Relação entre ponto de ruptura e padrão morfométrico em deslizamentos, bacia hidrográfica do Rio Rolante - RS

Autores

DOI:

https://doi.org/10.11606/eISSN.2236-2878.rdg.2021.181554

Palavras-chave:

Movimentos de massa, K-means, Declividade, Curvatura de vertentes

Resumo

Grande parte dos deslizamentos no Brasil são relacionados a eventos pluviométricos extremos, ao tipo e espessura de solo e às características do relevo, e frequentemente causam perdas sociais e danos econômicos. O presente trabalho teve como objetivo analisar a relação entre pontos de ruptura (coroa) e parâmetros morfométricos de deslizamentos, relativos a um evento hidrometeorológico extremo, na bacia hidrográfica do Rio Rolante - RS. A partir de imagens SRTM 30m, foram obtidos dados de declividade, elevação, curvatura horizontal e vertical e aspecto. Com base no mapeamento foram obtidos 143 pontos de ruptura em cicatrizes de deslizamentos. Utilizando agrupamento K-means foram identificados padrões morfométricos relacionados aos pontos de ruptura, e gerados perfis de vertentes. Os resultados mostram 4 tipos de vertentes na bacia do rio Rolante, com ocorrência de processos de deslizamentos. Perfis côncavos e convergentes tiveram menor ocorrência, e perfis convexos e divergentes apresentaram maior ocorrência. Com base nas médias dos principais agrupamentos de clusters, a declividade e as curvaturas tiveram a maior importância em relação à localização das rupturas na vertente, e foram importantes condicionantes de suscetibilidade aos deslizamentos. As médias dos agrupamentos ocorreram acima de 30º de declividade no agrupamento com 4 clusters, que foi o mais representativo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Eduardo Samuel Riffel, Universidade Federal do Rio Grande do Sul

Universidade Federal do Rio Grande do Sul

Professor Instituto Federal Farroupilha e Pós-Doutorando em Geografia-UFRGS.

Doutor em Geografia, UFRGS.

Laurindo Antonio Guasselli, Universidade Federal do Rio Grande do Sul

Universidade Federal do Rio Grande do Sul

Professor do Departamento de Geografia do Instituto de Geociências, UFRGS.

Doutor em Recursos Hídricos e Saneamento Ambiental, UFRGS.

Luis Fernando Chimelo Ruiz, Universidade Federal do Rio Grande do Sul

Universidade Federal do Rio Grande do Sul

Doutor em Sensoriamento Remoto, PPGSR-UFRGS.

Samuel Gameiro, Universidade Federal do Rio Grande do Sul

Universidade Federal do Rio Grande do Sul

Mestre em Sensoriamento Remoto, PPGSR-UFRGS

Referências

AGNIHOTRI, P.; KUMAR, A. Greenhouse gas emissions and climate change: Options to mitigate climate change. Am J Pharm Health Res. V.3, 54-59, 2015.

ALI, R.; KURIQI, A.; OZGUR KISI, O. Human-Environment Natural Disasters Interconnection in China: A Review. Climate, v. 8, n. 48, 2020. https://doi.org/10.3390/cli8040048

MATYA, P.; KIRSCHBAUM, D.; THOMAS STANLEY, T. Use of Very High-Resolution Optical Data for Landslide Mapping and Susceptibility Analysis along the Karnali Highway, Nepal. Remote Sens., v. 11, 2284, 2019. doi:10.3390/rs11192284.

ARBUCKLE, J. G.; MORTON, L. W.; HOBBS, J. Understanding farmer perspectives on climate change adaptation and mitigation: The roles of trust in sources of climate information, climate change beliefs, and perceived risk. Environ Beha v. 47, p. 205-234, 2015. https://doi.org/10.1177%2F0013916513503832

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 11.682: 2009. Estabilidade de encostas. Rio de Janeiro, 38 p. 2009.

AUGUSTO FILHO, O. Escorregamentos em encostas naturais e ocupadas: análise e controle. In: BITAR, O.Y. (Coord.). Curso de geologia aplicada ao meio ambiente. São Paulo: Associação Brasileira de Geologia de Engenharia (ABGE) e Instituto de Pesquisas Tecnológicas (IPT), cap. 3.4, p.77-100, 1995.

ARMAŞ, I. Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Nat Hazards, v.60, p.937–950, 2012. https://doi.org/10.1007/s11069-011-9879-4.

AYALEW L.; YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda Yahiko mountais, central Japan. Geomorphology v. 65, p. 15-31, 2005. http://dx.doi.org/10.1016/j.geomorph.2004.06.010

AVANZI, G.D.; GIANNECHINI, R.; PUCCINELLI, A. The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in northwestern Tuscany (Italy) Engineering Geology, v. 73, p. 215-228, 2004.

ÇELLEK, S. Effect of the Slope Angle and Its Classification on Landslide. Preprint. Discussion started: 8 May 2020. https://doi.org/10.5194/nhess-2020-87

CERRI, R. I. et al. Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil. An. Acad. Bras. Ciênc. [online]. v.89, n.4, p.2609-2623, 2017. ISSN 1678-2690. http://dx.doi.org/10.1590/0001-3765201720170224.

CHANG, K.; CHAN, Y.; CHEN, R.; HSIEH, Y. Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data. Nat. Hazards Earth Syst. Sci., v.18, p.709-727, 2018. https://doi.org/10.5194/nhess-18-709-2018

CONRAD, O.; BECHTEL, B.; BOCK, M.; DIETRICH, H.; FISCHER, E.; GERLITZ, L.; WEHBERG, J.; WICHMANN, V.; and BÖHNER, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model De. v., 8, p. 1991-2007, 2015. doi:10.5194/gmd-8-1991-2015.

CONSTANTIN, M., BEDNARIK, M., JURCHESCU, M. C. et al. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci, v.63, p.397-406, 2011. https://doi.org/10.1007/s12665-010-0724-y

COSTA NUNES, A. J. Engenharia Geotécnica, o Legado de A. J. da Costa Nunes. Tecnosolo. p.253-252, Rio de Janeiro, 1992.

CPRM - Serviço Geológico do Brasil. Mapa Geológico do Estado do Rio Grande do Sul, escala 1:750.000. 2009.

CROZIER M. J.; GLADE T. Landslides hazard and risk: issues, concepts and approach. In Glade T, Anderson M, Crozier M (eds.) Landslide Hazard and Risk. John Wiley, New York. p. 141, 2005.

DAMAYANTI, A.; ANGIN, F.; ADIB, A.; IRFAN, M. Geomorphological Characteristic of Landslide Hazard Zones in Sukarame Village, Cisolok Subdistric, Sukabumi Regency. 2nd International Conference on Geography and Education. IOP Conf. Series: Earth and Environmental Science, 412, 2020.

DIAS, H. C.; DIAS, V. C.; VIEIRA, B. C. Condicionantes Morfológicos e Geológicos dos Escorregamentos Rasos na Bacia do Rio Santo Antônio, Caraguatatuba/SP. Revista do Departamento de Geografia da USP, Volume Especial – XVII SBGFA / I CNGF, 2017. https://doi.org/10.11606/rdg.v0ispe.132714

DING, C.; HE, X. K-means clustering via principal component analysis. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8, 2004.

DOMEJ, G.; BOURDEAU, C.; LENTI, L.; MARTINO, S.; PLUTA, K. Shape and Dimension Estimations of Landslide Rupture Zones via Correlations of Characteristic Parameters. Geosciences. v. 10, p.198, 2020. https://doi.org/10.3390/geosciences10050198

ERENER, A.; DÜZGÜN, H.S.B. Landslide susceptibility assessment: what are the effects of mapping unit and mapping method? Environ Earth Sci, v. 66, p. 859-877, 2012. http://dx.doi.org/10.1007/s12665-011-1297-0

FERNANDES, N. F.; AMARAL, C. P. Movimentos de massa: uma abordagem geológico geomorfológica. In Guerra, A.J.T. e Cunha, S.B. (org.) Geomorfologia e Meio Ambiente. Bertrand, Rio de Janeiro: p. 123-194, 1996.

FERNANDES, N. F.; GUIMARÃES, R. F.; GOMES, R. A. T.; VIEIRA, B. C.; MONTGOMERY, D. R.; GREENBERG, H. Condicionantes Geomorfológicos dos Deslizamentos nas Encostas: Avaliação de Metodologias e Aplicação de Modelo de Previsão de Áreas Susceptíveis. Revista Brasileira de Geomorfologia, v. 2, n.1, p.51-71, 2001. http://dx.doi.org/10.20502/rbg.v2i1.8

FONSECA, I. L. Modelação de formas de relevo para aplicação à cartografia de solos. Anais do V Congresso Nacional de Geomorfologia. Porto, 2010.

FROUDE, M. J.; PETLEY, D. N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., v.18, p. 2161-2181, 2018. https://doi.org/10.5194/nhess-18-2161-2018

FULLEN, M. A. Soil erosion and conservation in northern Europe. Prog Phys Geog. v. 27, p.331-358. 2003.

GAMEIRO, S.; QUEVEDO, R. P.; OLIVEIRA, G. G.; RUIZ, L. C.; GUASSELLI, L. A. Análise e Correlação de Atributos Morfométricos e sua Influência nos Movimentos de Massa Ocorridos na Bacia do Rio Rolante, RS. Anais... XIX Simpósio Brasileiro de Sensoriamento Remoto, Santos-SP. 2019

GARIANO, S. L.; GUZZETTI, F. Landslides in a changing climate. Earth-Science Reviews v.162, p.227-252, 2016. https://doi.org/10.1016/j.earscirev.2016.08.011

GUERRA, J. T.; BEZERRA, J. F. R.; FULLEN, M. A.; MENDONÇA, J. K. S.; JORGE, M. C. O. The effects of biological geotextiles on gully stabilization in São Luís, Brazil. Nat Hazards. V. 75, p. 2625-2636, 2015. http://dx.doi.org/10.1007/s11069-015-1878-4

GUERRA, A. J. T. The effect of organic matter content on soil erosion in simulated rainfall experiments in W. Sussex, UK. Soil Use Manage. V. 10, p. 60–64, 1994. http://dx.doi.org/10.1111/j.1475-2743.1994.tb00460.x

GUIDICINI, G.; NIEBLE, C. M. Estabilidade de taludes naturais e de escavação. Edgard Blücher, São Paulo, 1984.

GUZZETTI, F.; REICHENBACH, P.; CARDINALI, M.; GALLI.; ARDIZZONE, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, v. 72, p.272-299, 2005. http://dx.doi.org/10.1016/j.geomorph.2005.06.002

GUZZETTI, F.; MONDINI, A. C.; CARDINALI, M.; FIORUCCI, F.; SANTANGELO, M.; CHANG, K. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, v. 112, p. 42-66, 2012.

HAFLIDASON, H.; LIEN, R.; SEJRUP, H.P.; FORSBERG, C.F.; BRYN, P. The dating and morphometry of the Storegga Slide: Marine and Petroleum Geology, v. 22, p. 123-136, 2005. http://dx.doi.org/10.1016/j.marpetgeo.2004.10.008

HAMPTON, M.A.; LEE, H.J.; LOCAT, J. Submarine landslides: Reviews of Geophysics, v. 34, p. 33–59, 1996.

HARIST, M. C.; AFUIF, H. A.; PUTRI, D. N.; SHIDIQ, I. P. A. GIS modelling based on slope and morphology for landslide potential area in Wonosobo, Central Java. MATEC Web of Conferences 229, 03004, 2018.

HEARN, G. J. Terrain hazard mapping at Ok Tedi mine, Papua New Guinea. 6th International Symp. on Landslides, A. A. Balkema, Christchurch: 971-976, 1992.

HIGHLAND, L. M.; BOBROWSKY, P. The landslide handbook – A guide to understanding landslides: Reston, Virginia, U.S. Geological Survey Circular 1325, 129p, 2008.

HONG, Y.; ADLER, R. F.; HUFFMAN, G. An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets. IEEE. Trans Geosci Remote Sens v. 45(6), p. 1671–1680, 2007. http://dx.doi.org/10.1109/TGRS.2006.888436

HÜHNERBACH, V.; MASSON, D. G. Landslides in the North Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour: Marine Geology, v. 213, p. 343–362, 2004.

HUNGR, S. G.; EVANS, S. G.; BOVIS, M. J.; HUTCHINSON, J. N. A review of the classification of landslides of the flow type. Environmental & Engineering Geoscience, v. 3, n. 3, p. 221-238, 2001. http://dx.doi.org/10.2113/gseegeosci.7.3.221

INFANTI JUNIOR, N.; FORNASARI FILHO, N. Processos de Dinâmica Superficial. In: OLIVEIRA, A.M.S. & BRITO, S.N.A. (Eds.). Geologia de Engenharia. São Paulo: Associação Brasileira de Geologia de Engenharia (ABGE), cap. 9, p.131-152, 1998.

IVANOV, V.; AROSIO, D.; TRESOLDI, G.; HOJAT, A.; ZANZI, L.; PAPINI, M.; LANGONI, L. Investigation on the Role of Water for the Stability of Shallow Landslides—Insights from Experimental Tests. Water, v. 12, 1203 p., 2020. doi:10.3390/w12041203

KAMP, U.; GROWLEY, B.J.; KHATTAK, G.A.; OWEN, L.A. GIS-based landslide susceptibility mapping for the 2005 kashmir earthquake region. Geomorphology, v. 101, p. 631-642, 2008. http://dx.doi.org/10.1016/j.geomorph.2008.03.003

KANUNGO, T.; MOUNT, D. M.; NETANYAHU, N. S., PIATKO, C. D.; SILVERMAN, R.; WU, A. Y. An efficient k-means clustering algorithm: analysis and implementation, in IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 24, no. 7, p. 881-892, 2002. http://dx.doi.org/10.1109/TPAMI.2002.1017616

KIRKBY, M. J. Hillslope runoff processes and models, Journal of Hydrology, v. 111, p. 315-339, 1988.

LACASSE, S.; NADIM, F.; KALSNES, B. Living with Landslide Risk. Geotechnical Engineering Journal of the SEAGS & AGSSEA, v. 41, n. 4, 2010.

LARA, A. A.; MARQUES, E. A. G.; ALMEIDA, L. C. R. Mapeamento de risco de acidentes associados a escorregamentos - Morro da Serrinha, Rio de Janeiro, Brasil. 2ª COBRAE. ABMS, ABGE e ISSMGE, Rio de Janeiro: 837-845, 1997.

LEE, CHYI-TYI. Landslide trends under extreme climate events. Terr. Atmos. Ocean. Sci., v. 28, n. 1, p.33-42, 2017. http://dx.doi.org/10.3319/TAO.2016.05.28.01

LEE, S.; CHOI, J. The effect of spatial resolution on the accuracy of landslide susceptibility mapping: A case study in Boun, Korea. Geosciences Journal, v. 8, n. 1, p. 51-60, 2004. DOI: 10.1007/BF02910278.

LIN, Y. P.; CHUL, H. J.; WU, C. F. Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan. Hydrol. Earth Syst. Sci. Discuss., v.7, p.3423-3451, 2010.

LIKAS, A.; VLASSIS, N.; VERBEEK, J. J. The global K-means clustering algorithm. Pattern Recogn. V. 36, p. 451–461, 2003. http://dx.doi.org/10.1016/S0031-3203(02)00060-2

LUERCE, T. D. Geoturismo na bacia hidrográfica do rio Rolante-RS: Um estudo acerca das Quedas d’água. Porto Alegre. Dissertação de Mestrado, Programa de Pós-Graduação em Geografia, Universidade Federal do Rio Grande do Sul, 2015.

LUERCE, T. D.; OLIVEIRA, G. G.; GUASSELLI, L. A.; BRUBACHER, J. P. Mapeamento geomorfológico a partir de dados SRTM: bacia hidrográfica do rio dos Sinos, RS. Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Foz do Iguaçú, INPE, p.1863-1870, 2013. ISBN: 978-85-17-00057-7.

MACDONALD, D. I. M.; MONCRIEFF, A. C. M.; BUTTERWORTH, P. J. Giant slide deposits from a Mesozoic forearc basin, Alexander Island, Antarctica: Geology, v. 21, p. 1047–1050, 1993.

MACHADO, A. S. V. Geomorfometria da Região da Fartura (SP). Rio Claro, SP. São Paulo. Dissertação de Mestrado, Programa de Pós-Graduação em Geociências e Meio Ambiente, Universidade Estadual Paulista, 2014.

MACHADO, L. A. Classificação climática para minas gerais por meio do método de agrupamento não hierárquico de k-means. Cadernos do LESTE, v. 14, n. 14, 2014.

MARANGON, M. Estabilidade de taludes. Tópicos em Geotecnia e Obras de Terra. UFJF, 2009. Disponivel em: < http://www.ufjf.br/nugeo/files/2009/11/togot_Unid04EstabilidadeTaludes01.pdf> Acesso em: 16 jun. 2020.

MOORE, I. D.; GRAYSON, R. B.; LADSON, A. R. Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydrol Process v. 5, p.3-30, 1991.

NADIM, F.; KJEKSTAD, O.; PEDUZZI, P.; HEROLD, C.; JAEDICKE C. Global landslide and avalanche hotspots. Landslides v. 3(2), p. 159-173, 2006.

OHLMACHER, G. C.; DAVIS J. C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol v. 69, p. 331–343, 2003. http://dx.doi.org/10.1016/S0013-7952(03)00069-3

OLIVEIRA, G.; GUASSELLI, L.; QUEVEDO, R.; RUIZ, L.; BRESSANI, L.; RIFFEL, E. Identificação e análise de áreas suscetíveis a fluxos de detritos na bacia hidrográfica do Rio Taquari-Antas, RS. Pesquisas em Geociências, v. 45(2), e0732, 2018. http://dx.doi.org/10.22456/1807-9806.88685

PAIXÃO, M. A.; KOBIYAMA, M.; ZAMBRANO, F. C.; MICHEL, G. P.; FAN, F. M. Lições sobre o gerenciamento de desastres hidrológicos obtidas a partir da ocorrência em Rolante/RS. Revista gestão e sustentabilidade ambiental, v. 7, n. esp., p. 251-267, 2018. http://dx.doi.org/10.19177/rgsa.v7e02018251-267

PRIETO, C. C. Previsão de deslizamentos em encostas por meio de modelagem numérica: estudo de caso na bacia Piracuama, município de Campos do Jordão, SP. 2018. 209 p. Tese (Doutorado em Ciência do Sistema Terrestre) - Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2018. Disponível em: <http://urlib.net/rep/8JMKD3MGP3W34P/3QBPA5E>.

POKHAREL, B.; ALTHUWAYNEE, O. F.; AYDDA, A. et al. Spatial clustering and modelling for landslide susceptibility mapping in the north of the Kathmandu Valley, Nepal. Landslides, 2020. https://doi.org/10.1007/s10346-020-01558-5.

PSOMIADIS, E.; PAPAZACHARIOU, A.; SOULIS, K.X.; ALEXIOU, DS.; CHARALAMPOPOULOS, I. Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data. Land, v.9, v. 5, 133, 2020. https://doi.org/10.3390/land9050133

QUEVEDO, R. P. Mapeamento de suscetibilidade a movimentos de massa a partir de aprendizado de máquina. 2019. 71p. Dissertação de Mestrado, Programa de Pós Graduação em Sensoriamento Remoto, Universidade Federal do Rio Grande do Sul. 2019.

REGMI, N. R.; GIARDINO, J. R.; VITEK, J. D. Assessing susceptibility to landslides: Using models to understand observed changes in slopes. Geomorphology, v. 122, p. 25-38, 2010. http://dx.doi.org/10.1016/j.geomorph.2010.05.009

RUBIRA, F. G.; BARREIROS, A. M.; VILLELA, F. N. J.; PEREZ FILHO, A. Sistemas pedogeomorfológicos na interpretação da evolução de paisagens quaternárias em climas tropicais úmidos. Mercator, v.18, 2019. https://doi.org/10.4215/rm2019.e18020

RIFFEL, E. S.; RUIZ, L. F. C.; GUASSELLI, L. A. Mapeamento de suscetibilidade a deslizamentos a partir da mineração de dados e do modelo SHALSTAB. Revista Brasileira de Cartografia, v. 68, p. 1805-1818. 2016.

ROSSATO, M. S. Os climas do Rio grande do Sul: Variabilidade, tendências e tipologia. Tese (Doutorado em Geografia), Universidade Federal do Rio Grande do Sul, Porto Alegre, 253p. 2011.

SEMA; GPDEN/IPH/UFRGS Diagnóstico preliminar. Departamento de Recursos Hídricos da SEMA e Grupo de Pesquisa em Desastres Naturais do IPH/UFRGS. Porto Alegre: DRH/SEMA, 26p. 2017. Disponível em http://www.rs.gov.br/upload/20170125183225diagnostico_preliminar_gt_rolante _revfinal.pdf

TANG, RX., KULATILAKE, P. H. S. W., YAN, EC.; CAI, JS. et al. Evaluating landslide susceptibility based on cluster analysis, probabilistic methods, and artificial neural networks. Bull Eng Geol Environ, v.79, p.2235-2254, 2020. https://doi.org/10.1007/s10064-019-01684-y

VAN DEN EECKHAUT M.; HERVÁS, J. State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology v.139, p.545-558, 2012. http://dx.doi.org/10.1016/j.geomorph.2011.12.006

VAN WESTEN, C. J.; VAN ASCH, T. W. J.; SOETERS, R. Landslide hazard and risk zonation-why is it still so difficult? Bull Eng Geol Env, v. 65, p.167-184, 2006. http://dx.doi.org/10.1007/s10064-005-0023-0

VANACÔR, R. N.; ROLIM, S. B. A. Mapeamento de susceptibilidade a deslizamentos usando técnicas de estatística bivariada e sistema de informações geográficas na região nordeste do Rio Grande do Sul. Revista Brasileira de Geomorfologia, v. 13 (1) p. 15-28. 2012. http://dx.doi.org/10.20502/rbg.v13i1.338

VARNES D. J. Slope movement types and processes. In Schuster R L, Krizek R J (eds.) Landslides Analysis and Control. Transportation Research Board Special Report, National Academy of Sciences, Washington D.C. v. 176, p. 11-33. 1978.

WAN, S.; CHANG, SH.; CHOU, TY.; SHIEN, C. M. A Study of Landslide Image Classification through Data Clustering using Bacterial Foraging Optimization. Journal of Chinese Soil and Water Conservation, v.49, n. 3, p.187-198, 2018. http://dx.doi.org/10.29417/JCSWC.201809_49(3).0006

WANG, Q.; WANG, Y.; NIU, R.; PENG, L. Integration of Information Theory, K-Means Cluster Analysis and the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area, China. Remote Sens., v. 9, p. 938, 2017. http://dx.doi.org/10.3390/rs9090938

WOODCOCK, N. H. Sizes of submarine slides and their significance: Journal of Structural Geology, v. 1, p. 137-142, 1979.

WOOTEN, R. M.; WITT, A. C.; MINIAT, C. F.; HALES, T. C.; ALDRED, J. L. Frequency and Magnitude of Selected Historical Landslide Events in the Southern Appalachian Highlands of North Carolina and Virginia: Relationships to Rainfall, Geological and Ecohydrological Controls, and Effects. Springer International Publishing Switzerland 2016 203 C.H. Greenberg, B.S. Collins (eds.), Natural Disturbances and Historic Range of Variation, Managing Forest Ecosystems 32, 2016. DOI 10.1007/978-3-319-21527-3_9.

YALCIN, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA, v. 72, p. 1-12, 2008. http://dx.doi.org/10.1016/j.catena.2007.01.003

ZÊZERE, J. L. Dinâmica de vertentes e riscos geomorfológicos. Centro de Estudos Geográficos Área de Geografia Física e Ambiente. Relatório n. 41, Lisboa, 129p. 2005.

ZHAO, F., MENG, X., ZHANG, Y., CHEN, G., SU, X., YUE, D. Landslide susceptibility mapping of Karakorum Highway combined with the application of SBAS-InSAR technology. Sensors, v. 19, p.26-85, 2019. DOI: 10.3390/s19122685. http://dx.doi.org/10.3390/s19122685

Downloads

Publicado

2021-09-08

Como Citar

Riffel, E. S., Guasselli, L. A., Ruiz, L. F. C., & Gameiro, S. (2021). Relação entre ponto de ruptura e padrão morfométrico em deslizamentos, bacia hidrográfica do Rio Rolante - RS. Revista Do Departamento De Geografia, 41(1), e181554 . https://doi.org/10.11606/eISSN.2236-2878.rdg.2021.181554

Edição

Seção

Artigos