Host effect on morphology of the fruit fly Anastrepha zenildae (Diptera: Tephritidae) from the Semi‑Arid region of Rio Grande do Norte

Authors

  • Rafael Pablo Rodrigues Canejo Fundação Oswaldo Cruz (FIOCRUZ). Instituto Oswaldo Cruz (IOC). Laboratório de Entomologia (LABE). Rio de Janeiro, RJ, Brasil https://orcid.org/0000-0003-4296-8936
  • Frederico Wolfang Gonzales Canejo Universidade Federal do Rio Grande do Norte (UFRN). Centro de Biociências (CB). Departamento de Biologia Celular e Genética (DBG). Laboratório de Moscas-das-Frutas. Natal, RN, Brasil https://orcid.org/0009-0007-3203-9777
  • Laiane Lane Lucena de Medeiros Universidade Federal do Rio Grande do Norte (UFRN). Centro de Biociências (CB). Departamento de Botânica e Zoologia (DBEZ). Laboratório de Biologia, Ecologia e Evolução de Crustáceos (LABEEC). Natal, RN, Brasil https://orcid.org/0000-0001-6645-1953
  • João Maria Gomes Alencar de Souza Universidade Federal do Rio Grande do Norte (UFRN). Centro de Biociências (CB). Departamento de Biologia Celular e Genética (DBG). Laboratório de Moscas-das-Frutas. Natal, RN, Brasil https://orcid.org/0009-0005-0904-4864

DOI:

https://doi.org/10.11606/1807-0205/2024.64.014

Keywords:

Fruit flies, Guava, Jua, Semi-Arid, Geometric Morphometry

Abstract

Anastrepha zenildae Zucchi is an important pest in the Semi-Arid region of Rio Grande do Norte and other states in Brazil, with Guava being its main host. Environment induced morphological changes in adult fruit flies can lead to mating incompatibilities among populations within a species. Furthermore, sexual isolation between these populations can be one of the first steps in the speciation process, as described to other tephritid fly species. Here, we compared several body measurements through analysis of variance and geometric morphometrics to assess significant morphological differences between sympatric flies from different hosts: Guava and Jua. We found significant differences in body size for both sexes of flies from the different fruit hosts, with flies from Guava being the larger. Different degrees of sexual size dimorphism of flies from each fruit has also been detected. Flies from different fruits also exhibited different wing shapes, even though the pattern of sexual shape dimorphism remained the same for both fruits. These results show the influence of the host fruits on adult fruit fly morphology, a phenomenon that must be considered when implementing pest control programs such as the Sterile Insect Technique (SIT). Further studies are needed to explore mating preference and genetic structure between these populations.

Downloads

Download data is not yet available.

References

Abouheif, E. & Fairbairn, D.J. 1997. A comparative analysis of allometry for sexual size: assessing Rensch’s Rule. The American Naturalist, 149(3): 540-562. https://doi.org/10.1086/286004.

Albrecht, G.H. 1980. Multivariate analysis and the study of form, with special reference to canonical variate analysis. American Zoologist, 20(4): 679-693. https://doi.org/10.1093/icb/20.4.679.

Almeida, L.M.; Rocha, L.L.; Souza, M.L.; Mendes, N.H.D. & de Souza, J.M.G.A. 2013. Escolha de parceiros sexuais em Anastrepha zenildae (Zucchi, 1979, Diptera: Tephritidae): papel dos caracteres morfológicos. Biotemas, 26(2): 113-120. https://doi.org/10.5007/2175-7925.2013v26n2p113.

Anjos-Duarte, C.S.; Costa, A.M. & Joachim-Bravo, I.S. 2011. Sexual behaviour of the mediterranean fruit fly (Diptera: Tephritidae): The influence of female size on mate choice. Journal of Applied Entomology, 135(5): 367-373. https://doi.org/10.1111/j.1439-0418.2010.01552.x.

Araujo, E.K.; Zucchi, R.A. & Canal, D.N.A. 1996. Caracterização e ocorrência de Anastrepha zenildae Zucchi (Diptera: Tephritidae) e Seus Parasitóides (Hymenoptera: Braconidae) numa nova planta hospedeira, no Rio Grande do Norte. Anais da Sociedade Brasileira Entomológica do Brasil, 25(1): 147-150. https://doi.org/10.37486/0301-8059.v25i1.1105.

Araujo, E.L. & Zucchi, R.A. 2003. Moscas-das-frutas (Diptera: Tephritidae) em Goiaba (Psidium Guajava L.) em Mossoró, RN. Arquivos do Instituto Biológico, 70: 73-77.

Araujo, E.L.; Medeiros, M.K.M.; Silva, M.V. & Zucchi, R.A. 2005. Moscas-das-Frutas (Diptera: Tephritidae) no Semi-Árido do Rio Grande do Norte: Plantas Hospedeiras e Índices de Infestação. Neotropical Entomology, 34(6): 889-894. https://doi.org/10.1590/S1519-566X2005000600003.

Araujo, E.L.; Ribeiro, J.C.; Chagas, M.C.M.; Dutra, V.S. & Silva, J.G. 2013. Moscas-das-frutas (Diptera: Tephritidae) em um pomar de Goiabeira, no Semiárido Brasileiro. Revista Brasileira de Fruticultura, 35(2): 471-476. https://doi.org/10.1590/S0100-29452013000200016.

Bachmann, G.E.; Segura, D.F.; Devescovi, F.; Juárez, M.L.; Ruiz, M.J.; Vera, M.T.; Cladera, J.L.; Teal, P.E.A. & Fernandez, P.C. 2015. Male Sexual Behavior and Pheromone Emission Is Enhanced by Exposure to Guava Fruit Volatiles in Anastrepha fraterculus. PLoS ONE, 10(4): 1-17, e0124250. https://doi.org/10.1371/journal.pone.0124250.

Bomfim, Z.V.; Lima, K.M.; Silva, J.G.; Costa, M.A. & Zucchi, R.A. 2011. A morphometric and molecular study of Anastrepha pickeli Lima (Diptera: Tephritidae). Neotropical Entomology, 40(5): 587-594.

Burk, T. & Webb, J.C. 1983. Effect of male size on calling propensity, song parameters, and mating success in caribbean fruit flies, Anastrepha suspensa (Loew) (Diptera: Tephritidae). Annals of the Entomological Society of America, 76(4): 678-682. https://doi.org/10.1093/aesa/76.4.678.

Cáceres, C.; Segura, D.F.; Vera, M.T.; Wornoayporn, V.; Cladera, J.L.; Teal, P.; Sapountzis, P.; Bourtzis, K.; Zacharopoulou, A. & Robinson, A.S. 2009. Incipient speciation revealed in Anastrepha fraterculus (Diptera; Tephritidae) by studies on mating compatibility, sex pheromones, hybridization, and cytology. Biological Journal of the Linnean Society, 97(1): 152-165. https://doi.org/10.1111/j.1095-8312.2008.01193.x.

Canal, N.A.; Uramoto, K. & Zucchi, R.A. 2013. Two new species of Anastrepha Shiner (Diptera, Tephritidae) Closely related to Anastrepha pickeli Lima. Neotropical Entomology, 42(1): 52-75. https://doi.org/10.1007/s13744-012-0091-3.

Chang, E.S. 2020. Padrões morfológicos das asas em espécies de Anastrepha (Diptera: Tephritidae) associadas a diferentes estratégias de utilização de recursos alimentares. Dissertação de Mestrado. Instituto de Biociências, São Paulo. 69p.

Churchill-Stanland, C.; Stanland, R.; Wong, T.T.Y.; Tanaka, N.; McInnis, D.O. & Dowell, R.V. 1986. Size as a factor in the mating propensity of mediterranean fruit flies, Ceratitis capitata (Diptera: Tephritidae), in the Laboratory. Journal of Economic Entomololgy, 79(3): 614-619. https://doi.org/10.1093/jee/79.3.614.

Cladera, J.L.; Vilardi, J.C.; Juri, M.; Paulin, L.E.; Giardini, M.C.; Gómez-Cendra, P.V.; Segura, D.F. & Lanzavecchia, S.B. 2014. Genetics and biology of Anastrepha fraterculus: Research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina. BMC Genetics, 15(1): 1-14. https://doi.org/10.1186/1471-2156-15-S2-S12.

Dodson, G. 1985. The significance of sexual dimorphism in the mating system of two species of tephritid flies (Aciurina trixa and Valentibulla dodsoni) (Diptera: Tephritidae). Canadian Journal of Zoology, 65(1): 194-198. https://doi.org/10.1139/z87-028.

Drake, A.G. & Klingenberg, C.P. 2008. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Sociecty B, 275: 71-76. https://doi.org/10.1098/rspb.2007.1169.

Dres, M. & Mallet, J. 2002. Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society B, 357(1420): 471-492. https://doi.org/10.1098/rstb.2002.1059.

Dryden, I.L. & Mardia, K.V. 1998. Statistical Shape Analysis: Wiley Series in Probability and Statistics. New York, Wiley.

Feder, J.L. & Forbes, A.A. 2010. Sequential speciation and the diversity of parasitic insects. Ecological Entomology, 35: 67-76. https://doi.org/10.1111/j.1365-2311.2009.01144.x.

Gomez-Cendra, P.V.; Paulin, L.E.; Oroño, L.; Ovruski, S.M. & Vilardi, J.C. 2016. Morphometric differentiation among Anastrepha fraterculus (Diptera: Tephritidae) exploiting sympatric alternate hosts. Environmental Entomology, 45(2): 508-517. https://doi.org/10.1093/ee/nvv224.

Hernández-Ortiz, V.; Canal, N.A.; Salas, J.O.T.; Ruiz-Hurtado, F.M. & Dzul-Cauich, J.F. 2015. Taxonomy and phenotypic relationships of the Anastrepha fraterculus complex in the Mesoamerican and Pacific Neotropical dominions (Diptera, Tephritidae). ZooKeys, 540: 95-124. https://doi.org/10.3897/zookeys.540.6027.

Jolliffe, I.T. 2002. Principal component analysis. New York, Springer-Verlag.

Klingenberg, C.P. 2011. MORPHOJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2): 353-357. https://doi.org/10.1111/j.1755-0998.2010.02924.x.

Krainacker, D.A.; Carey, J.R. & Vargas, R.I. 1987. Effect of larval host on life history traits of the mediterranean fruit fly, Ceratitis capitata. Oecologia, 73(4): 583-590. https://doi.org/10.1007/BF00379420.

Kumaran, N.; Hayes, R.A. & Clarke, A.R. 2014. Cuelure but not zingerone make the sex pheromone of male Bactrocera tryoni (Tephritidae: Diptera) more attractive to females. Journal of Insect Physiology, 68: 36-43. https://doi.org/10.1016/j.jinsphys.2014.06.015.

Lemic, D.; Benítez, H.A.; Bjeliš, M.; Órdenes-Claveria, R.; Ninčević, P.; Mikac, K.M. & Živković, I.P. 2020. Agroecological effect and sexual shape dimorphism in medfly Ceratitis capitata (Diptera: Tephritidae) an example in Croatian populations. Zoologischer Anzeiger, 288: 118-124. https://doi.org/10.1016/j.jcz.2020.08.005.

Macedo, M.P. 2017. Morfometria geométrica alar como ferramenta para a identificação de três espécies de califorídeos (Diptera: Calliphoridae) no Cerrado Brasileiro. EntomoBrasilis, 10(1): 9-13. https://doi.org/10.12741/ebrasilis.v10i1.655.

Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends in Ecology & Evolution, 11(6): 235-238. https://doi.org/10.1016/0169-5347(96)10036-7.

Navarro-Campos, C.; Martínez-Ferrer, M.T.; Campos, J.M.; Fibla, J.M.; Alcaide, J.; Bargues, L.; Marzal, C. & Garcia-Marí, F. 2011. The influence of host fruit and temperature on the body size of adult Ceratitis capitata (Diptera: Tephritidae) under laboratory and field conditions. Environmental Entomology, 40(4): 931-938. https://doi.org/10.1603/EN10302.

Neto, A.M.S.; Dias, V.S. & Joachim-Bravo, I.S. 2012. Comportamento reprodutivo de Ceratitis capitata Wiedemann (Diptera: Tephritidae): efeito do tamanho dos machos sobre o seu sucesso de cópula. EntomoBrasilis, 5(3): 190-197. https://doi.org/10.12741/ebrasilis.v5i3.182.

Norrbom, A.L.; Korytkowski, C.A.; Zucchi, R.A.; Uramoto, K.; Venable, G.L.; McCormick, J. & Dallwitz, M.J. 2012. Anastrepha and Toxotrypana: descriptions, illustrations, and interactive keys. Version: 9th April 2019. https://www.delta-intkey.com.

Norrbom, A.L.; Rodriguez, E.J.; Steck, G.J.; Sutton, B.A. & Nolazco, N. 2015. New species and host plants of Anastrepha (Diptera: Tephritidae) primarily from Peru and Bolivia. Zootaxa, 4041: 1-94. https://doi.org/10.11646/zootaxa.4041.1.1.

Oroño, L.; Paulin, L.; Alberti, A.C.; Hilal, M.; Ovruski, S.; Vilardi, J.C.; Rul, J. & Aluja, M. 2013. Effect of host plant chemistry on genetic differentiation and reduction of gene flow among Anastrepha fraterculus (Diptera: Tephritidae) populations exploiting sympatric, synchronic hosts. Environmental Entomology, 42(4): 790-798. https://doi.org/10.1603/EN13020.

Orozco, D. & Lopez, R.O. 1993. Mating competitiveness of wild and laboratory mass-reared medflies: effect of male size. In: Aluja, M. & Liedo, P. Fruit flies: biology and management. Springer. p. 185-188. https://doi.org/10.1007/978-1-4757-2278-9_34.

Pereira-Rego, D.R.G.; Jahnke, S.M.; Redaelli, L.R. & Shaffer, N. 2011. Morfometria de Anastrepha fraterculus (Wied) (Diptera: Tephritidae) relacionada a hospedeiros nativos, Myrtaceae. Arquivos do Instituto Biológico, 78(1): 37-43. https://doi.org/10.1590/1808-1657v78p0372011.

Perre, P. 2016. Utilização diferencial de frutos hospedeiros por Anastrepha sp.1 affinis fraterculus (Diptera, Tephritidae): aspectos morfologicos e reprodutivos. Doctoral Thesis, Instituto de Biociências. Universidade de São Paulo, São Paulo, 124p.

Perre, P.; Jorge, L.R.; Lewinsohn, T.M. & Zucchi R.A. 2014. Morphometric differentiation of fruit fly pest species of the Anastrepha fraterculus group (Diptera: Tephritidae) Entomological Society of America, 107(2): 490-495. https://doi.org/10.1603/AN13122.

Pieterse, W.; Benitez, H.A. & Addison, P. 2017. The use of geometric morphometric analysis to illustrate the shape change induced by different fruit hosts on the wing shape of Bactrocera dorsalis and Ceratitis capitata (Diptera: Tephritidae). Zoologischer Anzeiger, 269(1): 110-116. https://doi.org/10.1016/j.jcz.2017.08.004.

Querino, R.B.; Maia, J.B.; Lopes, G.N.; Alvarenga, C.D. & Zucchi, R.A. 2014. Fruit fly (Diptera: Tephritidae) community in Guava Orchards and adjacent fragments of native vegetation in Brazil. Florida Entomologist, 97(2): 778-786. https://doi.org/10.1653/024.097.0260.

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org.

Reis, M.; Siomava, N.; Wimmer, E.A. & Posnien, N. 2021. Conserved and divergent aspects of plasticity and sexual dimorphism in wing size and shape in three diptera. Frontiers in Ecology and Evolution, 9: 1-18. https://doi.org/10.3389/fevo.2021.660546.

Rensch, B. 1950. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergröße. Bonner Zoologische Beitrag, 1: 58-69.

Robledo, N. & Arzuffi, R. 2012. Influence of host fruit and conspecifics on the release of the sex pheromone by Toxotrypana curvicauda Males (Diptera: Tephritidae). Environmental Entomology, 41(2): 387-391. https://doi.org/10.1603/EN11037.

Rodriguero, M.S.; Vilardi, J.C.; Vera, M.T.; Cayol, J.P. & Rial, E. 2002. Morphometric traits and sexual selection in medfly (Diptera: Tephritidae) under field cage conditions. Florida Entomologist, 85(1): 143-149. https://doi.org/10.1653/0015-4040(2002)085[0143:MTASSI]2.0.CO;2.

Rohlf, F.J. 2008. tpsUtil, File Utility Program. Department of Ecology and Evolution, State University of New York at Stony Brook version 1.40.

Rohlf, F.J. 2010. TpsDig, version 2.16: a program for digitizing landmarks and outlines for geometric. Avaliable: http://life.bio.sunysb.edu/morph/index.html.

Rohlf, F.J. & Slice, D. 1990. Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39(1): 40-59. https://doi.org/10.2307/2992207.

Rollinson, N. & Rowe, L. 2015. The positive correlation between maternal size and offspring size: fitting pieces of a life-history puzzle. Biological Reviews, 91(4): 1134-1148. https://doi.org/10.1111/brv.12214.

Selivon, D.; Perondini, A.L.P. & Morgante, J.S. 2004. A genetic-morphological characterization of two cryptic species of the Anastrepha fraterculus Complex (Diptera: Tephritidae). Annals of the Entomological Society of America, 98(3): 367-381. https://doi.org/10.1603/0013-8746(2005)098[0367:AGCOTC]2.0.CO;2.

Shelly, T.E. 2018. Larval host plant influences male body size and mating success in a tephritid fruit fly. Entomologia Experimentalis et Applicata, 166(1): 41-52. https://doi.org/10.1111/eea.12639.

Sicuriano, R.; Segura, D.; Rodriguero, M.; Gomez-Cendra, P.; Allinghi, A.; Cladera, J.L. & Vilardi, J. 2007. Sexual Selection on Multivariate Phenotypes in Anastrepha fraterculus (Diptera: Tephritidae) from Argentina. Florida Entomologist, 90(1): 163-170. https://doi.org/10.1653/0015-4040(2007)90[163:SSOMPI]2.0.CO;2.

Sivinski, J.M. & Calkins, C.O. 1990. Sexually dimorphic developmental rates in the Caribbean fruit fly (Diptera: Tephritidae). Environmental Entomology. 19(5): 1491-1495. https://doi.org/10.1093/ee/19.5.1491.

Sivinski, J.M. & Dodson, G. 1992. Sexual dimorphism in Anastrepha suspensa (Loew) and other Tephritid fruit flies (Diptera: Tephritidae): possible roles of developmental rate, fecundity, and dispersal. Journal of lnsect Behavior, 5(4): 491-506. https://doi.org/10.1007/BF01058194.

Soto, I.M.; Soto, E.M.; Corio, C.; Carreira, V.P.; Manfrin, M. & Hasson, E. 2010. Male genital and wing morphology in the cactophilic sibling species Drosophila gouveai and Drosophila antonietae and their hybrids reared in different host plants. Environmental Entomology, 39(3): 865-873. https://doi.org/10.1603/EN09300.

Souza, A.L.S.; Multini, L.C.; Marrelli, M.T. & Wilke, A.B.B. 2020. Wing geometric morphometrics for identification of mosquito species (Diptera: Culicidae) of neglected epidemiological importance. Acta Tropica, 211: 10p. https://doi.org/10.1016/j.actatropica.2020.105593.

Taylor, P.W. & Yuval, B. 1999. Poscopulatory sexual selection in Mediterranean fruit flies: advantages for large and protein-fed males. Animal Behaviour, 58(2): 247-254. https://doi.org/10.1006/anbe.1999.1137.

Timm, N.H. 2002. Applied multivariate analysis. New York, Springer.

Vera, M.T.; Cáceres, C.; Wornoayporn, V.; Islam, A.; Robinson, A.S.; De La Vega, M.H.; Hendrichs, J. & Cayol, J.P. 2006. Mating incompatibility among populations of the south american fruit fly Anastrepha fraterculus (Diptera: Tephritidae). Annals of the Entomological Society of America, 99(2): 387-397. https://doi.org/10.1603/0013-8746(2006)099[0387:MIAPOT]2.0.CO;2.

White, I.M. & Elson-Harris, M.M. 1992. Fruit flies of economic significance, their identification and bionomics. CAB International, Wallingford, UK. 601p. https://doi.org/10.1079/9780851987903.0000.

Zhou, Y.; Rodriguez, J.; Fisher, N. & Catullo, R.A. 2020. Ecological drivers and sex-based variation in body size and shape in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). Insects, 11(6): 390. https://doi.org/10.3390/insects11060390.

Downloads

Published

2024-04-09

Issue

Section

Original Article

How to Cite

Canejo, R. P. R., Canejo, F. W. G., Medeiros, L. L. L. de, & Souza, J. M. G. A. de. (2024). Host effect on morphology of the fruit fly Anastrepha zenildae (Diptera: Tephritidae) from the Semi‑Arid region of Rio Grande do Norte. Papéis Avulsos De Zoologia, 64, e202464014. https://doi.org/10.11606/1807-0205/2024.64.014

Funding data