Scutation asymmetries in red-footed tortoise Chelonoidis carbonaria Spix, 1824 (Testudines: Testudinidae)

Authors

  • Pere M. Parés-Casanova University of Lleida, School of Agrifood and Forestry Science and Engineering, Department of Animal Science - Lleida, España. http://orcid.org/0000-0003-1440-6418
  • Pinzón Brando Universidad Cooperativa de Colombia (UCC), Facultad de Medicina Veterinaria y Zootecnia - Arauca, Colômbia.
  • Daniel Caviedes Universidad Cooperativa de Colombia (UCC), Facultad de Medicina Veterinaria y Zootecnia - Arauca, Colômbia. http://orcid.org/0000-0001-7871-7544
  • Arcesio Salamanca-Carreño Universidad Cooperativa de Colombia (UCC), Facultad de Medicina Veterinaria y Zootecnia - Arauca, Colômbia. http://orcid.org/0000-0002-5416-5906

DOI:

https://doi.org/10.11606/1807-0205/2020.60.39

Keywords:

Directional asymmetry, Fluctuating asymmetry, Pholidosis, Tortoise shell

Abstract

The ability of an individual to withstand random perturbations during its development is considered a good indicator of environmental and genetic stress. A common means of assessing developmental stability is through analysis of fluctuating asymmetry (FA) in bilateral traits. Tortoises, with their large, solid plastron, allow for measurement of body geometry. Their bilateral shell scutes are ideal candidates for asymmetries researches. With this issue in mind we assessed, as a preliminary study, levels of plastron scute asymmetry in a sample of 46 red-footed tortoise Chelonoidis carbonaria from Arauca, N Colombia. We found significative fluctuating asymmetry (FA) but no directional asymmetry, the former not increasing with carapace size and thus indicating that tortoise shells do not become increasingly asymmetrical with age, or in other words, signaling that FA is not being influenced by pholidosis (variability of scale cover mosaic according to the development of the scutes). Asymmetry in plastron shape, although not necessarily apparent at first glance, varied, with gender with males exhibiting higher levels of FA than females. Although we can not identify the potential sources of variation responsible for the observed patterns of developmental instability, we consider this detected form of asymmetry due to unfavorable environmental conditions.

Downloads

Download data is not yet available.

Author Biographies

Pere M. Parés-Casanova, University of Lleida, School of Agrifood and Forestry Science and Engineering, Department of Animal Science - Lleida, España.

Av. de l’Alcalde Rovira Roure, 191 E-25198, Lleida, España.

Pinzón Brando, Universidad Cooperativa de Colombia (UCC), Facultad de Medicina Veterinaria y Zootecnia - Arauca, Colômbia.

Cra. 18 #14-78 #14-2a, Arauca, Colômbia.

Daniel Caviedes, Universidad Cooperativa de Colombia (UCC), Facultad de Medicina Veterinaria y Zootecnia - Arauca, Colômbia.

Cra. 18 #14-78 #14-2a, Arauca, Colômbia.

Arcesio Salamanca-Carreño, Universidad Cooperativa de Colombia (UCC), Facultad de Medicina Veterinaria y Zootecnia - Arauca, Colômbia.

Cra. 18 #14-78 #14-2a, Arauca, Colômbia.

References

Auffray, J.C.; Debat, V. & Alibert, P. 1999. Shape asymmetry and developmental stability. In: Mark, A.J.; Chaplain, G.D. & Singh, J.C.M. (Ed.). On growth and form: spatio-temporal pattern formation in biology. New York, John Wiley and Sons Ltd. p. 309-324.

Băncilă, R.I.; Plăiaşu, R.; Tudor, M.; Samoilă, C. & Cogălniceanu, D. 2012. Fluctuating Asymmetry in the Eurasian Spur-Thighed Tortoise, Testudo graeca ibera Linneaus, 1758 (Testudines: Testudinidae). Chelonian Conservation and Biology, 11(2): 234-239.

Barros, M.S.; Resende, L.C.; Silva, A.G. & Ferreira Junior, P.D. 2012. Morphological variations and sexual dimorphism in Chelonoidis carbonaria (Spix, 1824) and Chelonoidis denticulata (Linnaeus, 1766) (Testudinidae). Brazilian Journal of Biology, 72(1): 153-161. http://doi.org/10.1590/S1519-69842012000100018

Buică, G. & Cogălniceanu, D. 2013. Using digital images in the study of fluctuating asymmetry in the spur-thighed tortoise Testudo graeca. Turkish Journal of Zoology, 37(6): 723-729. http://doi.org/10.3906/zoo-1302-19

Cacciali, P.; Scott, N.J.; Ortíz, A.L.A.; Fitzgerald, L.A. & Smith, P. 2016. The Reptiles of Paraguay: Literature, Distribution, and an Annotated Taxonomic Checklist. Special Publication of the Museum of Southwestern Biology, 11: 1-373.

Carter, A.J.R.; Osborne, E. & Houle, D. 2009. Heritability of directional asymmetry in Drosophila melanogaster. International Journal of Evolutionary Biology, 1-7. http://doi.org/10.4061/2009/759159

Cherepanov, G.O. 2014. Patterns of scute development in turtle shell: Symmetry and asymmetry. Paleontological Journal, 48(12): 1275-1283. http://doi.org/10.1134/S0031030114120028

Chiari, Y.; van der Meijden, A.; Caccone, A.; Claude, J. & Gilles, B. 2017. Self-righting potential and the evolution of shell shape in Galápagos tortoises. Scientific Reports, 7(1): 1-8. http://doi.org/10.1038/s41598-017-15787-7

Claude, J. 2016. Environmental media and shape asymmetry: a case study on turtle shells. Biological Journal of the Linnean Society, 94(3): 483-489 + 1 pl. http://doi.org/10.1111/j.1095-8312.2008.01008.x

Claude, J.; Paradis, E.; Tong, H. & Auffray, J.-C. 2003. A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biological Journal of the Linnean Society, 79(3): 485-501. http://doi.org/10.1046/j.1095-8312.2003.00198.x

Davis, A.K. & Grosse, A.M. 2008. Measuring Fluctuating Asymmetry in Plastron Scutes of Yellow-Bellied Sliders: The Importance of Gender, Size and Body Location. The American Midland Naturalist, 159(2): 340-348. http://doi.org/10.2307/20491338

Dillard, K.C. 2017. A comparative analysis of geometric morphometrics across two Pseudemys turtle species in east central Virginia. Richmond, Virginia Commonwealth University. 81p. (Thesis of Master Degree)

Domokos, G. & Varkonyi, P.L. 2008. Geometry and self-righting of turtles. Proceedings of the Royal Society B: Biological Sciences, 275(1630): 11-17. http://doi.org/10.1098/rspb.2007.1188

Galeotti, P.; Sacchi, R. & Vicario, V. 2005. Fluctuating asymmetry in body traits increases predation risks: tawny owl selection against asymmetric woodmice. Evolutionary Ecology, 19(4): 405-418. http://doi.org/10.1007/s10682-005-8309-z

Gallego-García, N.; Cárdenas-Arévalo, G. & Castaño-Mora, O.V. 2015. Chelonoidis carbonaria (Spix 1824). In: Morales-Betancourt, M.A.; Lasso, C.A.; Páez, V.P. & Bock, B.C. (Ed.). Libro Rojo de Reptiles en Colombia. Bogotá, Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. p. 406-411.

Graham, J.H.; Freeman, D.C. & Emlen, J.M. 1993. Antisymmetry, directional asymmetry, and dynamic morphogenesis. Genetica, 89(1-3): 121-137. http://doi.org/10.1007/BF02424509

Jennions, M. 1996. The allometry of fluctuating asymmetry in southern African plants: flowers and leaves. Biological Journal of the Linnean Society, 59(2): 127-142.

Kharlamova, A.V.; Trut, L.N.; Chase, K.; Kukekova, A.V. & Lark, K.G. 2010. Directional asymmetry in the limbs, skull and pelvis of the silver fox (V. vulpes). Journal of Morphology, 271(12): 1501-1508.

Klingenberg, C.P. 2002. Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene, 287(1-2): 3-10.

Klingenberg, C.P. 2011. MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2): 353-357.

Klingenberg, C.P. & Monteiro, L.R. 2005. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology, 54(4): 678-688. http://doi.org/10.1080/10635150590947258

Klingenberg, C.P.; McIntyre, G.S. & Zaklan, S.D. 1998. Left-right asymmetry of fly wings and the evolution of body axes. Proceedings of the Royal Society B: Biological Sciences, 265(1402): 1255-1259. http://doi.org/10.1098/rspb.1998.0427

Lotto, F. & Béguelin, M. 2014. Asimetría direccional del postcráneo en poblaciones prehispánicas del sur de Sudamérica. Antropología Biológica, 7(1): 133-142.

Macchi, S.; Balzarini, L.; Scali, S.; Martinoli, A. & Tosi, G. 2008. Assessing shell asymmetry in Trachemys scripta using geometric morphometrics. In: Congresso Nazionale Societas Herpetologica Italica, 7º. Herpetologie sardiniae. Oristano, Edizione Belvedere. p. 333-337.

Mancini, S.; Sally, S.L. & Gurnsey, R. 2005. Detection of symmetry and anti-symmetry. Vision Research, 45(16): 2145-2160.

Palmer, A.R. 1994. Fluctuating asymetry analysis: a primer. In: Markow, T.A. (Ed.). Developmental instability: its origins and evolutionary implications. Netherlands, Kluwer. p. 335-364.

Palmer, A.R. 1996. From symmetry to asymmetry: phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proceedings of the National Academy of Sciences of the United States of America, 93(25): 14279-14286.

Rivera, G. & Claude, J. 2008 Environmental media and shape asymmetry: a case study on turtle shells. Biological Journal of the Linnean Society, 94: 483-489.

Rohlf, F.J. 2010. Digitalized Landmarks and Outlines. 2.26. New York, Stony Brook: Department of Ecology and Evolution, State University of New York.

Rohlf, F.J. 2015a. The tps series of software. Hystrix, the Italian Journal of Mammalogy, 26(1): 9-12.

Rohlf, F.J. 2015b. TpsSmall v. 1.33. Available at: http://life.bio.sunysb.edu/morph.

Sforza, C.; Michielon, G.; Fragnito, N. & Ferrario, V.F. 1998. Foot asymmetry in healthy adults: Elliptic fourier analysis of standardized footprints. Journal of Orthopaedic Research, 16(6): 758-765.

Tomkins, J.L. & Kotiaho, J.S. 2001. Fluctuating asymmetry. In: Encyclopedia of Life Sciences. London, MacMillan. p. 1-5.

Turtle Taxonomy Working Group (TTWG). 2017. Turtles of the world. Annotated checklist and atlas of taxonomy, synonymy, distribution and conservation status. 8. ed. Lunenburg, Chelonian Research Foundation and Turtle Conservancy. 296p. (Chelonian Research Monographs, 7). Available at: http://images.turtleconservancy.org/documents/2017/crm-7-checklist-atlas-v8-2017.pdf.

Van Valen, L. 1962. A study of fluctuating asymmetry. Evolution, 16: 125-142.

Downloads

Published

2020-08-28

How to Cite

Parés-Casanova, P. M., Brando, P., Caviedes, D., & Salamanca-Carreño, A. (2020). Scutation asymmetries in red-footed tortoise Chelonoidis carbonaria Spix, 1824 (Testudines: Testudinidae). Papéis Avulsos De Zoologia, 60, e20206039. https://doi.org/10.11606/1807-0205/2020.60.39

Issue

Section

Original Article