A new species of *Habeas* (Eupulmonata, Urocoptidae) from Canarana region, Bahia, Brazil

Luiz Ricardo L. Simone¹

¹ Universidade de São Paulo (USP), Museu de Zoologia (MZUSP). São Paulo, SP, Brasil.
ORCID: https://orcid.org/0000-0002-1397-9823. E-mail: lrsimone@usp.br

Abstract. A new species of the recently described genus *Habeas* is described. The genus is the single urocoptid representant in Brazil. The new species is named as *Habeas centroris*, occurring in Paz de Salobro, Canarana, Bahia, Brazil. It is mainly characterized by its dense, delicate sculpture, peristome slightly centrally positioned. Its anatomy is similar to what is currently known, differing mainly by small pallial gland, short stomach, presence of anterior duct to digestive gland, vas deferens very posteriorly originated, prostate lying further the vas deferens origin, and visceral ganglia connected directly to pleural ganglia.

The new species is another example of how weak the knowledge on the land mollusks in central Brazilian semi-dry region is, a biome that deserves protection. https://zoobank.org/0DD6D7B5-60C4-42F4-BA72-A4A229D8C92E.

Keywords. Gastropoda; Caves; Anatomy; Morphology; Taxonomy.

INTRODUCTION

The urocoptid genus *Habeas* Simone, 2013 was originally described encompassing three species: *Habeas corpus* Simone, 2013, the type species, occurring in Serra do Ramalho, Bahia; *H. data* Simone, 2013, from another cave of Serra do Ramalho; and *H. priscus* Simone, 2013, from Central, Bahia. Nine years later, Simone (2022) introduced another four species: *Habeas lekolus* Simone, 2022, from Cônego Marinho, Minas Gerais; *H. peruassus* Simone, 2022, from Januária, Minas Gerais; *H. lapensis* Simone, 2022, from Bom Jesus da Lapa, Bahia, and *H. claudus* Simone, 2022, from Cocos, Bahia. In that last paper, the first anatomical features were possible to be described, confirming its taxonomical status as the unique known Urocoptidae branch occurring in Brazil (Simone, 2006). The urocoptids are quite common in the Caribbean, Central America, and only occur in the north-Caribbean littoral of South America (Weerd, 2008; Kabat et al., 2012; Weerd et al., 2016).

Habeas so far only occurs in central Brazilian territory, between Bahia and Minas Gerais states, usually in calcareous and cavernicolous environments (Simone, 2013, 2022). Its species has so far proven to be highly endemic from restrict areas, presenting significative and convincing conchological differences amongst the species, such as size, shape, sculpture, peristome positions, etc.

Further information on urocoptid history, anatomical attributes, phylogeny, references, etc. are provided elsewhere (Simone, 2022).

Samples of the four species described by Simone (2022) were collected by a collector team of the naturalist José Coltro -Jr., who is exploring calcareous regions from central Brazilian area up to its northeast region. They are founding lots of new taxa, from new species to new genera, as well as expanding the known occurrence of several species. Taxonomic papers on those are being produced. The present paper is concerned to the eighth species of *Habeas*, this time collected in the Canarana region, Bahia, Brazil, collected recently.

The present sample has specimens collected alive, allowing anatomical investigation and further comparison with *Habeas lekolus*, so far the only species of the genus also described anatomically. As the anatomical characters of the new species are relatively similar to *H. lekolus*, the focus on the present paper is the anatomical comparison between these two species. Wider comparative scenario is already found in Simone (2022), which is perfectly applicable herein.

MATERIAL AND METHODS

The sample was donated already preserved in 70% ethanol, with no previous narcotization method. The sample was mainly deposited in Museu de Zoologia da Universidade de São Paulo (MZSP).

Pap. Avulsos Zool., 2022; v.62: e202262060

http://www.revistas.usp.br/paz

Edited by: Marcelo Veronesi Fukuda

Received: 18/10/2021
Accepted: 18/10/2022
Published: 01/11/2022

ISSN On-Line: 1807-0205

ISSN Printed: 0031-1049

ISNI: 0000-0004-0384-1825

http://zoobank.org/0DD6D7B5-60C4-42F4-BA72-A4A229D8C92E
collection, such list is in the formal description below. The anatomically studied specimens had their shells broken for specimens’ extraction. The dissection was performed under usual techniques (e.g., Simone, 2011, 2018), under stereo-dissecting-microscope, with the specimens immersed under ethanol. Photos of all studied shells and all dissection steps were obtained by digital cameras (avulse and also connected to the microscope) and are stored in the MZSP Malacological Laboratory digital archives. The photos used in this paper were processed by image editor software (mainly Corel PhotoPaint), including multi-focus composition (mainly Axio-Vision). The drawings of anatomical features were obtained with the aid of a camera lucida. Also, to avoid redundance, the present anatomical description id performed as comparative to that of H. lekulos (Simone, 2022).

Anatomical abbreviations: ac, albumen gland chamber; ag, albumen gland; an, anus; au, auricle; bg, buccal ganglion; bm, buccal mass; bv, blood vessel; cc, cerebral commissure; ce, cerebral ganglion; cv, pulmonary (efferent) vein; da, digestive gland anterior lobe; dd, duct to digestive gland; dg, digestive gland posterior lobe; eg, folded glandular portion of esophagus; eo, esophagus duct; es, esophagus; fe, fecal pellet; fp, genital pore; go, gonad; gy, visceral ganglia; hd, hermaphrodite duct; in, intestine; jw, jaw; ki, kidney; m1-m10, extrinsic and intrinsic odontophore muscles; mb, mantle border; mf, inner fold of pneumostome (deflected); mo, mouth; ne, nephrostone; nr, nerve ring; od, odontophore; pc, pericardium; pe, penis; pg, pallial white gland; pl, pleural ganglion; pn, pneumostome; pp, pedal ganglion; pt, prostate; pu, pulmonary (pallial) cavity; rn, radular nucleus; rs, radular sac; rt, rectum; sd, salivary gland duct; sg, salivary gland; sr, seminal receptacle; st, stomach; sy, statocyst; un, union of mantle border with nuchal surface; ur, urinary gutter; ut, uterus; vd, vas deferens; ve, ventricle; vg, vagina.

Institutional abbreviations: MNRJ, Museu Nacional da Universidade Federal do Rio de Janeiro, Brazil; MZSP, Museu de Zoologia da Universidade de São Paulo, Brazil; USNM, National Museum of Natural History, Smithsonian Institution, Washington DC, USA.

RESULTS

Systematics

Habeas centrons new species
(Figs. 1-23)
https://zoobank.org/5B23C638-7D5B-4AAC-BB41-34C7851366BB

Types: holotype MZSP 155200. Paratypes: MZSP 153866, 25 specimens, MNRJ 23646, 2 specimens; USNM, 2 specimens, all from type locality.

Type locality: BRAZIL. Bahia; Canarana, Paz de Salobra, 11°51’56″S, 41°45’07″W [W.Vailant-Mattos col, 20/iv/2021].

Etymology: the specific epithet is a junction of the Latin words centro (center) and oris (mouth), an allusion to the central position of the peristome.

Diagnosis: Shell ~7 mm; inferior half almost cylindric; peristome relatively centrally positioned; umbilicus narrow; sculpture sense quantity of narrow and well-delimited axial lines; rounded whors profile. Pallial gland small. Ureteral groove well-marked, wide. Stomach short; duct to anterior lobe of digestive gland present. Seminal receptacle very small, always present; penis small, simple, lacking retractor muscle; vas deferens originating between posterior and middle thirds of spermoviduct; prostate lying anteriorly to vas deferens origin. Both visceral ganglia connected to pleural ganglia.

Description

Shell (Figs. 1-9, 11-14): Sinistral. Adult length ~7 mm, ~10 whors; ~2.1 times longer than wide; apex angle ~60°, tip blunt; profile becoming almost cylindrical after ~5 whors, with profile angle of ~20°. Color whitish (Fig. 7), pale cream (Figs. 6, 8) to pale beige (Figs. 1-5). Protoconch with almost 4 smooth, opaque, rounded whors (Figs. 4, 12); height = 0.8 mm, maximum width = 1 mm; occupying ~16% of total shell length, ~46% of shell width; transition with teleoconch relatively clear (Figs. 3, 7, 11-12). Teleoconch of 5.5-6 whors; whors profile rounded to slightly planar; ~4 last whors almost similar-sized, weakly increasing (Figs. 1-3, 6-8, 11)). Last half whorl weakly projected exteriorly, expanding shell width ~20% (Figs. 1, 6-8, 11); last ¼ whorl weakly dislocated inferiorly (Figs. 3, 13), bluntly angled, ending in external notch of outer lip. Sculpture uniform axial narrow ribs, interspaces twice wider than ribs; ~90 ribs in penultimate whorl; ribs density similar in all whors. Peristome expanded, bugle-like, orthocline (Figs. 2, 13); complete (Figs. 1, 6, 11, 13) or with callus region weak (Figs. 7, 8), slightly elliptic except for strong, wide notch in superior region of outer lip (Figs. 1-2, 6-7, 11, 13); peristome occupying ~22% of shell length, ~45% of shell width. Umbilicus of small size, occupying ~5% of inferior shell area (Figs. 5, 9); umbilical hollow column lying uniformly all along inferior ¼ of teleoconch length (Figs. 13, 14: arrow).

Head-foot: Of ordinary shape, with similar feature of H. lekulos (Simone, 2022).

Pallial cavity (Fig. 19): General organization similar to that of H. lekulos (Simone, 2022), distinctions and remarks following. Pallial gland (pg) present, but much smaller, occupying ~15% of entire mantle edge. Anus (an) opening very close to mantle edge. Inner pulmonary surface lacking developed vessels, uniformly smooth; rectum (rt) bulging along left edge, lacking developed adrectal sinus. Ureteral gutter (ur) wide, clearly running at right from rectum, from nephrostome (ne) up to pneumostome (pn). Renopericardial structures bulging in posterior half whorl, described below.
Visceral mass (Fig. 20): Also with similar features as H. lekolus (Simone, 2022), differing mainly by minuteness of stomach (described below).

Circulatory and excretory systems (Fig. 19): Mostly similar to those of as H. lekolus (Simone, 2022); distinctions following. Pericardium (pc) and heart (au, ve) ~30% smaller; its pulmonary vein (cv) difficulty seen, lying along right pallial edge. Kidney (ki) mostly solid, white, antero-posteriorly shorter, slightly squared.

Digestive system (Figs. 20-22): Most characters similar to those of H. lekolus (Simone, 2022); remarkable and distinctive features following. Jaw plate (Fig. 10: jw) simple, thin, translucent, yellowish, smooth. Buccal mass (Figs. 20-21) with pair m1d (dorsal protractor muscles) well-developed; pair m1l more ventrally positioned, thin, wider; pair m2 thinner (Fig. 21); m3 lacking; internal organization, including oral cavity and odontophore, similar, except for narrower pair m5. Radula (Figs. 15-18) composed of rachidian (arrows) plus ~15 pairs of lateral-marginal tooth, no clear separation of types (Fig. 15); rachidian and lateral teeth with single, large curved cusp, longer and more pointed than those of H. lekolus; rachidian occupying ~4% of radular ribbon width, ~30% narrower than neighboring teeth; lateral teeth 8-10 pairs, similar to rachidian except in being slightly wider and weakly turned outside (Figs. 16, 18), gradually diminishing towards lateral; marginal teeth marked by gradual further diminish length, and appearance of more secondary cusps (Fig. 17), in more central teeth small cusps appearing in medial side of main cusp, gradually cusps becom-
ing smaller and same-sized towards lateral teeth, usually with 3 cusps. Lateral and marginal teeth performing wide curves (concavity posterior) in both sides of rachidian (Fig. 15), curve more accentuated in marginals (Fig. 17). Pair of salivary glands (sg) with shorter and broader ducts (Fig. 21: sd). Esophagus (Fig. 20: es) narrow, walls thin, internally smooth, after ~1.5 whorls esophagus gradually becoming weakly folded, with internal thick mucosa, up to left side of stomach. Stomach (st) small, as simple, swollen curve; esophageal insertion and intestinal origin side by side in its anterior side (Fig. 20); anterior duct to digestive gland (dd) narrow, elongated, located in intersection between esophagus and intestine, turned anteriorly, slightly ventrally positioned; posterior duct to digestive gland slightly broader, located in right side of stomach, directed posteriorly. Digestive gland with anterior lobe (da) flattened, long, thin, compressed between local digestive tubes and columellar muscle. Intestine loops as in Fig. 20; narrow and relatively uniform along its length. Rectum and anus described above; rectum forming distinct squared fecal pellets (Fig. 19: fe), stored all along its length.

Genital system (Fig. 22): General organization similar to that of *H. lekolus* (Simone, 2022: figs. 19-20); distinctions and remarks following. Hermaphrodite duct (hd) simpler, narrow all along its length. Seminal receptacle (sr) very small, sac-like, always present. Albumen gland (ag) elliptical, ~1/2 whorl in length. Spermoviduct (eo) of ~1.5 whorl in length, narrow, running close to diaphragm; uterus (ut) hollow, thick walled; and prostate (pt) mostly solid; both equally sized. Vas deferens (vd) originating in edge of prostate, about between posterior and middle thirds of spermoviduct; prostate further lying anteriorly about same length as posterior length. Vas deferens (vd) simple, thin, ~0.5 whorl in length; inserting after small curve in penis’ tip. Penis (pe) small, ~1/3 whorl, ~twice longer than wide, weakly curved; tip blunt, strongly curved, epiphallus-like; no detectable penis retractor muscle, nor accessory genital muscle. Penis mostly hollow, inner arrangement with three narrow, equidistant longitudinal folds.

Central nervous system (Fig. 23): Nerve ring, located anterior to buccal mass (Fig. 21), with similar features of *H. lekolus* (Simone, 2022: fig. 21); distinctions following.

Figures 11-18. *Habeas centroris* SEM images of paratypes MZSP 153886 shells: (11) whole frontal view, specimen #6 (L 6.4 mm); (12) young specimen with protoconch and first teleoconch whorl, apical-slightly left view, scale = 200 µm; (13) broken specimen #5, detail of last whorl, frontal-slightly right view, scale = 400 µm; (14) same, higher magnification in penultimate whorl showing umbilicus (arrow); 15-18, radula, arrow showing rachidian column; (15) wide view, scale = 40 µm; (16) detail of central region, scale = 20 µm; (17) detail of lateral region, scale = 20 µm; (18) detail of central region, scale = 5 µm.
Cerebral commissure (cc) further longer. Cerebral glan-
dular region not so clear. Pair of pleural ganglia (pl) also
small, located equidistant from cerebral and pedal gan-
glia in both sides. Commissure between both pedal gan-
glia (pp) located more centrally, between both ganglia.
Left visceral ganglion (gv) connected to adjacent pleural
ganglion (instead of pedal ganglion). Pair of statocysts
(sy) easily detectable, located in postero-ventral region
of pedal ganglia.

Habitat: On calcareous rocks, crevices, and sheltered ar-
eas; dry vegetation.

Measurements (in mm): Holotype MZSP 155200
(Figs. 1-5): 7.0 by 3.4; MZSP 153886 #1 (Fig. 6): 6.8 by 3.2;
#2 (Fig. 7): 5.6 by 2.8; #3 (Fig. 8): 5.9 by 3.0; #6 (Fig. 11): 6.4
by 3.1. The paratypes 1, 2 and 3 have their shells posteri-
orly damaged, for specimen’s extraction.

Material examined: Types.

DISCUSSION

The shell of the eight species of *Habeas* is represent-
ed in Fig. 24, which has representatives (mostly holo-
types) of all known species and their geographic local-
ization. The illustrated shells are not in the same scale, for
a same-scale illustration see Simone (2022: figs. 43-49),
in which *H. centroris*, with ~7 mm, is slightly longer than
H. lekolus (Simone, 2022, fig. 47).

Related to the shell features, Simone (2022) suggested
that the genus *Habeas* can be divided into two groups (sub-
genera?), Group 1, with *H. lapensis* and *H. priscus*, has small-
er shells, *i.e.*, ~5 mm, umbilicus almost closed, and conic
profile of spire. The group 2, which includes the remaining
hitherto known five species, has the adult shell about and
over 10 mm, and the four last whorls are similar-sized, pro-
ducing a rather cylindric inferior shell profile, and opened
umbilicus. The addition of *H. centroris*, a further division
of the group 2 into two subgroups appears possible: 2A,
with the peristome highly dislocated outside, with conse-
quent wide umbilicus, and having the larger sizes (almost
20 mm), such as *H. corpus, H. peruassus* and *H. claudus*; and
2B, with peristome more centrally positioned, umbilicus
narrow, semi-covered, and smaller size (around 10 mm),
including *H. data, H. lekolus* and the new *H. centroris*. Thus,
H. centroris must be compared more closely with these 2
last species, fortunately one of them has anatomical fea-
tures known, which will be compared below.

The peristome located more centrally already distin-
guishes *H. centroris* from all *Habeas* species, except for

Figures 19-20. *Habeas centroris* anatomical drawings: (19) pulmonary cavity and adjacent end of visceral mass, ventral view, ventral fold of pneumostome sec-
tioned and deflected upwards; (20) uncoiled visceral mass, mostly ventral view, structures seen as in situ, anterior lobe of digestive gland removed, buccal mass m2
also removed, some structures only indicated by their topology, anterior digestive tubes (located in haemocoel) still attached. Scales = 1 mm.
H. data and H. lekolus. From H. lekolus, H. centroris differs in being slightly smaller (H. lekolus usually is over 8 mm), lacking slightly shouldered whorls, and by higher density of the axial sculpture (H. lekolus has spaced axial lines); actually, H. lekolus has the most central positioned peristome from its congener (Fig. 24). Habeas centroris differs from H. data in being slightly larger (H. data has about 6 mm); spire slightly more inflated (H. data has a more acuminated spire, in angle ~40°, while H. centroris starts with ~60° in its apex); umbilicus slightly narrower (Figs. 5, 9); peristome slightly larger (22% of shell length, while H. data has ~18%); and by the dense and well-marked axial sculpture (Fig. 11), as H. data has less-dense, rather obsolete and irregularly distributed axial lines. With ~90 axial cords in penultimate whorl, H. centroris has the denser axial sculpture from all Habeas.

Related to the anatomy, both known species, H. lekolus and H. centroris, have similar attributes. Some characters appear to be exclusive of Habeas if compared to other urocoptids (Simone, 2022, and references therein), such as the pallial border gland (Fig. 19: pg); the lung lacking visible vessels, with the pulmonary vein lying along its right edge (Fig. 19: cv); the anus positioned externally, preceded by a narrow portion of the rectum;

Figures 21-23. Habeas centroris anatomical drawings: (21) buccal mass, left view, left portion of m2 removed; (22) genital structures, uncoiled, mostly in ventral view, artificial section on middle region of spermoviduct done, topology of posterior lobe of digestive gland also shown; (23) central nervous system (nerve ring), dorsal view. Scales = 0.5 mm.
and the simplicity of the genital structures (Fig. 22). Both anatomically known species have the genital tubes strangely narrow and delicate. The gonad and albumen gland looking mature, associated to the complete shell’s peristome formation, suggests that the delicateness of the genital structures is a character of the genus, instead of being immaturity. Another possibility is that both Habeas species only reproduce in determinate times, having latent genital structures in the intervals. In this scenario, the collection of both species would have occurred in the interval. Anyway, up to contrary information, the genital structure’s idiosyncrasies are considered genus characters, as already two species have them.

The anatomical distinction between H. centroris and H. lekolus is already explored in the above description, which was performed in a comparative manner. The more important differences are the following: H. centroris lack so developed adrectal sinus at the pallial cavity as that of H. lekolus. In the same region, the H. centroris ureteral gutter (Fig. 19: ur) looks much more evident, being wide, uniform, and smooth; and the pallial gland (pg) is much smaller. The stomach of H. centroris is much more reduced, marked only by a swollen region of the curve between esophagus and intestine, in posterior most region of the digestive tubes (Fig. 20: st); while H. lekolus has a much wider and long gastric region. H. centroris has a clear gastric duct to anterior lobe of the digestive gland, such duct was not found in H. lekolus. In the genital system, H. centroris has a clear division between prostate and uterus in the spermoviduct (Fig. 22: eo), the spermoviduct of H. lekolus looks more uniform, lacking clear divisions. The origin of the vas deferens (vd) of

Figure 24. Mapping of approximate localities of the eight species of Habeas, along the states of Bahia (BA) and Minas Gerais (MG). São Francisco River also shown. Shells not for proportions. Map upper left Brazil with displayed amplified squared East region shown in center. Figured shells in frontal view: Habeas centroris: holotype (L 7.0 mm); H. claudus: holotype MZSP 152145 (L 9.6 mm); H. corpus: holotype MZSP 110000 (L 10.3 mm); H. data: paratype MZSP 109965 (L 5.7 mm); H. lapensis: holotype MZSP 152144 (L 3.0 mm); H. lekolus: holotype MZSP 152143 (L 7.5 mm); H. peruassus: holotype MZSP 152146 (L 8.5 mm); H. priscus: holotype MZSP 103044 (L 4.6 mm).
H. centroris is between the posterior and middle thirds of the spermoviduct, more posterior than that of H. lekolus. Strangely, the prostate goes anteriorly, further along the spermoviduct, beyond the vas deferens origin. The prostate usually ends in the point in which vas deferens originates in most stylommatophorans (Simone, 2011). No detectable retractor muscle of the penis was found in H. centroris, as well as no genital muscle, both present in H. lekolus. The penis retraction possibly is provided by the ordinary minute jugal muscles, present in entire haemo-coel; this appears to be sufficient in a so minute penis. In the central nervous system (neve ring) the pair of visceral ganglia (Fig. 23: gv) are both connected to the pleural ganglia (pl), while in H. lekolus the left visceral ganglion has a connective directly to the left pedal ganglion.

Related to the biogeography (Fig. 24), the new H. centroris is the second Habeas found at east side of São Francisco River, beyond H. data. This mighty river may be an important barrier for so minute snails. The remaining six congener species occur at west from that river. Moreover, H. centroris is the furthest from that river, in a distance of ~180 km; besides, there is the Mangabeira Mountain Range separating that river from the region of the species’ occurrence. H. centroris so far is the northernmost and easternmost species of the genus, but the genus remains endemic from the region between north of Minas Gerais and central region of Bahia. That region typically has a semi-dry, Caatinga environment. Most Habeas species are related to cavernicolous environments, being troglobiphile organisms; however, no such environmental information is available for H. centroris and even to the remaining Habeas. Possibly their relation to the cave surroundings may be another speciation factor, and these are usually separated from one another in that Brazilian region (Lobo, 2013).

CONFLICTS OF INTEREST: Author declare that there is no conflicts of interest.

FUNDING INFORMATION: This project did not use any external financial support.

ACKNOWLEDGMENTS: Special thank to José Coltro-Jr., and his Femorale team, for the collect and donation of the specimens. Thank also to Lara Guimarães, Laboratory of Electron Microscopy of MZSP, for assistance in SEM examinations. The collects were performed under license IBAMA-Sisbio #10560-2.

REFERENCES
Simone, L.R.L. 2022. Review of the genus Habeas from Brazil, with description of four new species in which anatomical features revealed that they belong to Urocoptidae (Eupulmonata, Stylommatophora). Malacologia, 64(2): 269-286.