Temperature increase impairs recognition among nestmates in the social wasp Polybia paulista H. von Ihering, 1896 (Vespidae: Polistinae: Epiponini)

Authors

  • Kamylla Balbuena Michelutti Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO). Dourados, MS, Brasil; Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade (PPGECB). Dourados, MS, Brasil. https://orcid.org/0000-0003-4264-0703
  • Nathan Rodrigues Batista Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO). Dourados, MS, Brasil; Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade (PPGECB). Dourados, MS, Brasil. https://orcid.org/0000-0003-2349-1597
  • Sidnei Eduardo Lima-Junior Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO), Programa de Pós-Graduação em Recursos Naturais. Dourados, MS, Brasil. https://orcid.org/0000-0001-7906-9737
  • Claudia Andrea Lima Cardoso Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO), Programa de Pós-Graduação em Recursos Naturais. Dourados, MS, Brasil. https://orcid.org/0000-0002-4907-0056
  • William Fernando Antonialli-Junior Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO). Dourados, MS, Brasil; Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO), Programa de Pós-Graduação em Recursos Naturais. Dourados, MS, Brasil. https://orcid.org/0000-0001-7977-9827

DOI:

https://doi.org/10.11606/1807-0205/2022.62.059

Keywords:

Pheromones, Cuticular hydrocarbons, Vespidae, Wasp aggression, Nestmate recognition, Chemical communication

Abstract

Cuticular hydrocarbons (CHCs) of most terrestrial arthropods primarily serve as a protective barrier against desiccation and infection. Throughout evolution, these compounds have acquired another fundamental function: the exchange of signals during interactions between nestmates. However, even though cuticular hydrocarbons perform a dual function in social insects, little is known about the effect(s) of one function on the other in social insects, and no study has evaluated this relationship in social wasps. Therefore, the present study tests the hypothesis that the level of aggressiveness presented during induced encounters between nestmates of Polybia paulista who were subjected to different conditions temperature is different than between nestmates who remained under the same temperature conditions. If the hypothesis is confirmed, it is likely because the cuticle of the wasps that had been exposed to temperature variation adjusted to these conditions leading them not to recognize the cuticular chemical signature of their colony. To test this hypothesis, workers were exposed to temperature variation in a BOD chamber and then subjected to encounters with workers who were maintained at a constant temperature of 24℃. We also used control groups to evaluate the effect of isolation alone among the groups. According to our results, our hypothesis was confirmed, the level of aggressiveness presented between nestmates who were exposed to temperature variation and those who remained at 24℃ was significantly higher than the levels of aggressiveness presented between nestmates who remained isolated but under constant temperature during the same period, in some cases, it was similar to the aggressiveness presented in encounters between wasps from different colonies. During these encounters, wasps performed alarm behavior, bites, and stings not seen during encounters between wasps that remained under the same temperature, but in isolated groups. The lack of aggressive behavior under isolated conditions indicates that isolation had no effect on chemical recognition signature. These results suggest that temperature variation may have caused some change in the cues that allow recognition between nestmates. On the other hand, these results were not caused by isolation or stress generated by the study design and difference in the CHC profile of workers, as described in the literature, is consistent with our results.

Downloads

Download data is not yet available.

References

Batista, N.R.; de Oliveira, V.E.S.; Crispim, P.D.; Nocelli, R.C.F. & Antonialli-Junior, W.F. 2022. Is the social wasp Polybia paulista a silent victim of neonicotinoid contamination?. Environmental Pollution, 308: (119682). https://doi.org/10.1016/j.envpol.2022.119682.

Billen, J. 2006. Signal variety and communication in social insects. Proceedings of the Netherlands Entomological Society Meeting, 17: 9-25.

Billen, J. 2011. Exocrine glands and their Key function in the communication system of social insects. Formosan Entomology, 31: 75-84.

Blomquist, G.J. & Bagnères, A.G. 2010. Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press.

Boulay, R. Aron, S.; Cerdá, X.; Doums, C.; Graham, P.; Hefetz, A. & Monnin, T. 2017. Social life in arid environments: the case study of Cataglyphis ants. Annual Review of Entomology, 62: 305-321. https://doi.org/10.1146/annurev-ento-031616-034941.

Brown, W.V.; Spradbery, J.P. & Lacey, M.J. 1991. Changes in cuticular hydrocarbon composition during development of the social wasp, Vespula germanica (F) (Hymenoptera: Vespidae). Comparative Biochemistry and Physiology B, 99: 553-562. https://doi.org/10.1016/0305-0491(91)90337-D.

Carpenter, J.M. & Marques, O.M. 2001. Contribuição ao estudo dos vespídeos do Brasil (Insecta, Hymenoptera, Vespoidea, Vespidae). Cruz das Almas, Universidade Federal da Bahia. 147p. (Serie Publicações Digitais, n. 2, Mestrado em Ciências Agrárias).

Cervo, R.; Dani, F.R.; Zanetti, P.; Massolo, A. & Turillazzi, S. 2002. Chemical nestmate recognition in a stenogastrine wasp, Liostenogaster flavolineata (Hymenoptera Vespidae). Ethology Ecology & Evolution, 14(4): 351-363.

Chown, S.L.; Sorensen, J.G. & Terblanche, J.S. 2011. Water loss in insects: an environmental change perspective. Journal of Insect Physiology, 57(8): 1070-1084. https://doi.org/10. 1016/j.jinsphys.2011.05.004.

Chung, H. & Carroll, S.B. 2015. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays, 37(7): 822-830. https://doi.org/10.1002/bies.201500014.

Costanzi, E.; Bagnères, A.-G. & Lorenzi, M.C. 2013. Changes in the Hydrocarbon Proportions of Colony Odor and Their Consequences on Nestmate Recognition in Social Wasps. PloS One, 8(5): e65107. https://doi.org/10.1371/journal.pone.0065107.

Dani, F.R.; Jones, G.R.; Destri, S.; Spencer, S.H. & Turillazzi, S. 2001. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Animal Behaviour, 62: 165-171. https://doi.org/10.1006/anbe.2001.1714.

Downs, S.G. & Ratnieks, F.L.W. 1999. Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage. Animal Behaviour, 58(3): 643-648. https://doi.org/10.1006/anbe.1999.1177.

Duarte, B.F.; Michelutti, K.B.; Antonialli-Junior, W.F. & Cardoso, C.A.L. 2019. Effect of temperature on survival and cuticular composition of three different ant species. Journal of Thermal Biology, 80: 178-189. https://doi.org/10.1016/j.jtherbio.2019.02.005.

Gamboa, G.J. 2004. Kin recognition in eusocial wasps. Annales Zoologici Fennici, 41(6): 789-808.

Gamboa, G.J.; Reeve, H.K. & Pfenning, D.W. 1986. The evolution and ontogeny of nestmate recognition in social wasps. Annual Review of Entomology, 31: 431-454. https://doi.org/10.1146/annurev.en.31.010186.002243.

Gibbs, A.G. 1998. Water-proofing properties of cuticular lipids. American Zoologist, 38(3): 471-482.

Gibbs, A.G. 2007. Waterproof cockroaches: the early work of JA Ramsay. The Journal of Experimental Biology, 210(6): 921-922. https://doi.org/10.1242/jeb.000661.

Gibbs, A.G.; Chippindale, A.K. & Rose, M.R. 1997. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. The Journal of Experimental Biology, 200(12): 1821-1832.

Hefetz, A. 2007. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) – interplay of colony odor uniformity and odor idiosyncrasy. A review. Myrmecol News, 10: 59-68.

Hölldobler, B. & Wilson, E.O. 1990. The Ants. Cambridge, Belknap Press of Harvard University Press.

Holman, L.; Jørgensen, C.G.; Nielsen, J. & d'Ettorre, P. 2010. Identification of an ant queen pheromone regulating worker sterility. Proceedings of the Royal Society B, 277(1701): 3793-3800. https://doi.org/10.1098/rspb.2010.0984.

Howard, R.W. 1993. Cuticular hydrocarbon and chemical communication. In: Stanley-Samuelson, D.W. & Nelson, D.R. (Eds.). Insect lipids: chemistry, biochemistry and biology. Lincoln, University of Nebraska Press. p. 179-226.

Howard, R.W. & Blomquist, G.J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50: 371-393. https://doi.org/10.1146/annurev.ento.50.071803.130359.

Jacomini, D.L.J.; Pereira, F.D.C.; dos Santos Pinto, J.R.A.; dos Santos, L.D.; da Silva-Neto, A.J.; Giratto, D.T.; Palma, M.S.; Zollner, R.L. & Braga, M.R.B. 2013. Hyaluronidase from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae): Cloning, structural modeling, purification, and immunological analysis. Toxicon, 64: 70-80. https://doi.org/10.1016/j.toxicon.2012.12.019.

Karlson, P. & Butenandt, A. 1959. Pheromones (ectohormones) in insects. Annual Review of Entomology, 4: 39-58. https://doi.org/10.1146/annurev.en.04.010159.000351.

Kudô, K.; Tsuchida, K.; Mateus, S. & Zucchi, R. 2007. Nestmate recognition in a neotropical polygynous wasp. Insectes Sociaux, 54(1): 29-33. https://doi.org/10.1007/s00040-007-0911-3.

Kudô, K.; Tsujita, S.; Tsuchida, K.; Goi, W.; Yamane, S.; Mateus, S.; Itô, Y.; Miyano, S. & Zucchi, R. 2005. Stable relatedness structure of the large-colony swarm-founding wasp Polybia paulista. Behavioral Ecology and Sociobiology, 58(1): 27-35. https://doi.org/10.1007/s00265-004-0903-5.

Le Conte, Y. & Hefetz, A. 2008. Primer pheromones in social Hymenoptera. Annual Review of Entomology, 53: 523-542.

Lockey, K.H. 1988. Lipids of the insect cuticle: Origin, composition and function. Comparative Biochemistry and Physiology Part B, 89(4): 595-645. https://doi.org/10.1016/0305-0491(88)90305-7.

Lorenzi, M.C.; Bagnères, A.G.; Clément, J.L. & Turillazzi, S. 1997. Polistes biglumis bimaculatus epicuticular hydrocarbons and nestmate recognition (Hymenoptera, Vespidae). Insectes Sociaux, 44: 123-138. https://doi.org/10.1007/s000400050035.

Mendonça, A.; Paula, M.C.; Fernandes, W.D.; Andrade, L.H.C.; Lima, S.M. & Antonialli-Junior, W.F. 2017. Variation in venoms of Polybia paulista Von Ihering and Polybia occidentalis Olivier (Hymenoptera: Vespidae), assessed by the FTIR-PAS technique. Neotropical entomology, 46(1): 8-17. https://doi.org/10.1007/s13744-016-0426-6.

Menzel, F.; Blaimer, B.B. & Schmitt, T. 2017. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proceedings of the Royal Society B: Biological Sciences, 284: 1-10. https://doi.org/10.6084/m9.figshare.c.3666655.

Menzel, F.; Zumbusch, M. & Feldmeyer, B. 2018. How ants acclimate: impact of climatic conditions on the cuticular hydrocarbon profile. Functional Ecology, 32(3): 657-666. https://doi.org/10.1111/1365-2435.13008.

Michelutti, K.B.; Soares, E.R.P.; Sguarizi-Antonio, D.; Piva, R.C.; Súarez, Y.R.; Cardoso, C.A.L. & Antonialli-Junior, W.F. 2018. Influence of temperature on survival and cuticular chemical profile of social wasps. Journal of Thermal Biology, 71: 221-231. https://doi.org/10.1016/j.jtherbio.2017.11.019.

Murakami, A.S.N.; Nunes, T.M.; Desuó, I.C.; Shima, S.N. & Mateus, S. 2015. The cuticular hydrocarbons profiles in the colonial recognition of the neotropical eusocial wasp, Mischocyttarus cassununga (Hymenoptera, Vespidae). Sociobiology, 62(1): 109-115. https://doi.org/10.13102/sociobiology.v62i1.109-115.

O'Donnell, S. 2003. The development of biting interactions and task performance in a tropical eusocial wasp. Behaviour, 140(2): 255-267. https://doi.org/10.1163/156853903321671523.

Oi, C.A.; Van Oystaeyen, A.; Oliveira, R.C.; Millar, J.G.; Verstrepen, K.J.; van Zweden, J.S. & Wenseleers, T. 2015. Dual effect of wasp queen pheromone in regulating insect sociality. Current Biology, 25(12): 1638-1640. https://doi.org/10.1016/j.cub.2015.04.040.

Ortolani, I.; Zechini, L.; Turillazzi, S. & Cervo, R. 2010. Recognition of a paper wasp social parasite by its host: evidence for a visual signal reducing host aggressiveness. Animal Behaviour, 80(4): 683-688. https://doi.org/10.1016/j.anbehav.2010.07.003.

Otte, T.; Hilker, M. & Geiselhardt, S. 2018. Phenotypic plasticity of cuticular hydrocarbon profiles in insects. Journal of Chemical Ecology, 44(3): 235-247. https://doi.org/10.1007/s10886-018-0934-4.

Ramsay, J.A. 1935. The evaporation of water from the cockroach. The Journal of Experimental Biology, 12(4): 373-383. https://doi.org/10.1242/jeb.12.4.373.

Richards, O.W. 1971. The biology of the social wasps (Hymenoptera, Vespidae). Biological Reviews, 46(4): 483-528. https://doi.org/10.1111/j.1469-185X.1971.tb01054.x.

Richards, O.W. 1978. The social wasps of the Americas, excluding the Vespinae. London, British Museum Natural Histoiy. 584p.

Richard, F.J. & Hunt, J.H. 2013. Intracolony chemical communication in social insects. Insectes Sociaux, 60(3): 275-291. https://doi.org/10.1007/s00040-013-0306-6.

Singer, T.L. & Espelie, K.E. 1992. Social wasps use nest paper hydrocarbons for nestmate recognition. Animal Behaviour, 44: 63-68. https://doi.org/10.1016/S0003-3472(05)80755-9.

Singer, T.L. & Espelie, K.E. 1996. Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera: Vespidae). Journal of Insect Behavior, 9(6): 857-870.

Souza, C.L.; dos Santos-Pinto, J.R.A.; Esteves, F.G.; Perez-Riverol, A.; Fernandes, L.G.R.; Zollner, R.L. & Palma, M.S. 2019. Revisiting Polybia paulista wasp venom using shotgun proteomics – insights into the N-linked glycosylated venom proteins. Journal of Proteomics, 200: 60-73. https://doi.org/10.1016/j.jprot.2019.03.012.

Sprenger, P.P.; Burkert, L.H.; Abou, B.; Federle, W. & Menzel, F. 2018. Coping with the climate: Cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. The Journal of Experimental Biology, (171488). https://doi.org/10.1242/jeb.171488.

Starks, P.T.; Fischer, D.J.; Watson, R.E.; Melikian, G.L. & Nath, S.D. 1998. Context-dependent nestmate discrimination in the paper wasp, Polistes dominulus: a critical test of the optimal acceptance threshold model. Animal Behaviour, 56(2): 449-458.

Tannure-Nascimento, I.C.; Nascimento, F.S.; Turatti, I.C.; Lopes, N.P.; Trigo, J.R. & Zucchi, R. 2007. Colony membership is reflected by variations in cuticular hydrocarbon profile in a Neotropical paper wasp, Polistes satan (Hymenoptera, Vespidae). Genetics and Molecular Research, 6(2): 390-396.

TIBCO Software Inc. 2020. Data Science Workbench, version 14. Available: https://www.tibco.com.

Togni, O.C. & Giannotti, E. 2007. Nest defense behavior against the attack of ants in colonies of pre-emergent Mischocyttarus cerberus (Hymenoptera, Vespidae). Sociobiology, 50(2): 675-694.

Turillazzi, S. 2012. Social communication. In: Turillazzi, S. (Ed.). The biology of hover wasps. Berlin, Springer. p. 129-148. https://doi.org/10.1007/978-3-642-32680-6_5.

Valadares, L.; Nascimento, D. & Nascimento, F.S. 2015. Foliar substrate affects cuticular hydrocarbon profiles and intraspecific aggression in the leafcutter ant Atta sexdens. Insects, 6(1): 141-51. https://doi.org/10.3390/insects6010141.

Van Oystaeyen, A.; Oliveira, R.C.; Holman, L.; van Zweden, J.S.; Romero, C.; Oi, C.A.; d'Ettorre, P.; Khalesi, M.; Billen, J.; Wäckers, F.; Millar, J.G. & Wenseleers, T. 2014. Conserved class of queen pheromones stops social insect workers from reproducing. Science, 343: 287-290. https://doi.org/10.1126/science.1244899.

Wagner, D.; Tissot, M. & Gordon, D.M. 2001. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. Journal of Chemical Ecology, 27(9): 1805-1819.

Wigglesworth, V.B. 1945. Transpiration through the cuticle of insects. The Journal of Experimental Biology, 21 (3-4): 97-114.

Zavatini, J.A. 1992. Dinâmica climática no Mato Grosso do Sul. Geografia, 17: 65-91.

Downloads

Published

2022-10-04

Issue

Section

Original Article

How to Cite

Michelutti, K. B., Batista, N. R., Lima-Junior, S. E., Cardoso, C. A. L., & Antonialli-Junior, W. F. (2022). Temperature increase impairs recognition among nestmates in the social wasp Polybia paulista H. von Ihering, 1896 (Vespidae: Polistinae: Epiponini). Papéis Avulsos De Zoologia, 62, e202262059. https://doi.org/10.11606/1807-0205/2022.62.059