Short Communication

Phylogenetic position of two species of the Liolaemus elongatus-kriegi Complex and a new northern limit for L. buergeri (Squamata: Liolaemidae)

Jaime Troncoso-Palacios, ${ }^{1}$ Yery Marambio-Alfaro, ${ }^{2,3}$ Diego Ramírez-Alvarez, ${ }^{4}$ and Jorge Valdés Saavedra ${ }^{2}$
${ }^{1}$ Laboratorio de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile. Avda. Independencia 1027, Casilla 70005, Santiago, Chile. E-mail: jtroncosopalacios@gmail.com.
${ }^{2}$ Laboratorio de Sedimentología y Paleoambientes. Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta. Avda. Universidad de Antofagasta 02800, Chile.
${ }^{3}$ Parménides Limitada. Avda. Batallones de Atacama 112, Caldera, Atacama, Chile.
${ }^{4}$ Servicio Agrícola y Ganadero de la Región de O’Higgins. Cuevas 480, Rancagua, Chile.

Keywords: Chile, cytochrome b, Liolaemus scorialis, Liolaemus zabalai, lizards.
Palavras-chave: Chile, citocromo b, lagartos, Liolaemus scorialis, Liolaemus zabalai.

Liolaemus is an extraordinarily diverse lizard genus containing 257 species (Abdala and Quinteros 2014). The genus has been split into several groups (e.g. Lobo et al. 2010) of which the L. elongatus-kriegi Complex (Cei 1979) is one of the most characteristic in the Patagonian region of Chile and Argentina (Esquerré et al. 2013). This complex is composed of four clades: L. elongatus Koslowsky, 1896, L. kriegi Müller and Hellmich, 1939, L. petrophilus Donoso-Barros and Cei, 1971, and L. punmahuida Avila, Perez, and Morando, 2003 (Avila et al. 2012). Troncoso-Palacios et al. (2015) described two species in this complex based in

Received 29 November 2018
Accepted 23 April 2019
Distributed June 2019
morphological features; both—L. scorialis Troncoso-Palacios, Díaz, Esquerré, and Urra, 2015 and L. zabalai Troncoso-Palacios, Díaz, Esquerré, and Urra, 2015-are from the surroundings of the Laja Lagoon in the region of Biobío, Chile. The authors proposed that L. scorialis might belong to either the L. elongatus or L. kriegi clade, but the lack of molecular data did not allow them to determine its phylogenetic position. Besides, Troncoso-Palacios et al. (2015) description of L. zabalai was based on a population previously assigned to L. kriegi by Donoso-Barros (1974). They suggested that this population also corresponds to the candidate species Liolaemus sp. A of the L. kriegi Clade, proposed by Morando et al. (2003), with a distribution that includes the type locality of L. zabalai; however, in the absence of molecular data of the type specimens of L. zabalai,

Troncoso-Palacios et al. (2015) could not confirm this supposition. In a phylogenetic study based on cytochrome b (cyt-b) obtained from two paratypes of L. scorialis, Troncoso-Palacios et al. (2018) found that L. scorialis belonged to the L. elongatus Clade; however, the relationship of L. zabalai remains unknown.

Here, we provide for first time cyt-b data for the holotype of L. zabalai and discuss its phylogenetic relationships. We also provide comments about L. buergeri Werner, 1907 and L. scorialis, with the latter being based on cyt-b data of two paratypes.

Laboratory procedures for DNA extraction, amplification, and sequencing are the same as those of Troncoso-Palacios et al. (2016). We generated cyt-b data for the holotype of L. zabalai and two specimens identified as L. buergeri from Los Humos ($34^{\circ} 50^{\prime} \mathrm{S}, 70^{\circ} 26^{\prime} \mathrm{W}$). Sequences of L. elongatus from Lonquimay Volcano were provided by G. Escobar-Huerta, and other sequences were taken from GenBank. The L. kriegi Clade was represented by sequences for L. buergeri, L. kriegi, L. tregenzai PincheiraDonoso and Scolaro, 2007, and the candidate species Liolaemus sp. A, Liolaemus sp. B, Liolaemus sp. C (Morando et al. 2003) and Liolaemus sp. D (Medina et al. 2014). The sequences for L. buergeri from GenBank include data for lizards from the type locality of El Planchón, Chile (generated by Medina et al. 2014). The L. elongatus Clade was represented by the following taxa: L. antonietae TroncosoPalacios, Esquerré, Urra, Díaz, Castro-Pastene, and Ruiz, 2018; L. antumalguen Avila, Morando, Perez, and Sites, 2010; L. burmeisteri Avila, Perez, Medina, Sites, and Morando, 2012; L. carlosgarini Esquerré, Núñez, and Scolaro, 2013; L. crandalli Avila, Medina, Perez, Sites, and Morando, 2015; L. curis Núñez and Labra, 1985; L. elongatus; L. janequeoae TroncosoPalacios, Díaz, Puas, Riveros-Riffo, and Elorza, 2016; L. leopardinus Müller and Hellmich, 1932; L. scorialis; L. smaug Abdala, Quinteros, Scrochii, and Stazzonelli, 2010; and the candidate species Liolaemus sp.1, Liolaemus sp.2,

Liolaemus sp.3, Liolaemus sp. 6A, Liolaemus sp. 6B (Medina et al. 2017) and Liolaemus sp. "Lircay" (Troncoso-Palacios et al. 2018). We consider Liolaemus sp. 7 (Morando et al. 2003) to be conspecific with L. antumalguen following Troncoso-Palacios et al. (2018). Accession numbers of the cyt-b mitochondrial sequences generated in this study and the sequences obtained from GenBank are in Appendix I. Sequences were aligned using the Software MUSCLE (Edgar 2004) included in MEGA v.6. For each terminal (described or candidate species) we identified the haplotypes using DnaSP v5.10 (Librado and Rozas 2009), keeping only one sequence of each haplotype in the Bayesian inference (BI) analyses. We used JModelTest v2.1.7 (Guidon and Gascuel 2003, Darriba et al. 2012) to select a substitution model ($\mathrm{HKY}+\mathrm{G}+\mathrm{I}$) and performed a BI analyses with MrBayes v3.2.6 (Ronquist et al. 2012) with two independent analyses, each consisting of two groups of four chains that ran independently. These were run for 15×10^{6} generations, sample frequency $=1000$. Phymaturus vociferator Pincheira-Donoso, 2004 was the outgroup. The initial 25% of the samples were discarded as burn-in when calculating the convergence diagnostic, assessed by examining values of average standard deviation of the Potential Scale Reduction Factor (PSRF $=1.000$ for all parameters; Gelman and Rubin 1992) and the minimum and average Estimated Sample Size ($\mathrm{ESS}>5000$ for all parameters).

Our results (Figure 1) are highly congruent with previous cyt-b phylogenies (Avila et al. 2012, Troncoso-Palacios et al. 2018) and multilocus phylogenies (Avila et al. 2015, Medina et al. 2017). Liolaemus buergeri was recovered as monophyletic (posterior probability $=1$) and our samples (Colección de la Pontificia Universidad Católica de Chile, SSUC Re 776 and 777; Figure 2) expand its northern distributional limit to Los Humos, in the region of O`Higgins, Chile, more than 33 km (airline) from the current northern limit in its type locality El Planchón in the region of Maule, Chile

Figure 1. Phylogenetic relationships using Bayesian inference (50% consensus tree) based on cyt-b (HKY + G + I). In red: new northern limit for Liolaemus buergeri, L. zabalai holotype and two L. scorialis paratypes. In blue: samples of L. carlosgarini. Posterior probabilities are indicated. Scale shows the number of changes per site. Numbers between parentheses indicate the number of sequences collapsed of each node. Outgroups (P. vociferator, L. petrophilus clade, and L. punmahuida clade) are not shown.

Figure 2. Specimens of Liolaemus buergeri from Los Humos (new record). (A) Dorsal view of SSUC Re 776. (B) Dorsal view of SSUC Re 777. (C) Side view of SSUC Re 776.
($35^{\circ} 08^{\prime} \mathrm{S}$; 70 $31^{\prime} \mathrm{W}$; Werner 1907). This new record was suggested by Troncoso-Palacios et al. (2011) in an unreviewed naturalist publication, but was not substantiated by evidence.

The holotype of Liolaemus zabalai and all sequences of Liolaemus sp. A form a strongly supported node (posterior probability $=1$), thereby confirming the conspecific status of these specimens. In addition, the placement of L. zabalai in the L. kriegi Clade, as was proposed by Troncoso-Palacios et al. (2016), is confirmed.

The taxonomic relationships of Liolaemus scorialis are complex. In our phylogeny, L. scorialis is related to L. carlosgarini. However, the latter was paraphyletic in a cyt-b phylogeny (Troncoso-Palacios et al. 2016) and in a concatenated mtDNA + nuclear DNA phylogeny (Medina et al. 2018; p. 164). We found that L. carlosgarini was represented in two disparate clades (Figure 1); one is closely allied with L. smaug, whereas the other is closely related to Liolaemus sp.1. In contrast, in our phylogeny, L. scorialis is nested in a node with strong support (posterior probability $=1$) which has three main clades (Figure 1). Clade A (posterior probability = $0.58)$ is formed by part of L. scorialis + part of L. carlosgarini + part of Liolaemus sp.1. Clade B (posterior probability $=1$) is composed of part of L. scorialis (including the paratypes) + part of Liolaemus sp.1. Clade C (posterior probability $=$ 1) contains sequences of Liolaemus sp. "Lircay". The description of L. carlosgarini (Esquerré et al. 2013) was based on a morphological cladistic analysis which did not include L. smaug, but did include data from the taxon's description (Abdala et al. 2010) in the diagnosis. Additionally, Esquerré et al. (2013; p. 433) pointed out that L. carlosgarini and L. smaug have "striking exomorphological similarity" and that "[L. smaug] is found relatively close to the type locality of L. carlosgarini." We propose two hypotheses that require further research. In the first hypothsis, L. scorialis, L. carlosgarini, and Liolaemus sp. "Lircay" are full species, but L. carlosgarini show evidence of introgression from L. scorialis and from L. smaug. This should be explored with a
multilocus DNA study in conjunction with morphological comparisons based on the examination of vouchers of both species to diagnose L. carlosgarini from L. smaug, and then Liolaemus sp. "Lircay" should be described. In the second hypothesis, L. scorialis and Liolaemus sp. "Lircay" are conspecific, and L. carlosgarini is a hybrid generated from L. scorialis and L. smaug. These issues need to be clarified because if L. carlosgarini is based on hybrid specimens, then it is an unavailable name (ICZN 1999, Art. 1.3), but if L. carlosgarini is a taxon of hybrid origin, then it is an available name (ICZN 1999, Art. 17.2). Although our phylogeny is based on a single molecular marker, the fact that the same paraphyletic result for L. carlosgarini was found in a multilocus phylogeny (Medina et al. 2018) strongly suggests that this pattern is not related to the lack of informative characters in our phylogeny. Although it is not possible reach a conclusion at the moment on the validity of either of these hypotheses, we hope that additional research will resolve this issue.

Acknowledgments.-We thank M. Penna (Laboratorio de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile) for his support and P. Zavala (Pontificia Universidad de Católica de Chile) for allowing us to deposit material in the SSUC Collection. We are grateful to F . Tillack for providing literature and to I. Salgado, R. Silva, and D. Terán for their field assistance in the field, and we thank anonymous reviewers for their constructive corrections as well to Linda Trueb for the English correction and her comments. We are indebted to the Servicio Agrícola y Ganadero (SAG, Chile) for authorizing the capture of specimens by permit number 1692/2015.

References

Abdala, C. S. and A. S. Quinteros. 2014. Los últimos 30 años de estudios de la familia de lagartijas más diversa de Argentina. Actualización taxonómica y sistemática de Liolaemidae. Cuadernos de Herpetología 28: 55-82.

Abdala, C. S., A. S. Quinteros, G. J. Scrocchi, and J. C. Stazzonelli. 2010. Three new species of the Liolaemus elongatus group (Iguania: Liolaemidae) from Argentina. Cuadernos de Herpetología 24: 93-109.

Avila, L. J., C. H. Fulvio-Pérez, C. D. Medina, J. W. Sites Jr., and M. Morando. 2012. A new species of lizard of the Liolaemuselongatusclade(Reptilia: Iguania: Liolaemini) from Curi Leuvu River Valley, northern Patagonia, Neuquén, Argentina. Zootaxa 3325: 37-52.

Avila, L. J., C. D. Medina, C. H. Fulvio-Pérez, J. W. Sites Jr., and M. Morando. 2015. Molecular phylogenetic relationships of the lizard clade Liolaemus elongatus (Iguania: Liolaemini) with the description of a new species from an isolated volcanic peak in northern Patagonia. Zootaxa 3947: 67-84.

Cei, J. M. 1979. The Patagonian Herpetofauna. Pp. 309-339 in W. E. Duellman (ed.), The South American Herpetofauna: Its Origin, Evolution, and Dispersal. Lawrence. Museum of Natural History, University of Kansas.

Darriba, D., G. L. Taboada, R. Doallo, and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

Donoso-Barros, R. 1974. Notas Herpetológicas. Boletín de la Sociedad de Biología de Concepción 47: 285-287.

Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.

Esquerré, D., H. Núñez, and J. A. Scolaro. 2013. Liolaemus carlosgarini and Liolaemus riodamas (Squamata: Liolaemidae), two new species of lizards lacking precloacal pores, from Andean areas of Central Chile. Zootaxa 3619: 428-452.

Gelman, A. and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7: 457-511.

Guindon, S. and O. Gascuel. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696-704.

Librado, P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.

Lobo, F., R. E. Espinoza, and A. S. Quinteros. 2010. A critical review and systematic discussion of recent classification proposals for liolaemid lizards. Zootaxa 2549: 1-30.

Medina, C. D., L. J. Avila, J. W. Sites Jr, and M. Morando. 2014. Multilocus phylogeography of the Patagonian
lizard complex Liolaemus kriegi (Iguania: Liolaemini). Biological Journal of the Linnean Society 113: 256269.

Medina, C. D., L. J. Avila, J. W. Sites Jr., and M. Morando. 2017. Phylogeographic history of Patagonian lizards of the Liolaemus elongatus complex (Iguania: Liolaemini) based on mitochondrial and nuclear DNA sequences. Journal of Zoological Systematics and Evolutionary Research 55: 238-249.

Medina, C. D., L. J. Avila, J. W. Sites Jr., J. Santos, and M. Morando. 2018. Alternative methods of phylogenetic inference for the Patagonian lizard group Liolaemus elongatus-kriegi (Iguania: Liolaemini) based on mitochondrial and nuclear markers. Molecular Phylogenetics and Evolution 120: 158-169.

Morando, M., L. J. Avila, and J. W. Sites Jr. 2003. Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongatus-kriegi complex (Squamata: Liolaemidae) in Andean-Patagonian South America. Systematic Biology 52: 159-185.

Ronquist F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.

Troncoso-Palacios, J., R. Silva, and D. Terán. 2011. Nuevos registros para dos especies de lagartos (Liolaemus) en la zona Central de Chile. La Chiricoca 13: 9-13.

Troncoso-Palacios, J., H. A. Díaz, D. Esquerré, and F. A. Urra. 2015. Two new species of the Liolaemus elongatus-kriegi complex (Iguania, Liolaemidae) from Andean highlands of southern Chile. ZooKeys 500: 83109.

Troncoso-Palacios, J., H. A. Díaz, G. I. Puas, E. RiverosRiffo, and A. A. Elorza. 2016. Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae). ZooKeys 632: 121146.

Troncoso-Palacios, J., D. Esquerré, F. A. Urra, H. A. Díaz, C. Castro-Pastene, and M. S. Ruiz. 2018. The true identity of the new world iguanid lizard Liolaemus chillanensis Müller and Hellmich 1932 (Iguania: Liolaemidae) and description of a new species in the Liolaemus elongatus group. Zoological Studies 57: 22.

Werner, F. 1907. Estudios sobre reptiles chilenos. Anales Universidad de Chile 121: 147-155.

Editor: Jaime Bertoluci

Appendix I. Sequences used in the phylogeny.
Sequences generated in this study: Liolaemus buergeri SSUC Re 776 (MK838610), SSUC Re 777 (MK838611), L. zabalai SSUC Re 600 (MK838612).

Sequences obtained from GenBank. For each terminal we used only non-redundant haplotypes (representative haplotypes are in bold): L. kriegi clade. L. buergeri: KJ494070, KJ494071, KJ494072, KJ494079, KJ494066, KJ494062, KJ494069. L. kriegi: AY173802, AY173814, KJ494012, KJ494027, KJ494028, KJ494049, KJ494076, KJ494150, KJ494155, KJ494186, KJ494188, KJ494190, KJ494191, KJ494223, KJ494235. L. tregenzai: KJ494230, KJ494037, KJ494038, KJ494039, KJ494040, KJ494036. Liolaemus sp.A: KJ494032, KJ494052, KJ494056, KJ494057, KJ494058, KJ494060, KJ494061, KJ494073, KJ494084, KJ494074, KJ494087, KJ494085. Liolaemus sp. B: KJ494192, KJ494220, KJ494193, KJ494213. KJ494224, KJ494225, KJ494236, KJ494237, KJ494238, KJ494239, KJ494240, KJ494241, KJ494242, KJ494243. Liolaemus sp. C: KJ494009, KJ494010, KJ494019, KJ494022, KJ494212. Liolaemus sp. D: KJ494122, KJ494194, KJ494196, KJ494214, KJ494215. L. elongatus clade. L. antonietae: AY529901, AY730669, AY730673, AY850621, KY127643, KY127644, KY127645, KY127648, KY127649, KY127650, KY127651, KY127652, KY127730, KY127731, KY127963, KY127964, KY127965, KY127969, KY127970, MH178605, MH178606, MH178607. L. antumalguen: KY128092, KP121325, KP121335, KY128015, KY128017, KY128020. AY173580, KY127620, KY127622, KY127623, KY127624, KY127625, KY127627, KY127628, KY127629, KY127630, KY127654, KY127658, KY127795, KY127796, KY127797, KY127807, KY127808, KY127809, KY127810, KY127811, KY127813, KY127814, KY127815, AY173823, KY127827, KY127923, KY127924, KY127925, KY127926, KY127927, KY127928, KY127929, KY127931, KY127934, KY127936, KY127937, KY128082, KY128083, KY128084, KY128085, KY128088, KY128091. L. burmeisteri: KP121327, KP121328, KY127939, KY127941. L. carlosgarini: KY127736, KY127737, KY127738, KY127739, KY127740, KY127849, KY127850, MH178578, MH178579, MH178580, MH178581. L. crandalli: KY127616, KY127617, KY127631, KY127632, KY127633, KY127634, KY127660, KY127661, KY127662, KY127664, KY127665, KY127668, KY127669, KY127670, KY127672, KY127675, KY127676, KY127677, KY127700, KY127702, KY127703, KY127704, KY127761, KY127762, KY127764, KY127765, KY127766, KY127678. L. curis: MH178584, MH178585, MH178586, MH178587. L. elongatus: AY173557, AY173564, AY173568, AY173571, AY173585, AY173704, AY173798, AY173803, AY173806, AY173809, AY173815, AY173818, AY173826, AY173827, AY173840, AY173848, AY173853, AY173854, AY173855, KY127635, KY127637, KY127638, KY127639, KY127640, KY127641, KY127642, KY127657, KY127679, KY127681, KY127684, KY127687, KY127688, KY127689, KY127693, KY127695, KY127696, KY127697, KY127706, KY127708, KY127759, KY127768, KY127769, KY127770, KY127771, KY127774, KY127775, KY127776, KY127777, KY127778, KY127780, KY127781, KY127782, KY127783, KY127787, KY127790, KY127803, KY127805, KY127820, KY127828, KY127837, KY127839, KY127841, KY127842, KY127851, KY127852, KY127853, KY127854, KY127857, KY127858, KY127859, KY127860, KY127862, KY127866, KY127869, KY127874, KY127875, KY127878, KY127880, KY127884, KY127887, KY127891, KY127892, KY127894, KY127895, KY127897, KY127905, KY127908, KY127909, KY127910, KY127912, KY127914, KY127916, KY127919, KY128027, KY128053, KY128054, KY128056, KY127974, KY127975, KY127976, KY127977, KY127978, KY127979, KY127980, KY127981, KY127982, KY127985, KY127986, KY127988, KY127990, KY127993, KY127994, KY127995, KY127996, KY127997, KY127998, KY127999, KY128000, KY128001, KY128024, KY128025, KY128039, KY128040, KY128051, KY128062, KY128064, KY128068, KY128115, KY128116, KY128117, KY128118, KY128119, KY128120, KY128121, KY128123, KY128124, KY128125, KY128128, KY128130, KY128131, KY128132, KY128134, KY128137, KY128138, KY128139, KY128147, KY128150, KY128151, KY128156, KY128163, KY128164, KY128169, KY128170, MH178588, MH178589. L. janequeoae: MH178590, MH178591, MH178592. L. leopardinus: MH178596. L. scorialis: EU649244, KY127725, KY127727, MH178603, MH178604. L. smaug: AY173598, AY173599, AY173600, AY173601, AY173603, AY173691, AY367806, AY173830, KP121329, KY127758, KY127773, KY127821, KY127823, KY127824, KY127825, KY127834, KY127835, KY128002, KY128003, KY128006, KY128008, KY128011, KY128012, KY128093, KY128098, KY128100, KY128104, KY128105, KY128106, KY128165, KY128166. Liolaemus sp.1: KY127663, KY127741, KY127744, KY127748, KY127749, KY127751, KY127753, KY127754, KY127946, KY127948, KY127949, KY127950, KY127951, KY127954, KY127955, KY127957, KY127958, KY127961, KY127966, KY127967, KY127968, KY127972, KY127973, KY128030, KY128032, KY128034, KY128036, KY128041, KY128043, KY128167. Liolaemus sp.2: KY128107, KY128108, KY128110. Liolaemus sp.3: KY127711, KY127713, KY127714. L. sp. 6 (A+B): AY173595, AY173719, AY173816, KY127717, KY127718, KY127756, KY127791, KY127792, KY127794, KY127798, KY127799, KY127800, KY127844, KY127917, KY127971. Liolaemus sp. Lircay: KY127741, KY127744, MH178608. L. petrophilus clade. L. austromendocinus. AY173547, AY173550, AY173551, AY367815, AY173838, AY173839. L. capillitas. AY173844. L. dicktracy. AY367816. L. gununakuna. AY173859. L. parvus. AY173836. L. petrophilus. JN847103, JN847211, AY173796. L. talampaya. AY173797. L. tulkas. AY367813. L. umbrifer. AY367814. L. punmahuida clade. L. flavipiceus: MG660006. L. punmahuida: KP121336. Phymaturus vociferator: JX969016.

