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Shocks in asymmetric one-dimensional exclusion processes 

P. A. Ferrari and L. R. G. Fontes 

Abstract: We review recent results concerning the local 
structure of the shocks in the one dimensional nearest neigh­
bors totally asymmetric simple exclusion process. A micro­
scopic shock is a random position X t such that the system as 
seen from this position at time t has a stationary distribution 
which is equivalent to the product measure with densities p 
and A to the left and right of the origin respectively. The dif­
fusion coefficient of the shock D = limt-+oo t- I (E(Xt)2-
(EXt )2) has been found to be D = (A - p)-I (p(1- p) + 
A(1 - An. In the scale Vi the position of X t is determined 
by the initial distribution of particles in a region of lenght 
proportional to t. The distribution of the process at the av­
erage position of the shock converges to a fair mixture of the 
product measures with densities p and A. This is the so called 
dynamical phase transition. Under shock initial conditions the 
density fluctuation fields depend on the initial configuration. 
The results are a little weaker in the asymmetric case, when 
jwnps to the left are also allowed. 

Key words: Asymmetric simple exclusion. Shock fluc­
tuations. Central limit theorem. Dynamical phase transition. 
Density fluctuation fields. 

1. Introduction. 
We study one dimensional lattice gas type systems. These systems are con­

servative (particles do not die or are created). We concentrate on the simple 
exclusion process but the results hold for the analogous cellular automata models, 
in particular for the so called Boghosian Levermore (1987) cellular automaton and 
some cases of the sand piles introduced by Bak et al. (1988) . 

In this paper we review work related to the microscopic formation of shock 
waves , the diffusive behavior of the shocks, the existence of a dynamical phase 
transition at the average position of the shock and the behavior of the fluctuation 
fields. 

The simple exclusion process can be described in the following way. At most 
one particle is allowed at each site x E YL . Each particle has an internal clock that 
rings after a random time with exponential distribution of rate 1. As the clock 
rings for the particle sitting at x and if x + 1 is empty, then the particle jumps 
from x to x + 1. Then the internal clock is reset for the next jump. All particles 
do the same independently. 

The generator of the asymmetric simple exclusion process is given by 

Lf(T}) = L T}(x)(l - T}(x + l»[f(T}x ,x+l) - f(T})], 
xEZ 
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where 1 is a continuous function on X = {O, l}Z, the configuration 77~'II(z) is 
defined by 

if z =I x, Y 
if z = y 
if z = x 

Let Set) denote the corresponding semigroup. The set of extremal invariant mea­
sures is given by the union of two families: {vp : 0 :::; p :::; 1} U {v(n), n E ~}, 
where vp is the product measures with parameter p and v(n) is a shock measure 
giving mass one to the configuration 77(n)(X) = 1{x ~ n}. 

We fix 0 < p < A < 1 and consider as initial measure vp ,>" the product 
measure with densities p and A to the left and right of the origin respectively. 

This model is related to the Burger's equation for u(r, t) E [0,1]: 

au a[u(1 - u)] _ 0 
at + ar - (Ll) 

We restrict ourselves to the case of non decreasing initial conditions that present 
only one shock: the initial condition u(r,O) = 'uo(r) is A to the right of the 
origin and p to its left. The (weak) solution of this equation with this initial 
condition is u(r, t) = uo(r - vt), where v = 1 - p - A is the velocity of the shock . 
The characteristics of this equation are given by (1 - 2u). Since for increasing 
initial conditions the characteristics to the right of the origin are smaller than the 
characteristics to the left of it, they conflict and give rise to the shock that is 
travelling at velocity (1 - A - p) . 

Theorem 1 (Hydrodinamical limit): Let uo(r) be a piecewise continuous function, 
and let v~o be a family of product measures with marginals v~o(77(€-lr)) = uo(r) . 
Then 

(1.2) 

in the continuity points of u(r, t), the solution of (1.1) with initial condition 
u(r,O) = uo(r). 

Let X(t) be the position of a "second class particle". Its motion is determined 
by the following rules: the second class particle also has an internal exponential 
clock of rate 1 and jumps to empty sites as the other particles do, but when one 
of the other particles attempts to jump over the second class particle, the jump 
is realized so that the second class particle and the other particle interchange 
positions. Let Til be translation by y: TII77(X) = 77(X + y). The process 77: = TX(t)77t 
is Markovian and has generator given by 

+ 77( -1)[/(T-177o,-1) - 1(77)] 

+ (1- 77(1))[/(Tl77o,l) - 1(77)] 
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Theorem 2 (Microscopic interface): The process as seen from the second class 
particle -with generator L'- has an invariant measure It' which is equivalent to 
the product measure Vp,>'. 

Rem8.!ks: The measure 1" is explicitly described in Section 3. 

The following heuristics justify the choice of a second class particle for a 
microscopic shock. If we start with a measure with densities p and>' to the left 
and right of the second class particle respectively and this densities stay thru time, 
the velocity of this particle equals the rate of jumping to the right (1->.) minus the 
rate of jumping to the left (p). This gives (1- p- >.) that is the right macroscopic 
velocity of the shock in the Burger's equation. The next theorem says that indeed 
this is the average and asymptotic behavior of the second class particle. We use 
P and E for the probability and expectation related to the process with initial 
distribution either vp,>' or 1". The statements below are limit statements and hold 
for both initial distributions. 

Theorem 3: Assume that the process 1Jt has initial distribution 1". Let X t be the 
position of the shock given by a second class particle initially put at the origin. 
Then 

EXt = (1 - >. - p)t. (1.3) 

Law of large numbers: 

lim X t =(1->.-p)t Pa.s. 
t-oo t 

(1.4) 

The next theorem gives the asymptotic variance of the second class particle. 
Moreover it establishes that its fluctuation is given by the initial configuration. 

Theorem 4: Diffusion coefficient: 

D:= lim E(Xt )2 - (EXt )2 = p(1 - p) + >'(1 - >.) 
t-oo t >. - p 

(1.5) 

(Dependence on the initial configuration.) Let 

(>.-p)t o 
N t (1J) = L (1 - 1J(x))- L 7J(x). 

x=O x=-(>,-p)t 

Then 

(1.6) 

The following Theorem is a corollary to (1.6). 
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Theorem 5: Convergence to the finite dimensional distributions of Brownian mo­
tion. Let W(t) be Brownian motion with diffusion coefficient D. Then under the 
conditions of Theorem 1.1 

limoe: 1/ 2 (Z£_1. - EZ£-l.) = W(.) 
£-

(1.7) 

weakly, in the sense of the finite dimensional distributions. 
In the shock case the hydrodynamical limit (1.2) means that under initial 

distribution lip,)., a traveller moving at deterministic velocity r observes asymp­
totically that the particles are distributed as lip for r > v and II). for r < v, 
where v = (1 - A - p). Indeed u(r, t) = pl{r < vt} + A1{r > vt} is the so­
lution of the Burgers equation when uo(r) = A for r > 0 and p for r :::; O. 
When r = v the system converges to a fair mixture of lip and II).. The next re­
sult is based on the central limit theorem for X t established in Theorem 5. Let 
w(r, t) = P(W(t) :::; r) = (1/J27rDt) J~oo exp( _s2 /2Dt)ds, the normal distribu­
tion with variance Dt. Theorem 2 and (1.7) suggest that at the average velocity 
of the shock one would see a mixture of lip and II).. This is one of the consequences 
of the next result. 

Theorem 6: Dynamical phase transition. Let v = (1 - A - p). Then 

lim IIp,).S(t)Tvt+atl/l = (1 - w(a, 1»lIp + w(a, 1)11). 
£-0 

(1.8) 

Let Ti be the fluctuations fields defined by 

TH<I» = e: 1/ 2 L <I>(e:x)[77£- l t(X) - E77£- lt(X)], (1.9) 
xEZ 

for smooth integrable test functions <I>. For t = 0, ifTJo is distributed according to 

lim T£(<I» = T(<I», 
£-0 

(1.10) 

where T(<I» is Gaussian white noise with mean zero and covariance 

E(T(Ilf)T(<I») = J uo(r)(1 - uo(r))llf(r)<I>(r)dr. (1.11) 

where uo(r) = A1{r ~ O} + p1{r < O}. 

Theorem 7: Convergence of the fluctuation fields. Assume that the initial distribu­
tion of the process is lip,).. Let v = (1- p - A). Let u(r, t) = Al{r > vt} + pl{r < 
vt} + ~(A + p)l{r = vt} . As e: --+ 0, the fluctuation fields Ti defined in (l.9) 
converge in a weak sense to the conservative solution T t of the nonhomogeneous 
linear equation 

a a 
at Tt(r) = or (1 - 2u(r, t»)Tt(r), (1.12) 
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with initial condition T, the Gaussian field with zero mean and covariance given 
by (1.11). 

Theorem 7 is a consequence of the L2 convergence of the fluctuation fields 
established in the next theorem. The weak solutions of (1.12) present a singularity 
at the poin t (vt, t) due to the discon tin ui ty of u( r, t) at r = vt. For this reason 
there is no unique solution. However there is only one conservative solution. To 
better describe it let us introduce some notation. Assume that <I> is the indicator 
of the interval (aI, a2). For i = 1,2 let 

b.(t) _ {ai - (1 - 2p)t 
• - ai - (1 - 2A)t 

if ai < vt 
if ai > vt 

Then T t , the solution of (1.12) is given by the following. 

We can interpret this by saying that if vt E (aI, a2) then, the fluctuations prpsPIlL 
in the interval (-(A - p)t, (A - p)t) at time zero concentrate in the point vt at 
time t. Formula (1.14) below says that these fluctuations are present in the scale 
..;t. Indeed they reflect the shock fluctuations that occur in this scale. 

Theorem 8: Let A. = z;Jn(Clal,e-la2), B.(t) = z;Jn(c l bl (t),c l b2(t». Then 

!~eE (L [1J.-1I(X) - E1J.-1I(x)] - L (1Jo(x) - E1JO(X») 2 = 0. (1.13) 
rEA. rEB.(I) 

Let c > 0, C.(t) = z;J n (clvt - C l /2c,c lvt + C l / 2c) and K.(t) = z;J n 
(-Clt(A - p),Clt(A - p». Then 

lim eE( '"' [1J.-'t(x) - E1J.-1t(x)] 
£-0 L..J 

rEC.(I) 

-T.-.nc L (1Jo(x) - E1Jo(x»f = 0, 
rEK .(1) 

where Tc is truncation by c: 

{ 
F(.) 

TcF(.) = c 
-c 

if IF(.)I ~ c 
jf F(.) > c 
jf F(.) < -c. 

(1.14) 

Note that C.(t) is an interval of length proportional to e- l / 2 around the macro­
scopic point vt. When c -+ 00, (1.14) says that the fluctuations at time t in a 
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region of length proportional to -It around vt are given by the fluctuations at time 
o in a region of length proportional to t. 

2. Graphical construction and coupling. 

The main tool to show the above results is to couple the joint realization 
of two versions of the process with different initial configurations. One way to 
define a coupling is via the joint generator (Liggett (1976), (1985» . Another 
way is by graphically constructing the process. This is something like to use the 
same random numbers for different initial configurations. In order to describe the 
invariant measure J1.' for the process as seen from the second class particle it is 
useful to describe the graphical construction and the coupling. 

To describe the graphical construction attach a rate 1 Poisson processes to 
each pair of sites (x , x + 1). A Poisson process is a: sequence of random times . 
To each of these times draw an arrow from x to x + 1. The product of these 
Poisson processes induces a probability space (n, :F, P). We discard the null 
event "two arrows occur at the same time". Given an initial configuration TJ and 
a set of arrows w, the configuration at time t starting from TJ is denoted TJi 'w and 
is constructed in the following way. When an arrow appears from site x to y , if 
there is a particle at x and no particle at y then, after the arrow the particle will 
be at y and x will be empty. We denote TJi the random process defined on (n, :F, 
P) with initial configuration TJ . 

Consider now two initial configurations TJo and TJl and write TJl = TJf , for 
the configurations at time t . Use the same structure of arrows for TJ? and TJl. In 
this case (TJ~ , TJl) is the "basic coupling"(Liggett (1985» . IfTJO(x):::; TJl(x) for all 
x E 7L (in this case we say TJo :::; TJl) then for all times TJ~ :::; TJl. This property is 
called attractivity. Let I/p be the product measure with density p. Take p < A and 
realize jointly the measures I/p and 1/). in the following way. Let U(x) E [0,1] be 
i.i .d. uniformly distributed random variables. Then define TJO(x) = 1{U(x) :::; p} , 
TJl(x) = 1{U(x) :::; A}. Hence, TJo is distributed according to I/p, TJl is distributed 
according to 1/). and TJo :::; TJl . Define u(x) = TJO(x) and ~(x) = TJl(x) - TJO(x) . We 
say that the distribution of (u , ~) has the good marginals if the u marginal is I/p 

and the u + ~ marginal is 1/).. Calling 71"2 the distribution of (u, ~) , we have that 

71"2 is a product measure with the good marginals . (2 .1) 

Define Ut(x) = TJ~(x) and ~t(x) = TJt(x) - TJ~(x) . The motion of (Ut,~d obeys 
the following rule. The u particles have priority over the ~ particles: when an 
arrow from a u particle to a ~ particle appears, then after the arrow the particles 
interchange positions. Otherwise the particles interact by exclusion. We say that 
the ~ particles behave as "second class particles". If the distribution of (uo, ~o) 
has the good marginals, the same is true for the distribution of (Ut,~t). We call 
S2(t) the corresponding semigroup. 

Let 1/2 be a translation invariant measure with the good marginals and 1/2 = 
1/2('le(O) = 1). Let X t be the position of the e particle initially at the origin . 
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Let S2(t) be the semig"roup of the process as seen from the second class particle 
(Tx,l1t, Tx,ed. The key tool in Ferrari, Kipnis and Saada (1991) to show that X t 
is a microscopic shock is the following. If V2 is translation invariant and has the 
good marginals, then 

(2.2) 

In words, the law of the process as seen from the tagged second class particle looks 
as the law of the process seen from the origin conditioned to have a second class 
particle at the origin. Let V2 have the good marginals, then under initial measure 
V~, 

I . Xt 
1m - =v 

t-+oo t almost surely. (2.3) 

Using the same arrows there is a natural coupling between (l1t,et) with initial 
measure 7r~ and 'f/t with initial measure vp,A. To describe it take (l1,e) from the 
distribution 7r~. Now mark independently the i-th e particle as I with probability 
(pi q)i 1(1 + (pi q )i), otherwise as (. Then consider the process (l1t, It, (t) with 
priorities l1 over lover (. In this way l1t has distribution Vp for all t, 'f/t = l1t + It 
has distribution vp,AS(t) and l1t + It + (t has distribution VA. 

3. Description of the invariant shock measure as seen from the second 
class particle. 

To describe the measure J.l' one needs to use the join t process (l1 t, et). Let 
J.l~ be the measure on X 2 described as follows. Let Y be the space of finite 
configurations of O's and 1 's, i .e. 

Y = Un~O{O, l}n = {0, 0,1,00,01,10,11,000, . . . } 

Let the number of sites of ( E Y be N«) = n if and only if ( E {O,l}n 

and the number of particles of ( be K«) = L~~~) «x). Let M«) = number of 
different configurations that can be obtained from ( by translating ones to the 
right (including (). Examples: M(100) = 3, M(10IO) = 5, M(OOOI11) = 1, etc. 
Let {(i }iEZ C Y be a double infinite iid sequence of finite configurations with 
dist. ribution 

P«i = () = A(1 - p)M«)(Ap)KCO«1 - A)(1 - p»NCO-KCO. (3.1) 

Indeed, it holds 

L M«) = k: 1 (~) (n: 1), 
where the sum is running on {( : N«) = n, K«) = k}. Notice that given the 
number of sites and the number of ones of a configuration, the relative weight of 
the configuration does not depend on A and p. 

To define the two classes measure, conditioned to have a second class particle 
at the origin, display the (i 's on the integers separated by the second class particles. 
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More rigorously, let Ni = N(ei) + 1 and Si = L;~~ Nj. Let [(x) = i if and only 
if Si :::; x < Si+l. Define 0'(0) = 0, ~(O) = 1 and for x > 0, 

( ) _ {(I(r)(X - SI(r») 
0' x - 0 

~(x) = {I if x = ~I(r) 
o otherwise 

if SI(r) < x < SI(r)+1 

if x = SI(r) 

Define in an analogous form O'(x) and ~(x) for x < O. Call /J~ the resulting 
distribution. 
Theorem: If {(i} are chosen with distribution (3.1), then /J~ is invariant for the 
process (rx(t)O't, rX(t)~,). Furthermore, defining /J2 as the unique translation in­
variant measure satisfying /J2(.1~(0) = 1) = /J~(.), it holds that the 0' marginal of 
/J2 is /I p while the 0' + ~ marginal of /J2 is /I).,. 

Let T be the following operator on X: TT/( x) = T/( x) 1 {x ~ O}. Define 

Theorem: The measure /J' is equivalent to /lp,)" . Furthermore /J' is invariant for 
11:, the process as seen from tIle second class particle. 

4. Tagged second class particles and currents. 

In this section we give the key results for the proof of Theorem 4. The 
main point is the relationship between the variance of the current of second class 
particles and the variance of the tagged second class particle. Consider the joint 
process (O't, ~t) described in the previous section . Define the current of ~ particles 
as J2 ,t := number of ~ particles to the left of the origin at time 0 and to the right 
of the origin at time t minus number of ~ particles to the right of the origin at time 
o and to the left of the origin at time t. Analogously define Jo ,t for the current of 
0' particles and and h,t for the total current of 0' + ~ particles. 

Consider a configuration (O',~) taken from 71'~, the measure 71'2 conditioned to 
have a ~ particle at the origin. This configuration has ~(O) = 1 and 0'(0) = 0, i.e., 
it has a ~ particle at the origin. Let O'·(x) = l{x f. O}O'(x) + l{x = 0}(1 - O'(x)) 
and analogously C. Now, using the same arrows, couple (O't,~t) with (O't , ~;) . At 
time t the two processes will differ at only one site whose position is called R t . 

Similarly, coupling (O't,~t) with (O'~ , ~n we get only one discrepancy located at 
a position denoted Rt • In words, R t is like a third class particle, while Rt is a 
second class particle with respect to O't but has priority over ~t. 
Theorem 3.1: Let (O't,~d be the joint process of first and second class particles 
with initial product measure 71'2 defined in (2.1). Let X t be tIle position of the 
tagged second class particle put initially at the origin . Then it holds that 

EJ2,t = (A - p)EXt (3 .1) 
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where the expected values are taken with respect to the process with initial dis­
tribution 71"2. Furthermore, denoting the variance by V, 

V ht = (A - p)2V X t - (A - p)(l - (A - p»E(Xt ) 

+ 2(A - p)(l - A)(E(Rt )+ - E(Rt - X t )+) (3.2) 

+ 2(A - p)p(E(Rt )+ - E(Rt - X,)+). 

Theorem 3.2: Under the conditions of Theorem 3.1, it holds that 

lim ~E(J2 t - N2 t(uo,~o) - (A2 - p2)tY = 0, t-+oo t I , I 
(3.3) 

where N2,t(U,~) is a random variable that does not depend on w. It depends only 
on tIle initial configurations u and ~ and it is given below by (3.13). 

The proof of Theorem 3.2 is based on the computation of the variance of the 
current. 

Notes and references. 
The simple exclusion process has been introduced by Spitzer (1970) . The set 

of invariant measures was described by Liggett (1976), (1985) . 

The hydrodynamical limit of Theorem 1 has been proven first by Liggett 
(1975,1977) for the case r = 0, then by Rost (1982) and Benassi and Fouque (1987) 
for decreasing one step profiles and by Andjel and Vares (1987) for increasing ones. 
I3enassi, Fouque, Saada and Vares (1991) computed the limit for monotone initial 
profiles. Fouque (1991) reviews these approachs. For general initial conditions 
(1.2) is a consequence of the law of large numbers of Rezakhanlou (1990) and the 
proof of local equilibrium of Landim (1992). 

A microscopic shock as the one described in Theorem 2 appears first in 
Liggett's (1976) blocking measures for the case p= 0 and A = 1. The case 
p = 0, A < 1 was studied by Ferrari (1986). In the general case, the existence 
of the microscopic shock was simulated by Boldrighini, Cosimi, Frigio and Nunes 
(1989) and proven by Ferrari, Kipnis and Saada (1991) in a weaker form, as the 
process as seen from the shock is not Markovian and the invariant measure JJ' is 
proven to behave asymptotically as l/p,>.' Ferrari (1992) shows that a isolated sec­
ond class particle describes the microscopic shock. Derrida, Janowsky, Lebowitz 
and Speer (1993) compute the invariant measure JJ'. Based on this computation 
Ferrari, Fontes and Kohayakawa (1993) described JJ' as is given in Section 3 of 
this paper. From this descr~ption the equivalence between JJ' and l/p,>. and the 
properties of JJ' follow. . 

In chapter 5 of Spohn (1991) (1.3) was proven and (1.2) conjectured. Bol­
drighini et al. (1989) performed computer simulations confirming (1.5) . Gartner 
and Presutti (1989) showed (1.6) for p = 0 and p = 1. Ferrari (1992) showed the 
law of large numbers (1.4), the equivalence between (1.5) and (1.6) and that the 
right hand side of (1.5) is a lowerbound for D. Ferrari and Fontes (1993b) show 
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(1.3) and (1.5) using a relationship between the expected value and the variance 
of a tagged particle with the variance of the current of particles through a fixed 
or travelling position established in Ferrari and Fontes (1993a). 

Bramson (1988), Lebowitz, Presutti and Spohn (1988) and Spohn (1991) 
reviewed some of the results. 

Related results concerning the behavior of a tagged particle for an equilibrium 
system starting with the invariant measure v~ are the following. Kipnis (1986) 
proved a central limit theorem and law of large numbers for the position of the 
tagged particle. De Masi and Ferrari (1985) computed the variance of the limiting 
Gaussian distribution. Ferrari and Fontes (1993c) showed that the position of the 
tagged particle is given by a Poisson process or rate (1 - p) plus a perturbation 
of order 1. 

Theorems 3 to 8 are proven by Ferrari and Fontes (1993b). Theorem 4 was 
conjectured by Spohn and proven in a weaker form by Gartner and Presutti (1989) 
for p = o. 

The dynamical phase transition of Theorem 6 was proven by Wick (1985) 
and De Masi et ai. (1988) for p = 0 and by Andjel, Bramson and Liggett (1988) 
for A + P = 1. Theorem 7 was proven by Benassi and Fouque (1992) for functions 
depending on regions away from the shock. 
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