the Northern Gulf of Mexico to sea-level rise and coastal change. https://doi.org/https://doi.org/10.3133/ofr20101146
Perini, L., Calabrese, L., Salerno, G., Ciavola, P. & Armaroli, C. 2016. Evaluation of coastal vulnerability to flooding: comparison of two different methodologies adopted by the Emilia-Romagna region (Italy). Natural Hazards and Earth System Sciences, 16(1), 181–194. DOI: https://doi.org/10.5194/nhess-16-181-2016
Prestes, Y. O., Silva, A. C., Rollnic, M. & Rosário, R. P. 2017. The M2 And M4 tides in the Pará river estuary. Tropical Oceanography, 45(1). DOI: https://doi.org/10.5914/tropocean.v45i1.15198
Ranieri, L. A., Rosário, R. P., Tritinger, A. S. & El-Robrini, M. 2022. Coastal dynamics on equatorial beaches of amazonian coast during extreme tide events. Pesquisas Em Geociências, 49(1), e116073. DOI: https://doi.org/10.22456/1807-9806.116073
Santos, V. F. dos, Short, A. D. & Mendes, A. C. 2016. Beaches of the Amazon Coast: Amapá and West Pará (pp. 67–93). DOI: https://doi.org/10.1007/978-3-319-30394-9_3
Schmidt, J. O., Bograd, S. J., Arrizabalaga, H., Azevedo, J. L., Barbeaux, S. J., Barth, J. A., Boyer, T., Brodie, S., Cárdenas, J. J., Cross, S., Druon, J.-N., Fransson, A., Hartog, J., Hazen, E. L., Hobday, A., Jacox, M., Karstensen, J., Kupschus, S., Lopez, J., Madureira, L. A. S.-P., Martinelli Filho, J. E., Miloslavich, P., Santos, C. P., Scales, K., Speich, S., Sullivan, M. B., Szoboszlai, A., Tommasi, D., Wallace, D., Zador, S. & Zawislak, P. A. 2019. Future ocean observations to connect climate, fisheries and marine ecosystems. Frontiers in Marine Science, 6. DOI: https://doi.org/10.3389/fmars.2019.00550
Silva, L. M. da, Gonçalves, R. M., Lira, M. M. da S. & Pereira, P. de S. 2013. Modelagem fuzzy aplicada na detecção da vulnerabildade à erosão costeira. Boletim de Ciências Geodésicas, 19(4), 746–764. DOI: https://doi.org/10.1590/S1982-217020130004000014
Souza Filho, P. W. M. 2005. Costa de manguezais de macromaré da Amazônia: cenários morfológicos, mapeamento e quantificação de áreas usando dadosde sensores remotos. Revista Brasileira de Geofísica, 23(4), 427–435. DOI: https://doi.org/10.1590/S0102-261X2005000400006
Szlafsztein, C. F. 2009. Indefinições e obstáculos no gerenciamento da zona costeira do estado do Pará, Brasil. Revista de Gestão Costeira Integrada, 9(2), 47–58. DOI: https://doi.org/10.5894/rgci114Szlafsztein, C. & Sterr, H. 2007. A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil. Journal of Coastal Conservation, 11(1), 53–66. DOI: https://doi.org/10.1007/s11852-007-0003-6
Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L. & Ergul, A. 2017. Digital shoreline analysis system (DSAS) version 4.0: An arcGIS extension for calculating shoreline change. https://www.usgs.gov/centers/whcmsc/science/digital-shoreline-analysis-system-dsas. Accessed: 4 December 2023.
Traini, C., Schrottke, K., Stattegger, K., Dominguez, J. L., Guimarães, J. K., Vital, H., Beserra, D. & da Silva, A. A. 2012. Morphology of subaqueous dunes at the mouth of the dammed river São Francisco (Brazil). Journal of Coastal Research, 285, 1580–1590. DOI: https://doi.org/10.2112/JCOASTRES-D-10-00195.1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maria Bárbara Pereira de Sousa, Lohan Barbosa Baía, José Eduardo Martinelli Filho, Andrew Cooper, Leilanhe Almeida Ranieri

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
