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Dissipative Mechanical Systems 

Ivan Kupka and Waldyr Muniz Oliva 

Abstract: The dissipative mechanical systems are sec
ond order vector fields on the tangent bWldle of the configu
ration space, a compact Riemannian manifold ; they are ob
tained by the addition of a dissipative field of forces to a con
servative one. The main results deal with generic properties 
and structural stability of these mechanical systems. 
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Theor. 1.6 

o. Introduction. 

The dissipative mechanical systems are second order vector fields on the tan
gent bundle TM of a given compact Riemannian manifold M (see [1], p .19) and 
are obtained by the addition of a dissipative field of forces to a conservative one. 
The dissipative forces are velocity dependent and slow down the system in such 
a way that the mechanical energy decreases along the non trivial integral curves , 
making the non-wandering set a collection of singular points. Shashahani in 1972 
started a geometric study of the dissipative mechanical systems [13]; later on, in 
[3], 1986, dissipative systems with constraints were considered . The dissipative 
mechanical systems are parametrized by a pair (V, D) where V, the potential 
of the conservative forces, is a smooth real function defined on M and D is the 
dissipative force. Among the dissipative mechanical systems there are the strongly 
dissipative ones for which V is a Morse function and D is a strongly dissipative 
force i.e. satisfies a strongly dissipative condition (see Def. 1.3); they have very 
simple properties that we will describe below. 

There are two well known results in the geometric theory of dynamical sys
tems (see [9], [14]); the so called theorem of Kupka and Smale ([7], [11], [14]) 
and the theorems of Palis and Smale ([8], [10]) on the structural stability of the 
Morse- Smale systems (including gradient systems) . We cannot apply directly the 
theorems of Kupka and Smale presented in [7], [11] and also the results in [12] for 
dissipative mechanical systems; the local perturbation arguments used to prove 
these theorems are not valid since the class of dissipative systems is too small . On 
the other hand, in spite of the fact that T M is not compact, we will see, in the 
last section, that many of the arguments used in [8] can be adapted to prove the 
structural stability of a certain class of complete strongly dissipative mechanical 
systems (see Theorem 1.7). 

Later, Takens ([15], 1983) obtained other generic results on gradient systems 
with a fixed Riemannian metric and on mechanical (conservative) systems in the 
special case of zero curvature metric. 

In many physical applications the ambient space where the evolution takes 
place and the geometry of the system cannot be changed. Hence it is meaningful 
to analyse properties of dissipative systems (V, D) where the friction forces D, 
corresponding to the action of the ambient space and the Riemannian structure, 
representing the geometry and distribution of masses, are fixed. One can also 
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act on the system with small controlling forces or have situations with variable 
conservative forces; hence the potential V can be changed. 

In the present paper the main results deal with generic properties and struc
tural stability of dissipative mechanical systems. Theorem 1.4 proves that in the 
case of strongly dissipative mechanical systems the non-wandering set consists 
of hyperbolic singular points only and determines the structure of the invariant 
manifolds. 

The cr -Whitney topology is introduced in the set of all strongly dissipative 
mechanical systems with a fixed strongly dissipative force D (resp. with a fixed 
potential V); the Theorems 1.5 and 1.6 state that the collection of the strongly 
dissipative ones such that the invariant manifolds are in general position is an 
open dense subset. The Theorem 1.7 proves that the complete systems belonging 
to these open dense sets are structurally stable. 

In proving transversality, it is easy to put the invariant manifolds in general 
position perturbing D and leaving fixed the potential V; as a matter of fact, 
this follows from arguments used in the Kupka-Smale result for first order systems 
(see [7], [9], [11]) together with the same result for general second order vector 
fields (see [12], p .267) . On the other hand, it is much harder to prove the generic 
transversality of stable and unstable manifolds of the dissipative systems (V, D) 
if we keep D fixed and allow only V to vary. This is due to the fact that no 
perturbation of V is local on the tangent structure T M of M since if we 
change V in some arbitrarily small open set w of M, it will still affect the 
evolution of the system on the whole tangent space Tw of w . For more details 
see the proof of Proposition 3.5. 

1 - Statements of the Results 

Throughout the paper (M, <, » will be a Coo compact connected Rie
mannian manifold, without boundary. We call M the configuration space. 
The Coo metric <, > defines the kinetic energy K : T M -+ 1R by 
K(vp ) = ~ < vp, vp >, vp E TpM . The associated Levi-Civita[EO covariant 
derivative will be denoted by yr. The motivation to introduce the Levi-Civita 
connection is to enable us to express conveniently the Newton's law which gov
erns the evolution of our systems. A potential V is a cr+1 function, r ~ 1, 
V : M -+ 1R and the mechanical energy is Ev : T M -+ 1R defined by 
Ev(v) = K(v) + V(1I"M(V», (TM, 1I"M, M) being the tangent bundle of M . Let 
OM denote the zero section, that is, the set of all zero vectors of this vector 
bundle and TM\OM = (TM)o be the set of all non zero vectors. A cr second 
order vector field on T M is a vector field X on T M such that (d1l" M ) 0 X is 
the identity mapping of TM where d1l"M : TTM -+ TM is the tangent mapping 
of 1I"M. 

Definition 1.1. A dissipative force D IS a C r map D: TM -+ TM which 
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preserves each fiber and such that < D(v), V> < 0 for all v E (TM)o. 

We easily see that if D is a dissipative force, then for all 0 E OM one has 
D(O) = o. 

Definition 1.2. A dissipative mechanical system on the configuration space M 
is a pair (V, D) of a C,.+1 potential V and a C" dissipative force D, r ~ 1. 
The pair (V, D) defines a second order C" vector field on T M (sometimes 
also denoted by (V, D»). If z is a trajectory of (V, D) and q its projection 
on M, then z = ~ = q and q satisfies the equation 

V'qq = -(grad V)(q) + D(q) . 

The curve t ...... q(t) E M verifying that law is called a motion and -grad V IS 

called the conservative field of forces. 

The equation above is just the statement of the Newton's law on the manifold 
M. Recall that grad V is the vector field on M characterized by: 

dV(v) =< (grad V)(p), v> for all p EM and all v E TpM. 

Let us denote by DM S the set of all vector fields X E C"(T M, TT M) such 
that X is defined by a dissipative mechanical system (V, D) as in Definition 
1.2. 

It is useful to remark that the mechanical energy decreases along non trivial 
integral curves of any mechanical system (V, D) . In fact, we have: 

~EV(q(t» =~[~ < q,q > +V(q(t))) =< D(q),q > 

which shows that Ev decreases on all integral curves not reduced to a singular 
point. Note also that the integral curves of the system are the derivatives of 
the motions of the system and its singular points lie on the zero section OM . 
Moreover Op E (TpM) n OM is a singular point if, and only if, (grad V)(p) = 0, 
that is, p E M . is a critical point of V . 

We recall that a function V E C"+l(M, JR) is said to be a Morse function 
if the Hessian of V at each critical point is a non-degenerate quadratic form. 
It is well known that the set of all Morse functions is an open dense subset of 
C r+1(M,"JR) with the standard C,.+1 topology. 

Definition 1.3. A dissipative mechanical system (V, D) is said to be strongly 
dissipative if V is a Morse function and D is a strongly dissipative force 
i.e. satisfies the following additional condition: for all p E M and all W E 
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(TM)o n TpM one has < d"D(Op)w,w > < 0 where d"D denotes the 
vertical differential of D. 

Note that we assume V to be a Morse function for technical reasons only. 
From now on we denote by SDMS the set of all X E DMS such that 
X = (V, D) is strongly dissipative and by 1) the set of all strongly dissipative 
forces. 

Theorem 1.4. Let (V, D) be a strongly dissipative mechanical system. Then 
the following properties hold: 

(i) The singular points of (V, D) are hyperbolic. 
(ii) The stable and unstable manifolds W'(O) and WU(O) of a singular 

point 0 are properly embedded. 
(iii) dim WU(O) is the Morse index of V at 1rM(O). 
(iv) dim WU(O) ~ dim M ~ dim W·(O). 

Two submanifolds Sl and S2 of a manifold F are said to be in general 
position or transversal if either Sl n S2is empty or at each point x E Sl n S2 
the tangent spaces T"Sl and T"S2 span the tangent space T.,F. 

Let us denote by SDM SCD) the set of all C r strongly dissipative mechan
ical systems X = (V, D) with a fixed D. Analogously we introduce the set 
SDMS(V). 

All the subsets of DM S are endowed with the topology induced by the 
C r -Whitney topology of Cr(T M, TT M). This topology possesses the Baire 
property (see [11], p.224, for a definition of the Whitney topology and the proof 
of this fact). 

Theorem 1.5. The set of all systems X in SDM S such that their stable and 
unstable manifolds are pairwise transversal is open in SDM S. 

Theorem 1.6. Assume dim M > 1 and r > 3( 1 + dim M) and let 9 be 
the subset of SDMS(D) (resp. SDMS(V») of all systems X such that their 
invariant manifolds are pairwise transversal. Then 9 is open dense in SDM SCD) 
(resp. SDMS(V»). 

As usual we say that XES D M S is structurally stable if there exists a 
neighbourhood W of X (in the Whitney C r -topology) and a continuous map 
h from W into the set of all homeomorphisms of TM (with the compact open 
topology), such that: 

1) heX) is the identity map; 
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2) heY) takes orbits of X into orbits of Y, for all YEW, that is, 
heY) is a topological equivalence between X and Y. 

If the topological equivalence heY) preserves the time, that is, if X t (resp. 
¥,) is the flow map of X (resp. Y) and heY) 0 X, = ¥, 0 heY) for all t E JR, 
then we say that heY) is a conjugacy between X and Y. 

As we will see in Proposition 4.3 the subset of all complete Cr vector fields 
of a manifold :F is open in the set of all Cr vector fields with the Whitney 
Cr -topology. 

Theorem 1.7. Any complete strongly dissipative mechanical system such that 
all the stable and unstable manifolds of singular points are in general position is 
structurally stable and the topological equivalence is a conjugacy. 

The Theorems 1.6 and 1.7 have also the flavour of an interesting theorem 
proved by D. Henry ([5]) for a dynamical system in infinite dimensions. On the 
Sobolev space HJ = HJ«O, 11"), IR) he considered the following parabolic P DE: 

where I: IR - IR is a smooth function such that 1(0) = 0, 1'(0) = 1, 
sl"(s) < 0 if s:f: 0, and A is a real positive parameter. 

Theorem (D.Henry). If ..;>. is not a positive integer, then all stable and 
unstable manifolds of the flow defined on HJ by the P DE above are in general 
position. 

If in Theorem 1.7 we do not assume the mechanical system to be complete, 
the same arguments used in the proof also show that the corresponding time one 
map is a Morse-Smale map in the sense of [4], then stable with respect to the 
attractor A(V, D), which in this case is the union of the unstable manifolds of 
all singular points of (V, D). 

Let us consider an example of a strongly dissipative mechanical system which 
does not satisfy the conclusions of Theorem 1.6 in the sense that it does not 
belong to 9; it is the system which describes the motions of a particle (unit 
mass) constrained on the surface M of a symmetric vertical solid torus of JR3 
obtained by the rotation, around the x-axis, of a circle defined by the equations 
y = 0 and x 2 + (z - 3)2 = 1. The potential V is proportional to the height 
function of M and the dissipative force D is given by D(v) = -cv, c> 0, for 
all v E TM. These data define a strongly dissipative mechanical system with 
M as the configuration space. The metric of M is the one induced by the usual 
inner product of IR3 and the potential is a well known Morse function with four 
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critical points. The symmetry of the problem shows that the unstable manifold 
of dimension one of a saddle is contained in the stable manifold of dimension 3 of 
the other saddle and hence they are not in general position since dim T M = 4. 

A dissipative force D is said to be complete if, for any Morse function V , 
the vector field associated to (V, D) is complete, that is, all of its integral curves 
are defined for all time. 

Let us consider a linear dissipative field of forces, that is, a function D 
defined by 

D(v) = -C(1rM(V»V, for all v E TM, 

where c: M -+ IR is a strictly positive C" function. It is a simple matter to 
show that D is a strongly dissipative force. We will show that D is complete. 
If this were not the case, there would exist a smooth function V : M -+ IR and 
a motion t -+ q(t) of (V, D) whose maximal interval of existence is ]0', +oo[ 
with -00 < a < O. We know that 1,Ev(4(t» =< D(4),4 > is ,negative and 
also that 

0< 1< D(4), 4> I ~ pl412 ~ 2p(Ev(4) + k) 

where p > 0 is the maximum of the function c on M and k = lvi, v being 
the minimum of V on M (recall that M is compact) . For all t, 0'< t < 0, 
we may write 

-2p(Ev(4)+k) ~ ~Ev(4) = ~(Ev(4)+k) < 0 

or 

and then Ev(4(t» is bounded and strictly decreasing, so that there exists 
limt ..... o_ Ev(4(t» = L < +00. 

This shows that 1412 = 2(Ev(4) - V(q(t))) is also bounded because V IS 

bounded; now it is immediate that we have a contradiction. 

2 - Proof of Theorem 1.4. 

Let p be a point of M and U an open neighbourhood of p in M such 
thatthereexistsatrivializationof TM over U, i.e., ¢:1r;/(U)-+UxIRm, m 
being the dimension of M. Let x and v be the projections onto U and IRm . 
The vector field associated to (V, D) has the following expression on U x lRm : 

{ 

dx 
-=v 
dt 

dv 
dt = -(grad V)(x) + D(x, v) - r(x, v)v 
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where r: U x JRm _ End(JRm ) is the difference between the Levi-Civita connec
tion and the trivial connection defined by </I. Then, it is clear that the singular 
points of (V,D) are the vectors Op E OMnTpM such that (grad V)(p) = O. In 
such a singular point, the linear part of the system is L: TpM x JRm - TpM x JRm 
given by 

where I: JRm - TpM is the canonical isomorphism defined by the trivialization, 
H is the Hessian of V at p and 6. is the vertical differential dvD(Op) of D 
at Op. The first statement of Theorem 1.4 follows from the next lemma: 

Lemma 2.1. Let I: JRm x JR!T' - JRm x JRm be a linear map given by 

with H symmetric, det H :f; 0, and 6. negative definite: (6.v, v) < 0 for all 
v E JRm, (, ) is the usual inner product of JRm}. Then the eigenvalues of I 
have non zero real parts. 

Proof. If if3:f; 0 (the case 13 = 0 is excluded otherwise H would have a zero 
eigenvalue) is eigenvalue of I, there exist u E em, u = y+ iw :f; 0, y, wE JRm, 
such that (if3)2U - (if3)6.u + Hu = 0, or equivalently 

{ _f32y + f3bow + Hy = 0 
-f32w - f36.y + Hw = O. 

The symmetry of H implies f3[(6.y, y) + (bow, w)] = 0, which is a contra
diction. This proves (i). 

The second statement of Theorem 1.4 follows from the fact that the energy 
Ev decreases strictly along non trivial integral curves (see, for instance, [6] Th. 
6.1.10). For the last two statements one considers a path of matrices: 

L: Id ] L: :] = I' + (1 - 1') 
-Id 

L: Id ] 
-I'ld + (1 - I')bo 
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Since -J1-Id + (1 - J1-)6. is negative definite for all J1-, 0 ~ J1- ~ 1, the 
continuity of the spectrum enables us to consider the case 

[ -: Id ] N 
-Id 

The eigenvalues A of N are given by 

[ ->.Id 
Id ] det 

-H -(1 + A)Id 

det [ 
0 

Id ] 
0 

-H - A(1 + A)Id -(1 + A)Id 

or, equivalently, by det[~H - J1-Id] = 0 where J1- = A(1 + A). 
But, in the very beginning, we may assume that the trivialization is chosen 

in such a way that -H is a diagonal matrix. Then, for each positive eigenvalue 
J1- of -H (the total number is the Morse index of V) corresponds a positive 
root of N. Thus (iii) is proved . The proof of (iv) is now evident. • 

3 - Proofs of Theorems 1.5 and 1.6 

Although we do not need the next proposition for the proofs of Theorems 1.5 
and 1.6 we present it for a sake of completeness. 

Proposition 3.1. SDM S is an open dense subset of DM S. 

Proof. Since the set of Morse functions if open and dense in Cr+l(M, JR) and 

< d"D(Op)w,w > < 0 on A = {w E TM Ilwl ~ I} 

is an open condition one sees that the openess of SDM S is trivial. We only 
have to prove the density. Given any neighbourhood of a vector field of DM S, 
parametrized by (V, D), we construct a strongly dissipative force D, which is 
equal to D-6I on the compact set A and equal to D outside of a neighbourhood 
of A, choosing a Coo bump function and a small 6 > 0, properly. This and 
the density of the set of Morse functions give the proof. • 

In the case of a fixed dissipative force we cannot prove the density statement 
in Proposition 3.4 below for an arbitrary system because perturbing the potential 
is not a local process on T M. Hence we have to restrict ourselves to systems 
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for which the projections on M of two distinct trajectories have few intersection 
points. In fact it would be enough to consider the systems such that the projections 
of the trajectories have few self intersections. More precisely, let X = (V, D) be 
an element of SDM S. By a trajectory of X we understand a maximal solution. 
Given two trajectories y: ]a_, +oo[ -+ T M, 
z :]L,+oo[ -+ TM of X, we denote by C(y,z) the set of all pairs (t l ,t2) E JR2 
such that a_ < t l , L < t2, y(tI) :I Z(t2) and 1TM(y(tI)) = 1TM(Z(t2)) . Let 
p = 1TM 0 y, q = 1TM 0 z. The projection of the set C(y, z), that is the set 
{p(t l ) I (tl' t2) E C(y, z)}, is the intersection set of the projections p and q of 
y and z . The next proposition clarifies the structure of C(y, z) . 

Definition 3.2. Let X E SDMS. Then : 
(i) We say that X has the property GI if, for any two non singular 

trajectories, y: ]a_, +oo[ -+ M, z : ]L, +oo[ -+ M of X, the set 
C(y, z) is discrete in the quadrant ]a_, +oo[ x ]L, +oo[ of JR2 . 

(ii) We say that X has the property G IW (weak G 1) if, at anyaccumu
lationpoint (t l ,t2) of C(y,z), at least one of tIle points y(td,Z(t2) 
lies on the zero section OM of T M . 

Proposition 3.3. 
(i) If the dimension m of M is greater than 2 and r> 4m + 5, for any 

strongly dissipative force D E cr (T M, T M), there exists a Baire su bset 
GI(D) of SDMS(D) all of whose elements X have the property GI. 

(ii) If the dimension m of M is greater than 1 and r> 3m + 3, we llave a 
similar statement replacing GI by GIW and GI(D) by GIW(D). 

Proof. For simplicity we shall assume r = 00 in the proof. But the proof is still 
valid if we replace everywhere oo-jet by r-jet and "is flat" by "has zero r - jet" . 

Let (tl' t2) be an accumulation point of C(y, z) in ]a_, +oo[ x 
]L, +00[. Then p(td = q(t2). We have to distinguish several cases. First assume 
that y(td:j; Z(t2). Then one of the vectors y(tI),z(t 2) is not zero. Permuting the 
roles of y and z if necessary, we can assume that y(tl):j; O. We claim there exist 
an open interval 6 containing t2 and a smooth mapping u : 6 -+ ffl such that the 
oo-jets of q and po u at t2 are equal. To see this, choose a coordinate system 
xl, x 2 , ••• , xm : 0 -+ ffl (m=dim M) in an open neighbourhood 0 of p(t 1 ) such 
that (Xl 0 p)(t) = t and xl< 0 p = 0 if 2 ~ k ~ m, for all t in an open interval 
61 containing t l . There exists a sequence {(tl(n), t2(n)) I n ~ I} in C(y, z) 
converging to (tl' t2). For all k, 2 ~ k ~ m, xl< 0 q(t2(n)) = xl< 0 p(tl(n)) = 0, 
for all n ~ 1. Hence all the functions xl< 0 q, 2 ~ k ~ m, are flat at t2. 
u will denote the restriction of Xl 0 q to 61 and p the composition po u. 
Then for any n ~ 1, u(t2(n)) = Xl oq(t2(n)) = Xl 0 p(tl(n)) = tl(n) and 
p(t2(n)) = P(u(t2(n))) = p(tJ(n)) = q(t2(n)) . So p and q have the same oo- jet 
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at t2. 
As one easily sees, Z(t2) = y(tI)u(h), U(t2) = ~~ (t2). We have already 

assumed that U(t2) cannot be equal to 1. Now we shall distinguish three cases: 

du 
1) Yt(t 2 ) =F 0 or -1. 

du 
2) dt (t2) = -1. 

du 
3) dt (t2) = o. 

q and p satisfy the following relations: 

VpP - D(p) + grad V(p) = 0, 

Vqq - D(q) + grad V(q) = O. 

Since p and q have the same oo-jet at t2, p satisfies the relation 

v pp - D(p) + grad V(p) = A 

where A is flat at t2. 
Explicitating E3, after setting iT = ~, we get: 

u2(Vpp)(u) + iTp(u) - D(up(u)) + grad V(p(u)) = A. 

E1 

E2 

E3 

E4 

In the first and second cases above, (T is a local diffeomorphism at t2, that 
is u maps some open interval t2, diffeomorphic ally on the open interval u(62) 
containing t1. Set X = ~~ 0 u- 1 : u(62) - JR . Then E4 is equivalent to 

X2(Vpp) + XXP - D(Xp) + grad V(p) = I' E5 

where I' = A 0 u- 1 is flat at t-l. 
Subtracting E1 from E5 we get: 

(X2 - l)V pP + xxp + D(p) - D(xp) = 1' . E6 

E6 is equivalent to an infinite sequence of conditions on the oo-jet of p, 
obtained by equating the sucessive covariant derivates at t1 on both sides of E6. 
For this we need some notations. Jk(M, JR) will denote the space of k-jets of 
mappings from Minto JR, and Jk(JR, 0; R) will denote the space of all k-jets 
at 0 of mappings IR - JR . Taking the nth covariant derivative of E6 along 
the curve p, we get for n ~ 0: 

n , [dk dk ] '"' n . ( 2 )) n-k+1· ( ( . )) n-k· ~k!(n-k)! dtk X -1 Vp p+ dt k XX Vp P 
E7n 

+ [d"D(p) - Xd"D(Xp)]V;p 
Q ( . 'f"7 . 'f"7n -1··n ) 'f"7n + n p, vpp, . . . , vi> P,JoXt, = vpl' 
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where Qn is a fiber-bundle mapping: 

TM XM ... XM TM xr(JR,O;R) - TM 
, y , 

n times 

and Xtl is the translate Xtl(t)=X(t+tt}, where TMxM ... xMTM means 
a fiber product bundle. Deriving E1 covariantly n times along p we get: 

~n . ~n-l d V( . .) vpp= -v gra p, .. . ,p 

+ R..(p, grad V(p), 'Vgrad V(p), ... , 'Vn- 2grad V(p, ... , p» 
E8n 

where R.. is a fiber bundle map: TM XM ... XM TM - TM depending 
, J ... 

n times 
also on D and its derivates and 'Vn grad V: TM XM x ... XM TM - TM 
is the nth covariant differential of grad V: M - TM. E8n and E7n, n ~ 1, 
give us the following: 

~n-l d V( . .) ·n+l ) _ ~n .. . ,v gra p, ... ,P,)o XII - vpJ.', for n ~ 0, E9n 

where Sn is a fiber bundle mapping Sn : T M x M ... X M T M x r+1 (JR, 0; R) -
TM. 

Assume now that we are in the first case, that is, X(tt} = ~~ (tt) ¥ -1. 
Evaluating E9n at tl, since X(tt}2 ¥ 1 we have for n ~ 0: 

'Vngrad V(p(tt}, ... ,p(tt}) + 

+ ()12 1 Sn(p(tt), grad V(p(tt}), . .. , 
X tl -

'Vn-lgrad V(p(tt}, ... , p(tt»,jfl+lx) = O. ElOn 

Denote by J~+l the topological subspace of r+1(JR, 0; R) of all jets j~+lW 
such that w(OF ¥ 1. Define the subset En · of r(M, R) x (TM)o x J~+1 as 
follows: 

En {(j~W, u,j~+1w) I u E (Tz:M)o,j~+lw E J~+1, 

'V"grad W(u, .. . , u) + 

()~ S,,(u,grad W(x), ... ,'V"-lgrad W(u , . . . ,u), 
w 0 -1 
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We can summarize our discussion up to now as follows: if (tl, t2) is an 
accumulation point of C(y, z) at which y(td i 0, Z(t2) i 0 and y(tt} + Z(t2) i 
0, then there exists a i~+lw in Jr+! such that the triple U;(j,) V, y(tt},i~+lw) 

belongs to Ln' 
Assume now that we are in the second case. We claim that X(tt} = -¥,(tt} 

is not zero. E6 evaluated at tl gives 

-x(tt}p(tt} + D(p(tt}) - D( -p(tt}) = o. 

Multiplying scalarly by p(tt} one has 

Since the second and third terms are negative, X(tt} cannot be zero. 
Evaluating E7n at t = tl we get for n ~ 1 

Using E8n we get for n ~ 1: 

[+(2n + 1)X(td - dvD(p(tt}) - dvD( -p(tt})] x 

ym-lgrad V(p(tt}, ... , p(tt}) + 

Ell 

EI2n 

41n (grad V(p(tt}), .. . , ym-2grad V(p(tt}, ... , p(tt}, i~+lX") = O. E13n 

Define the subset En( -I)(n ~ I) of r-l(M, JR) x (TM)o x Jrl+ l , where 
Jfl+! is the subset of In+!(JR, 0; JR) of all i;;+!w such that w(O) = -I and 
w(O) i 0, as follows: En(-l) is the set of all triples (J:-lW,u,i~+lw) in 
r-l(M, JR) x (TM)o x Jfl+ l such that for all k, 1 ~ k ~ n , u E (T%M)o, one 
has: 

[(2k + l)w(O) - d"D(u) - d"D( -u)]~A:-lgrad W(u, ... , u)+ 

+41n (grad W(x), .. . ,~l:-2grad W(u, .. . ,u),i~+lw) =0. 

Then as before (tl' t2) will be an accumulation point at which y(tt} i 
0, Z(t2) i 0 and y(tt} + Z(t2) = 0 if and only if there exists a i~+!w E Jfl+! 
such that the triple U;(~I\V,p(td,i~+lW) belongs to En(-I). 
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The case 3) happens when i(t2) = O. By taking time translates of y and z 
we can assume that tl = t2 = O. This case is more involved than the preceding 

ones. For a start, we claim that ~:~ (0) i O. In fact, evaluating E4 at t = 0, 

we have u(O)p(O) + grad V(p(O» = O. Since grad V(p(O» is not zero, u(O) i O. 
From this it follows that there exists a local diffeomorphism "" at 0 such that 
C1 =!f and F: is +1 if u(O) > 0 and -1 if U(O) < O. 

Setting TJ = 1, 0 ",,-1, we see that E4 is equivalent to: 

2 2 
T2TJ(T2)(\7pp)(e; ) +e(TJ(T)2 + TTJ(T)7j(T»P(; ) 

F:T2 eT2 
- D(eTTJ( T)p("'2» + grad V(p("'2» = v(t) 

E14 

where v = A 0 ",,-1 . 
We shall proceed as in the 1st. and 2nd. cases and replace E14 by more 

manageable conditions on the jets of V and TJ . To do this, we need the following 
estimate which can be obtained easily by induction on n. Let e be any smooth 
vector field along the curve p. Then 

2 n, 2 

\7;e(; ) = L en-ian,iTn-2i(\7;-ie)(e; ) 
i=O 

E15 

where the coefficients an,i are positive integers such that an+l ,i = an ,i + (n -
2i + 2)an,i-l and nl = ~ or n;1 according to n being even or odd. Setting 
t = T2 in El we get from El and E14 

Deriving E16 covariantly 2n times with respect to T and evaluating at 
T = 0 we get the relations 

where Kn is a fiber bundle mapping: 

n times 

Using E8n, the relations E17n imply 

0= a2n,n \7ngrad V(p(O), ... ,p(O» 

+ Ln(p(O),grad V(p(O», ... , \7n-lgrad V(p(O), ... ,p(0»,i5nTJ). 
E18n 

Let us denote by Ln(O), the subset of the jet space In(M, lR) x (TM)o x 
JJn, JJn being the set of all jets iijnw E J2n(lR, 0; R) such that w(O) i 0, , 
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defined as follow: En(O) is the set of all triples U;W, u,jfinw), u E (TzM)o, 
satisfying all the relations 

a21,l'\7lgrad W(u, ... ,u)+Ln(u,grad W(x), ... , 

As before, a necessary condition for (tl, t2) to be an accumulation point of 
C(y, z) when y(tl)::/= 0 but Z(t2) = 0, is that there exists ajet j5nw such that, 
for all integers n, the triple U;(I,) V, p(td, j6n w) belongs to En (0). To finish 
the proof, we need to consider the case when y(td = Z(t2). Then z is a time 
translate of y : z = YT, T = tl - t2, that is, z(t) = yet + T) for all t E]a_, +00[. 
Let ((tl(n), t2(n» I n ~ I} be a sequence in C(y, z) converging to (tl, t2). 
Setting, for each integer n ~ 1, t~(n) = t2(n)+T, the sequence t~(n) converges 
to tl and p(tl(n)) = p(tl(n» for all n. Since y(t~(n)) = z(t2(n)) ::/= y(tl(n)), 
it follows that t~ (n) ::/= t I (n) for all n. If for an infinite sequence {nj I j ~ I} 
of integers, (ti(nj) - tI)(tl(nj) - td > 0, j = 1,2, ... , then the oo-jet of y 
at tl reduces to Op(t,). Since grad V(p(td) = D(y(td) - '\7pp(td = 0, p(tI) 
is a singular point of the system. Then y and z both reduce to the point 
p(td and C(y, z) is empty, which is a contradiction. Hence we assume that 
(ti(n) - td(tl(n) - tI) < 0 for all n. By relabeling some of the t~(n), tl(n), 
we can assume that ti(n) < tl < tl(n) for all integer n. By taking a time 
translate of y we can also assume that tl = o. Then yeO) = p(O) = 0 and 
'\7 pp(O) + grad V(p(O)) = o. If grad V(p(O» = 0, then y is reduced to 
the point yeO) and we get a contradiction as before. Otherwise '\7 pp(O) ::/= o. 
This implies that there exists a local diffeomorphism u: JR -+ JR, u(O) = 0, 
&(0) > 0, at 0, and a germ of smooth curve s: (JR,O) -+ (M,p(O)) such that 

pet) = s( <1(;)~) for all t in a neighbourhood of O. In fact, taking a coordinate 
system xl, ... , xm : 0 -+ JR in a neighbourhood 0 of p(O), xi(p(O» = 0, 
1 ~ i ~ m, for some i, say i = 1, the coordinate function pl(t) = x 1(p(t)) will 
have a non zero second derivative at O. Then there exists a local diffeomorphism 
u such that pI = £1;~ where c l is jil(O)/liP(O)1 and 0-(0) > o. Since 
pl(ti(n» = pl(t1(n» for all n ~ 1, u«ti(n» = -u(tl(n» for all n ~ 1. Let 
u- l denote the inverse of u. Denote by Sl the composition po u- 1 i.e., 
p = Sl 0 u. Then for n big enough, setting Tn = u(tl(n»,sl(Tn) = Sl(-Tn). 
This shows that all the derivatives of Sl of odd order at 0 are zero. So there 
exists a germ of smooth curve s: (JR,O) -+ (M,p(O)) such that Sl and the 
curve t-+s(~) have the same oo-jetat 0, jg"p=jg"(sou2). Using El, we 
see that (& = ~;): 

where u is flat at O. 
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Setting X = ¥, 00'-1, we have: 

t2 t 2 t 2 
(tX(t»2."il;("2) + (X2(t) + tX(t)X(t»s("2) - D(t X(t)s("2 ))+ 

t 2 
+ grad V(s("2» = Cl' 0 0'-1 for all t in a neighbourhood of O. 

E20 

Deriving E20 covari8.Qt1y 2n times, n ~ 1, along the curve t -+ s( ~ ), 
evaluating at t = 0 we get for n ~ 1: 

X2(0)Cn "il~s(O) + Gn(s(O), ... , "il~-1(0),j6nX)+ 
+ a2n ,n "ilngrad V(s(O), . . . , s(O) = 0, 

E21n 

where Gn : TM XM . .. XM TM xJ2n(JR, 0; R) -+ TM is some polynomial fiber , ..... ' 

n times 
bundle mapping, Cn = 2n(2n-l )a2n-2,n-l +22n ,n, an ,i being the positive integers 
appearing in formula E15 . Deriving E20 2n + 1 times, n ~ 0, and evaluating 
at t = 0, we get: 

d 2 
[(2n + l)cn ~ (0) - X(0)dvD(0)]"il1s(0)+ E22n 

+ Hn(s(O), . .. , "ili-iS(O), jgn+1 X) = 0, 

where Hn is a polynomial fiber bundle mapping: 

TM XM ... XM TM xJ2n+1(JR, 0; R) -+ TM. 
, ..... ' 

n times 

Since cn:f. 0 for all n ~ 1 and X2(0):f. 0, we can solve the equations 
E21n successively for the "il~S(O), in terms of 

gradV(s(O)), .. . , "ilngrad V(s(O) , . . . , s(O» . 

Carrying these values into the relations E22n we shall get the following relations, 
n ~ 1: 

[(2n + l)cn d~2 (0) - X(O)dvD(O)]"ilngrad V(s(O), .. . , s(O»+ 

+ En(s(O),grad V(s(O» , ... , "iln-1grad V(s(O)), ... , s(O»,jgn+1 X) = 0 
E23n 

where En is a rational fiber-bundle mapping: 

TM XM ... XM TM xJJn+l -+ TM. 
, T ' 

n times 
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To sum up, if (tl' t2) is an accumulation point of C(y, z) such that y(tt) = 
Z(t2), then, for any integer n ~ 1, there exists a jet ign +1 x E JJ"+l such 

that the triple U;(t.\ V, uo,ign+1x), where Uo = :~~~~) belongs to the subset 

1:n(O,O) of In+l(M, IR) x (TM)o x J~n+1 of all triples U~+1 W, u,jgn+1 w), 
u E (T1:M)o, satisfying the conditions: 1 ~ k ~ n, 

dw2 
[(2k + I)ckTt(O) - w(O)d"D(01:»)yrkgrad W(u, ... , u)+ 

+ En(u, grad W(z), ... , yrk-lgrad W(u, ... , u),jgk+1 w) = o. 

It is clear that 1:n and 1:n (0) are submanifolds of the jet spaces 

r(M;IR) x (TM)o x J~+1 and r(M,IR) x (TM)o x J6n , 

respectively, having codimensions (n + I)m and nm. Since w(O):I 0, in the 
sequence of endomorphisms of T1:M : [w(O) - L(u)], [3w(0) - L(u)], ... , [(2n + 
I)w(O)-L(u)], L(u) being the endomorphism d"D(u)-d"D(-.u), u E (T1:M)o, 
at least n-m are invertible. 1:n(-I) is contained in a codimension (n-m)m 

sub manifold 1:n( -1) of r-1(M, IR) x (TM)o X J~I+I. Finally, if w(O):I 0, 

in the sequence of endomorphisms of T1:M : [3Cl dw:JO) - w(O)d"D(01:)], 

[5C2d;;\0)-w(0)d"D(01:)]"' " [(2m+I)cn dw:JO) -w(O)d"D(01:)], at least n-m 

are invertible. In case ~ (0) = 0, they are all equal to w(O)d" D( 01:), which is 
invertible. Hence 1:n(O,O) is contained in a codimension (n-m)m submanifold 

1:n(O,O) of the jet space In(M, IR) x (TM)o x J~n+l. 
To end the proof of Proposition 3.3, we will apply the transversality density 

Theorem 19.1 p.48 of reference [1] choosing for the A of that theorem the space 
of all Morse functions on M. The choices of the manifolds X, Y, Wand of the 
mapping p: A -+ C(X, Y), V -+ Iv are indicated in the table below for each 
case: 

Case 
En 
~n(O) 
En(-I) 
En(O,O) 

W 
En 
En(O) 
En(-I) 
E(O,O) 

X 
(TM)o X J~+1 
(TM)o x JJn 
(TM)o x r 1+1 
(T M)o x J~n+1 

Iv 

Y 
Jk(M, IR) x X 
J"(M, JR) x X 
r- 1(M, JR) x X 
In(M,IR) X X 

Iv(u,j~+1w) = j;V,z = 7T(U) 
!v(u,jznw) = j~V,z = 7T(U) 
Iv(U,j~+lw) = j~-1 V, Z = 7T(U) 
I ( '2n+l) 'n V ( ) V u, Jo w = J1: , Z = 7T U 

For proposition 3.3(i) n has to be chosen greater than 4m+5; for Proposition 
3.3(ii), greater than 3m + 3. • 
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An unstable (stable) manifold of a singular point of X E SDMS will be 
called simply an unstable (stable) manifold of X. 

Proposition 3.4. Given any pair (Xo,zo) in GIW(D)xTM (resp. SDMS(V) 
x TM) there exist open neighbourhoods No of Zo in TM, Uo of Xo in 
SDM S(D) (resp. SDM S(V») such that, if N is the number of singular points 
ofXo: 

(i) There is a continuous mapping 

Uo :3 X - (OI,X, ... , ON,X) E MN = !J x M x ... x M, 
y 

N times 

such that for each X in Uo, {OI,X, ... , ON,X} is the set of all singular 
points of X; 

(ii) If Zo does not lie on any unstable manifold of Xo, for any X E Uo 
no unstable manifold of X meets No; 

(iii) If Zo lies on an unstable manifold of Xo, W-*o(OIXo) say, then the 
set of all X in Uo such that W-* (OlX) n No is transversal to all the 
stable manifolds of X is a Baire subset (residual) of Uo. 

For the proof of Proposition 3.4, we use Proposition 3.5 below, to be proved 
later. Given a trajectory z :la_, +00) -+ TM of (V, D) with projection q, we 
say that an interval I Cla_, +00) is free of multiple points if, for any tEl, 
q-l(q(t» = {t}. 

Proposition 3.5. Let Xo = (Vo, Do) be a system in SDM Sand Xo a 
non singular point of Xo lying on an unstable manifold W*o(Oxo) of Xo. 
Let Zo: IR -+ TM be the trajectory of Xo passing through Xo at time O. 
Assume that Zo satisfies the property: any open subset 0 in IR contains an 
open interval In free of multiple points for Zo and such that zo(In) does not 
intersect the zero section of TM . Then there exist neighbourhoods Uo of Xo, 
in SDMS(Do) (resp. SDMS(Vo»), No of Xo in TM, 0 of 0 in IRC 
where c is the codimension of W-*o(Oxo) in TM and a continuous mapping 
(X,O) E Uo x 0 - VX ,8 E COO(M; IR) (resp . DX,8 E V) having the following 
properties: 
(i) There exists a continuous mapping X E Uo -+ (OI,X," " ON,X) E MN such 

that the set {OI,X, " " 0 N,X) is the set of all singular poin ts of X and 
01,Xo = OXo' 

(ii) For any X = (Vx, Do) in Uo and 0 E 0: 

C 

VX,8 = Vx + L Oi\ti, 0 = (01, ... , OC) E IRc 

i=1 
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where the functions V; have their supports contained in a compact subset 
Q of M (resp.: For all 0 E e, Dx" - Dx has its support con.tained in a 
fixed compact subset Q in T M ). 

(iii) For any X E Uo, the fields X, = (Vx", Do) have the same singular set 
(Ol,X, ... ,ON,X) as X and they coincide with X in a neighbourhood 
of this singular set. 

(iv) Theset T·(No,X) of the projections on M of all positive semi trajectories 
starting in No (resp. the set P(No,X) of all positive semi-trajectories 
starting in No) does not meet Q. Hence P(No, X) is identical with the 
analogous set T·(No,X,) for X,. 

(v) For any X in Uo, there exist an open subset Px of WX(Ol,X) and a 
diffeomorphism ex : Px X e - TM such that: 

1) the open subset ex(Px x e) of TM contains No. 
2) ex,o : Px - TM, :I: - ex (:I:, 0) isjust the injection of Px m TM. 
3) For any 0 in e we have the inclusions W x • (Ol,X) n No C ex(Px x 

{e}) C WX.(Ol,X)' 

Proof of Proposition 3.4. We can easily find an open neighbourhood U1 of 
Xo such that (i) is satisfied. If :1:0 does not lie on an unstable manifold of X o, 
then the negative semi-trajectory of Xo ending at :1:0 cuts any energy level 
surface {Evo = A}, Vo being the potential of X. Choose A so big that all 
the unstable manifolds of Xo lie in {Evo ~ A}. There will exist a compact 
neighbourhood No of :1:0 in T M such that all the negative semi-trajectories of 
Xo ending in No cut the level surface {Evo = 2A}. Then it is easy to find an 
open neighbourhood Uo CUI of Xo such that: 1) for any X in Uo all the 
unstable manifolds of X lie in {Evo ~ 3:}; 2) all the negative semi-trajectories 
of X ending in No cut the level surface {Evo = 2A}. Obviously for any X 
in Uo no unstable manifold of X cuts No. This ends the proof of Proposition 
3.4 when :1:0 does not lie on an unstable manifold of Xo. 

If :1:0 lies on Wxo(Olxo), we can find neighbourhoods Uo of X o, No 
of Xo satisfying all the properties of Proposition 3.5. Since the stable manifolds 
are submanifolds of T M, it is clear that the set 9(Uo) of all X in Uo such 
that WX(OlX) n No is transversal to all the stable manifolds of X is a G6 
(countable intersection of open subsets of Uo). 

If we prove that 9(Uo) is dense in Uo, it will follow that it is a Baire subset 
of Uo. 

Take any X in Uo. Using the notations of Proposition 3.5, denote by 
pr2 : Px x e - e the second canonical projection. Sard's theorem tells us 
that in any neighbourhood of 0 in e, there exists a 0 which is a regular 
value for the restriction of pr2 to the family {ei1(Wx(O;x» I 1 ~ i ~ N} 
of submanifolds of Px x e and such that Xi lies in Uo. Since the positive 
semi-trajectories of Xi starting in No, do not meet the support Q of the 

deformation Xi' for any j, 1 ~ j ~ N, Wx,(Ojx.)nNo = WHOjx)nNo 

and the choice of 0 ensures that the manifold ex (Px x {O}) is transversal to 
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the family {WX(OiX) 11 ~ i ~ N}. Since ex(Px x (O}) contains W~_ n No, • 
we get the statement (iii) of Proposition 3.4. • 

Proof of Proposition 3.5. We shall discuss only the case where the dissipative 
force is kept fixed. This case is much harder to handle that the one where the 
potential is kept fixed because even if we use local perturbation of the potential V 
(Le. with small compact support) the corresponding perturbations of the system 
will not be local anymore, since they will affect all the points in the tangent bundle 
located above the support of the perturbation of V. Hence more sophisticated 
tools are needed to treat this case than the case where the dissipative force is 
perturbed, which can be treated by standard methods. 

To prove the Proposition, it is sufficient to construct an open neighborhood 
V of Xo in SDMS(Do), times Tu < t1 < t2, compact neighbourhoods Nu , N. 
of ZO(Tu), zo(O) respectively, in TM, Q of QO([t1,t2]), Qo = 7rM OZo, in M, 
and c smooth functions Vi: M - JR, 1 $ i $ c, with supports contained in 
Q such that: 

0) There exists a continuous mapping X E V - (01,X, ... , ON,X) E MN 
such that {01,X, ... , ON,X} is the singular set of X and OlXo = OXo. 
Also Qn{Ol,X, ... ,ON,X}=0 for X in V. 

1) Let P(N., X) denote the set of the projections on M of all positive 
semi-trajectories starting in N •. Let ru(Nu,X) denote the set of all 
negative semi-trajectories tending to a singular point as t tends to -00 

and ending in Nu for t=O. T·(N.,X)nQ and TU(Nu,X)nQ are 
both empty for any X in V. 

2) The mapping Ixo: [NunW~o(Oxo)]xlRc -TM, defined as: fxo(x,8) 
is the position at time 0 of the trajectory of the system X08 = 
(Vo + L:~=18iVi,Do) passing through x at time Tu, is infinitesimally 
inversible at xo. 

In fact, if we have properties 1-2 above, Ixo is a local diffeomorphism at 
xo. Since Ixo(zo(Tu), 0) = xo, we can restrict both Nu and N. and choose a 

o 
neighbourhood e of 0 in lRC such that Ixo maps [Nu nW~o(Oxo)] x 8, 
o 
N u = interior of Nu , diffeomorphically onto a subset of T M containing N •. 
Then we can find an open subneighbourhood Uo of Xo in V such that this last 
assertion is true for the mapping Ix constructed in the same way as Ixo, but 

o 
startingwith X instead of Xo :Ix maps Nu nWx(Olx)x8 diffeomorphically 
onto a set in T M containing N •. 

Then we define Px and ex as follows: 

o 
Px = Ix(Nu nWX(Ol,X),O) 

ex (fx(x, 0), 8) = Ix(x, 8). 

As No we take N • . Then all the conditions (i), (ii), (iii), (iv), (v)-I, (v)-2 
of Proposition 3.5 are obviously satisfied. To check (v)-3 note that by property 
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1 of N u , the intersection W~.(Ol,X) n Nu coincides with the intersection 
o 

W~(Ol,x)nNu. Hence ex(Px x {8}) = Ix{ Nu nW~.(Ol,x),8) is contained 
in W~.(Ol,X)' If y is a point in W~.nNo then it is the image Ix(z,8) of 

o 0 

a point z in Nu nW~(Ol,X) which is the same as Nu n W~.(Ol,X)' Hence 
y = ex (fx (z, 0), 8). This proves the second inequality of (v)-3. It remains to 
construct V, Nu , Nil Q, and the V;'s so as to satisfy 0)-1)-2). 

To check that Ixo is infinitesimally inversible at Zo it is necessary and 

sufficient to show that the vectors 8£:,0 (zo(ru),O), 1 $ u $ c, in TzoTM, are 
linearly independent modulo the subspace Tzo W~o(Oxo) of TzoTM. Now these 
vectors are the values at t = 0 of vector fields along Zo which represent the 
infinitesimal deformations of the trajectories when Xo undergoes the deformation 
Xu. These vector fields are solutions of the linearized flow equation along zoo 

To study this linearized equation we need a good representation of it and more 
generally of the double tangent bundle TT M. In our opinion the best is to use 
the Levi Civita connection of the Riemannian manifold M. At a great expense 
in calculations and symbols one could avoid the connection and use coordinate 
charts. But the computation would be very messy and the results would not be 
intrinsic. 

A) To proceed we have to recall some more or less well known results about 
the double tangent space TT M. It can be considered as a vector space bundle 
in two ways: first it is the tangent bundle of the tangent bundle T M of M. As 
such it has a projection 7rTM: TTM ---+ TM. 

Second, the canonical projection 7rM: TM --+ M of the tangent bundle 
TM of M induces a tangent mapping T7rM: TTM ---+ TM. This is a vector 
bundle projection and we have the relation: 

The kernel of T7rM is a subbundle VerM of the bundle 
(TT M, 7rT M, T M) called the vertical bundle. Ver M is isomorphic to the fiber 
product TM XM TM endowed with the first canonical projection prl : TM XM 
TM ---+ TM, (u, v) ---+ u. A canonical isomorphism j: TM XM TM ---.. VerM 
is defined as follows: if (u, v) E TM XM TM, j(u, v) is the tangent vector at 
A = ° of the curve A E IR ---+ u + AV E T M. 

The Levi-Civita connection defines another subbundle 1lM of the bundle 
(TTM, 7rTM, TM) called thehorizontal bundle as follows. Define a smooth map
ping C: TM XM TM --+ TTM: for any pair (u,v) E TM XM TM, choose 
any smooth curve cr:] - e:,e:[ --+ M, t --+ cr(t) such that its tangent vector 
at 0, Tcr(O), is u. Let r,,(t): TqM ~ T,,(t)M (q = cr(O) = 7rMU = 7rMV) be 
the parallel transport along cr defined by the Levi-Civita connection. Then the 
tangent vector at 0 to the smooth curve t E] - e:,e:[ --+ r,,(t)v is independent 
of the choice of cr but depends only on the pair (u, v). We denote it by C( u, v). 
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C defines a vector bundle injection of the bundle 
(TMxMTM, pr2' TM) [pr2 is the second canonical projection TMxMTM --+ 

TM, (u, v) --+ v] into the bundle (TTM, 7rTM, TM). Its image 1iM is the 
horizontal bundle. 

The following formulas are useful: 

T7rM C(u, v) = u 
7rTMC(U, v) = v 

T7rM(i(U, v» = 0 

7rTM j(u, v) = u 

The vector bundle (TTM, 7rTM, TM) is the direct sum 1iM EB VerM of 
its horizontal and vertical subbundles. This direct sum, in turn, is isomorphic 
to the fiber product (TM XM TM) xpr.,prl (TM XM TM) which, in turn, is 
isomorphic to the triple fiber product TM XM TM XM TM. The isomorphism 
~: TM XM TM XM TM --+ TTM defined in this way is: 

~(u, v, w) = C(u, v) + j(v, w) . 

The triple (u, v, w) corresponds to the element [(u, v), (v, w)] of the fiber product 

(TM XM TM) xpr. ,pr1 (TM XM TM). 

The inverse ~ -1 of ~ can be expressed as follows: 

~-1 : TTM --+ TM XM TM XM TM, 

~ -l(T) = (T7rM(T), 7rTM(T), /«T» 

where the mapping K: TTM --+ TM is the unique smooth mapping satisfying 
the relation: 

j(7rTM(T), K(T» = T - C(T7rM(T), 7rTM(T» . 

The last element belongs obviously to the vertical bundle. 
The following considerations will be useful for the future. Let z: la, b[ --+ 

T M be any smooth curve and let q: la, b[ --+ M be its projection on M, 
then the image ~ -1 ( ~;) of the tangent vector field ~; E TT M along z is: 

(1) 
-1 dz dq 

6. (dt)=(dt' z, V't z ). 

where ~ is the tangent vector field to q and V'tZ is the covariant derivative 
of the vector field along q. 

We also have the formula: 

(2) 
dz dq . 
dt = C( dt' z) + J(z, V't z ). 

B) The preceeding remarks in A, allow us to avoid the consideration of the 
double tangent bundle TTM and work with objects in M and TM. In 



Dissipative Mechanical Systems 91 

particular we can give the following nice representation of the flow of a system 
X = (V, D). The projections on M of the trajectories of X are the curves 
q : ]a_, +oo[ - M satisfying the second order equation: 

v qq - D(q) + grad V(q) = 0 

where q denotes the tangent vector field '* and V q the covariant derivative 
in the q direction. The trajectory of X whose projection is q, is simply the 
tangent vector field ,*. 

Let us now study the linearized flow along a trajectory. Let 0 E e (open set 
in IRe) - X8 = (V8,D8) denote a smooth deformation of the field Xo and let 
o E e - Z8 : ]a_(O), +oo[ - TM be a smooth family of curves such that Z8 
is a trajectory of X 8 • The vector field P.;t 18=0 is the infinitesimal deformation 
of the family along zoo Let X be the vector field T7rM(P.;t 18=0) along qo, 
projection of Zo on M. 

Lemma 3.6. A vector field X along qo is the projection on M of an infinitesimal 
deformation of Zo corresponding to the deformation X8 of X if and only if: 

where Po is the second order operator along qo : 

The tensor fields R, S are defined in the proof of the Lemma. The relation 
between X and ~; 18=0 is as follows: 

C) For any interval f C ]a_(O), +oo[ denote by r(I, TM) the space of all 
smooth vector fields along the curve restriction to qo of f . 

Po defines a linear operator r(I, TM) - r(I, TM) with respect to the 
L2 scalar product defined by the Riemannian metric on M. Po has an adjoint 
Po : r(I, TM) - r(f, TM) 

P;t/J = V'~ot/J + V'qo(R(qott/J) + S(qo)*t/J 

where R*, S* are the adjoints of the tensors R, S with respect to the Rieman
nian scalar product. 
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We have a Green's formula: let I be closed, I = [a, b], then: 

for all "pl,,,p2 E reI, TM), where for each U E TqM, B(u) is the multilinear 
form TqM X TqM X TqM X TqM - IR: 

B(U)[(Ul' vI), (U2' V2)] =< Ul, V2 > - < U2, VI > - < R(U)Vl' v2 > . 

It is clear that B(u) is non-degenerate for each u. 

D) Assume now that Zo is a trajectory of Xo = (Vo, Do) contained in 
an unstable manifold Wxo(a(zo». The tangent bundle TWxo(a(zo» I Zo of 
Wxo(a(zo» along Zo is asubbundle of the tangent bundle TTM I Zo along zoo 
Its image EU by the mapping T7rM x 7rTM is a subbundle of q'OTM x q'OTM. 

qo 
Since TWxo(a(zo» I Zo is invariant by the linearized flow along zo, EU is 
invariant by Po, that is, if (u, v) belongs to EU and cp is a solution of Pocp = 0 
such that (Vtcp(to), cp(to» = (u, v) for some to then (Vtcp(t), cp(t» E Ef for 
all t. 

Let E- be the subbundle of q'OTM x q'OTM, which is the right orthogonal 
complement of EU with respect to B. Its fiber E; at t E IR is: 

E; = {(U2, V2) E Tqo(t)M x Tqo(t)M I B(qo(t»[(Ul, vI), (U2, V2)] = 0, 

V'(U2, V2) E En· 
The bundle E- is invariant by Po. In fact, take any solution "p of Po"p = 0 

such that (Vt"p(to), "p(to» E E;o for some to. Then for any solution cp of 
Pocp = 0 contained in EU, using Green's formula: 

1t1 

B(qo(t))[(Vtcp, cp), (Vt"p, "p)] I!!= [< Pocp,,,p > - < cp, P;"p >]dt = 0 
to 

for any tl in ]a_, +00[. 
This relation shows that for any such t2: 

Since (VtCP(tl), cp(td) takes all possible values in Ef as cp varies, we get 

Since the bilinear form is non-degenerate, the dimension of the fibers of E
is the codimension c of Wxo(a(zo». 
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In order to construct VB · we need the following Lemmas: 

Lemma 3.7. Let Xo be any system in GIW(D). 
(i) For any non singular trajectory Zo: ]a_, +oo[ --+ T M of Xo and any 

open subset n of ]a_, +00[, there exists an open in terval In con tained in n 
free of any multiple points of qo = 7rM 0 Zo and not contaning any time t such 
that *(t) = zo(t) = OM. 

(ii) Let In be any open interval in ]a_, +oo[ having the properties stated 
in i. Let Tu < it < t2 < T, be four times such that [Tu, T,] C ]a_, +oo[ and 
[Tu, t2] C In. Then there exists an open neighbourhood Uo of Xo in SDMS, 
a compact neighbourhood Q of qO([t2, t2]), compact neighbourhoods Nu , N, 
of ZO(Tu) and ZO(T,) respectively in TM, such that the sets Uxeuo T'(N" X) 
and Uxeuo ru(Nu, X) do not meet Q. P(N" X) is the set of projections on 
M of all the positive semi-trajectories of X starting in N. and ru(Nu,X) 
the set of projections on M of all the negative semi trajectories of X ending in 
Nu and tending to a singular point of X when t goes to -00. 

Lemma 3.8. Let X be a system in SDM S and let Zo :]a_, +oo[ ~ T M be a 
trajectory of X and qo its projection on M. Then there exists a real number 
T + such that Po qo # 0 for all t ~ T + . If o( zo) exists then the same is true 
for all t :::; T_, T_ an appropriate number. 

As a consequence qo is linearly independent from the space of solutions of 
PotP = 0 on any interval contained in [T+, +oo[ (resp. ] - 00, T_]). 

To start the construction of the VB we choose an interval In as in Lemma 
3.7 and contained in ] - 00, T_] where T_ is the number defined in Lemma 3.8. 
Take now three times Tu , tl, t2 such that Tu < tl < t2 < 0 and [Tu, t2] is 
contained in In. Then choose neighbourhoods V of Xo in SDMS(Do), Nu 
of zoe Tu), N. of zo(O) = Xo (T. = 0), Q of qo([t l , t2]) as in Lemma 3.7-(ii). 

Restricting V, Nu further we can assume that there exists a continuous 
mapping X E V --+ (Ol,X, . . . , ON,X) E MN such that 
{Ol,X, ... ,ON,X} is the singular set of X and Ol,Xo = OXo' Moreover, we 

can assume that the correspondence X E V --+ Nu n W~(Ol,X) is continuous 
in the following sense: there is a continuous mapping X E U --+ eX E £, £ 
being the space of all embed dings of Nu n W~o(Oxo) into TM with the usual 
topology, such that for any X in V: 

In order to construct the functions V; with support in Q, we will construct 
vector fields Fi , 1 :::; i :::; c, along qo such that for all t E JR, the value 
grad V;(qo(t» of the gradient of V; at qo(t) will be Fi(t). To do this, let 
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E- denote the vector space of all vector fields t/J along qo I [tl' t 2], which are 
contained in the fiber bundle E- along the curve qo I [tl' t2] and which are 
solutions of the equation Pot/J = O. This space E- is a finite dimensional space 
of dimension c. Choose c vector fields Fi, 1 ~ i ~ c, along qo I [tl' t2] having 
compact supports contained in ]t1' t2[ such that the linear forms fi on E., 
fi(t/J) = !t'12 < Fi(t), t/J(t) > dt form a basis of the dual of E- and such that: 

1'2 < Fi(t), dq;?) > dt = 0, 1 ~ i ~ c. 
11 

This is possible since given the choice of In, ~ is linearly independent 
from E- on [t1' t2]. 

Now we can define the \Ii. Let Be be the subset of qijTM I [t1,t2] of all 
vectors v E Tqo(I)M, tl ~ t ~ t2, such that II vII ~ e and v is orthogonal 
to ~(t). Then there exists an e > 0 such that the exponential mapping 
exp: Be --+ T M, v --+ expv associated to the Riemannian metric of M is a 
diffeomorphism and such that 
exp Be C Q. 

Finally, let p: IR --+ [0 , 1] be a Coo function such that p is 1 on the 
interval [-~,~] and 0 outside the interval [_3;, 3n. 

\Ii is defined as follows: on the image exp(Be), if v E Tqo(t)M, tl ~ t ~ t2 , 

\Ii(exp v) = p(lIvlD [< F;(t), v> + 1: < Fi(S), ~~o (s) > dS] 

and outside exp(Be), \Ii = O. 
\Ii is smooth. To check this we have to show that \Ii(exp v) = 0 when v 

lies in a neighbourhood of the boundary of Be . This happen when either II vII 
is near e, but then \Ii(exp v) = 0 since p(lIvlD = 0 if IIvll;::: 3: or when 
v E Tq(I)M and t is near t1 or t2. But then t will lie outside the support of 
Fi and also 

o 
11 dq 

< Fi(S), y(s) > ds 
11 S 1'2 d 

< Fi(S), ;0 (s) > ds 
11 S 

But by construction this last integral is zero. 
To define VII and more generally VX,II, X E V, we set: 

c 

VX,II = Vx + L:0i\li, VII = VXo,lI . 
i=l 

if t is near tl 

if t is near t2 

The deformation XII of X = (Vx, D) is defined as the system (VX,II, D). 
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Finally, we can define a mapping 

Ix : [Nu n WX(OlX)] x IRc - TM 

as in the beginning of the proof of Proposition 3.5: Ix(z,O) is the position at 
time 0 of the trajectory of X, passing through z a time Tu. 

It is clear that the conditions 0-1 stated at the beginning of this proof are 
satisfied by our choice of V, Nu , N .. Q, Vi 1 ~ i ~ c. All we have to do is to 
check the last condition 2). As we have seen, this is equivalent to proving that the 
vectors 8£:,o (ZO(Tu),O) in TzoTM are linearly independent modulo the space 
TzoTM. 

By lemma 3.6, the projection d1rM [8£:." (ZO(Tu), 0)] is equal to Y;(O), where 
Y;, 1 ~ i ~ c is the vector field along qo, solution of the Cauchy problem: 

If the vectors 8£;.0 (Zo( Tu ), 0), 1 ~ i ~ c, were not linearly independent 

modulo Tzo Wxo(a(zo», then the vectors d1rM x 1rTM [8£;,0 (O(Tu), 0)], 1 ~ i ~ c, 

would be linearly dependent modulo E~. Now d1rM x 1rTM(8~eo(ZO(Tu),0» = 
(\7, Y;(O), Y;(O». We claim that for any t > tl the c vectors 

(\7,Yl(t), YI(t», ... , (\7 ,Yc(t), Yc(t» 

10 Tqo(I)M x Tqo(I)M are independent mod~Iio E~. Were they not, there 
would exist a linear combination Y = l:~=l .x'Y;, .xl, ... , .xc E IR, such that 

(\7 ,Y(t), Y(t» belongs to E~. But {Po(Y)= -F () where F = Y Tu = \7,Y Tu = 0' 

L~=l.xi Fi. 
For any t/J E E; 

-1' < F(s), t/J(s) > ds = l' [< PoY(s), t/J(s) > - < Yes), Pot/J(s) >]ds 
I. I. 

= B(cio(t»[(\7tY(t), Y(t», (\7 ttl>(t), tI>(t»] 

=0 

By the choice of the Fi, this implies that F = O. 

H { PoY = 0 
ence ( ) Y(Tu) = \7tY Tu = 0 . 

By the uniqueness property in Cauchy's existence theorem, this implies that Y = 
o and proves our claim. 

Proof of Lemma 3.6: We start with the relation: 

\74.ci, - D(ci,) + grad V,(Q8) = o. 
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Let us introduce the mapping q: U'Ee ]a_(O), +oo[ -- M, (t,O) -- q,(t) 
and denote by V, (resp. V,) the covariant derivative in the direction ~ (resp. 

~). Hence: 
aq aq . 

V, at - D,( at) + gradV,(q) = O. 

Deriving covariantly in the direction of ~: 

Now: 

_ V 2aq 
- 'ao 

( Oq Oq) aq 
+ Curv ao' at at 

where Curv is the curvature tensor, since the Levi Civita connection has no 
torsion. 

We have: 

av 
V,(grad V,)[q] = grad {j8(q) + (V ~grad V,)(q) . 

The last term we have to compute is V, [D,(~)] . This case is more involved. 
For each fixed t, the mapping 0 E e -- D, (~( t, 0») is a vector field along 
the curve 0 E e -- q(t,O). For simplicity denote by 8 this field. Then the 
vector field Z: III TT M along the curve 0 E e ---+ z(t, 0) (t fixed) is given 
by the formula: 

08 aq . 
ao = C(ao' 8) + J(8, V,8). 

On the other hand we have the relation in TT M: 

where :,2!U is the second derivative of q, :,23,: IR x e -- TT M and T D, (u) 
is the tangent mapping TuTM -- TuTM of D,. 

We also have the equation (see formula (2), section A, after the proof of 
Proposition 3.5): 

aq aq 
V, at = V, ao since the Levi Civita connection has no torsion. Hence: 

a8 oq aq aq aq . oq oq . aq aD, aq 
ao = TD,( at )C(ao' at) + TD(/( ao)}( at' V, ao) + +J( at' 7i8( at» 
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Since Ds is a fiber mapping TM - TM, for any (u,v) E TM XM TM 
TD/I(u)j(u, v) is a vertical vector in TuTM . 

Hence there exists a unique smooth mapping dvDs : TM XM TM _ TM 
called the vertical differential of Ds such that: 

TDs(u)j(u, v) = j(u, dvD/I(u)v). 

dvD/I is intrinsic (i.e. independent of the connection): 

d 
dvDs(u)v = dA [D/I(u + AV)] I.~=o . 

It is easy to check that for any (u, v) E T M x M T M the vector 

TD/I(u)C(u, v) - C(D/I(u), v) 

is a vertical vector. Hence there is a unique mapping 
VHDS: TM XM TM - TM such that: 

TDs(u)C(u, v) - C(Ds(u), v) = j(V H DIJ(u)v, Ds(u». 

Now we can define the tensors R: TM XM TM ---+ TM and S : TM XM 

T M - T M as follows: 
R(u)v = dvDo(u)v 

S(u)v = Curv(v,u)u - VHDo(u)v + (Vvgrad VO)(1TV) 

and we get the equation 

. dqo 
qo = Tt· 

Proof of Leullna 3.7: In the case where Xo satisfies GI, the statement (i) 
is obvious. Hence we shall assume that Xo satisfies the weaker property GIW 
only. 

Let us denote by C l the projection of the set C(zo, zo) on the first axis and 
by Cl its closure. We are going to study the structure of Cl. Let Tl be an 
accumulation point of Cl . Then there exists a sequence {(tl (n), t2(n» I n E IN} 
in C(zo , zo) such that: (n) the sequence {tl(n) In E BV} converges to Tl; 

({3) the sequence {t2(n) In E BV} either converges to a number T2 or it tends 
' to ±oo. 

In the first case of ((3), the property G IW implies that either zoe TI) = 0 
or ZO(T2) = o. 
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In the second case of (P), if we denote the projection 1r 0 Zo of Zo by qo 

This shows that the set of accumulation points of C1 is contained in the 
subset B of all t in IR such that 

d { w(~) dtO (t) = 0 or qo(t) = or 
a(zo). 

If we show that the set Bl of all accumulation points of B is discrete, it 
will follow that Cl will be nowhere dense. 

Let (T(n) In E IN) be a sequence in B converging to a number T. Then 
there exists a subsequence {T(ni) liE IN} such that: 

either 
dqo . 
Tt(T(ni» = 0 for all i, or qo(T(ni» = { w(zo) 

a(zo) 

for all 
or 
for all t. 

In all these cases the oo-j~ of qo at T is the oo-jet of the constant 
mapping: t E IR --+ qo( T) EM. This implies that OqO(T) is a singular point of 
the system and hence cannot be reached by the trajectory qo in finite time with 
zero end speed. We have a contradiction. 

This finishes the proof of statement (i). 

Proof of (ij). We shall present the proof for Nu • The case of N. is similar . 
If V and Nu did not exist one could find a sequence {(Xn , zn) I n E BV} 

offields Xn in SDMS and trajectories Zn of Xn such that: a(zn) exists; 
Xn converges to Xo; Zn(Tu) converges to ZO(Tu); the distance On between 
the sets qn(] - 00, Tu]) and qn([tl, t2]) tends to 0 as n goes to 00. 

Take a compact neighbourhood A of the singular points of Xo in M such 
that An qO([Tu, t2]) = 0. For n sufficiently large, n ~ no say, Sing (Xn) C A 
and hence there will exist aT> 0 such that qn(] - 00, T]) C A and T < Tu. 
This implies that the distance o~ between qn([T, Tu]) and qn([tl, t2]) tends to 
O. Since the restrictions of qn to [T, Tu] and [tl, t2] tend uniformly to the 
restrictions of qo to the same intervals respectively, then qo([T, Tu]) n qO([tl, t2]) 
is not empty. This contradicts the choice of [tl, t2] to be without multiple points. 

Proof of LellllIl8 3.8: Let X be any vector field along an arc of the trajectory 
qo such that PoX = PoX = O. 
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This means: 

Diaaipative Mechanical Syatema 

{ 
'V~X - R(qo)'VtX + S(qO)X = Q 

'V1 X + 'VtR(qo)· X + S(qo)· X = 0 

Multiplying scalarly by X: 

< 'V~X,X > - < R(qo)'VtX,X > + < S(qo)X,X >= 0 
, 

< 'V~X,X > + < 'V,R(qo)*X,X > + < S(qo)*X,X >= 0 

Subtracting the second relation from the first: 

< R(qo)'V,X, X> + < X, 'V,R(qo}* X >= 0 

~ < R(qo)X,X >= o. 

99 

Assume now that PoqO = 0 on an arc [T, +00[. Since Poqo = 0, we get: 

~ < R(qo)qo, qO >= 0 on [T, +oo[ . 

Integrating between t and +00 

< R(qo(t»qo(t),qo(t) >= lim < R(qo(s»qo(s),qo(s) > 
.-+00 

Nowas s tends to +00, qo(s) tends to Ow(~o) and since R(u) = d.,Do(u), 
R(qo(s» tends to d.,Do(Ow(~o». This means that the limit above is zero and 

< R(qo(t»qo(t), qo(t) >= 0 for all t ~ T. 

Now for any v E TM 

Hence by continuity there is a positive number 6 such that if (u, v) E TMxMTM 
lIuli ~ 6: 

< R(u)v, v >~ -illvIl2. 

The relation above shows that 

qo(t) = 0 for t ~ T . 

This is a contradiction. 
The same line of reasoning can be applied to intervals of the form ] - 00, T] 

when o(zo) exists. 
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We will prove now the first main openness theorem of the section: 

Theorem 1.5. The set of all systems X in SDM S such that their stable and 
unstable manifolds are pairwise transversal is open in SDM S. 

The proof of this theorem will result from the Lemma below which we shall 
state now and prove later. For any field X in SDMS, let us call chain of X an 
ordered sequence (-Yo, 'Y1"","YN) of trajectories of X such that w(-y;) = O{'Yi+J), 
o $ i $ N - 1 and ° (-yo) exists. The support of the chain will be the curve 
10 * 11 * ... * IN concatenation of the closures Ii = Ii U {O(/i),W(-y;)} of 
the I:s. 

Lemma 3.9. (i) Let {(Xn, In) I nEW} be a sequence of fields Xn in 
SDMS and of trajectories In of Xn such that the o(/n ) all exist and the 
sequence Xn converges to a field Xoo in SDMS. Then any limit set of the 
sequence of compact curves In in the Hausdorff topology is the support of a 
chain of X 00' 

(ii) The sequence (Xn, In) being as in (i), assume tlJat 1) The sets In 
converge to the support ofa chain (/o""'/N) of Xoo; 2) All tIle invariant 
manifolds of Xoo are pairwise transversal. 

Then, given any sequence ofpoints (zn), such that Zn E In, converging to a 
Zoo which is not a singular point of X oo , any limit plane LU (resp. L') of the 
sequence Tz. W~,.(o(-yn» (resp. Tz .. W1-,.(w(-yn ») contains Tzoo W~oo (0(/;) 
(resp. Tzoo W1-oo (w(-y;)) , where Ii is the trajectory of the chain on which Zoo 

lies. 

Proof of the theoreIn: Were the theorem not true, there would exist a sequence 
{(Xn'/n) I nEW} offields Xn in SDMS and of trajectories In of Xn 
such that: 

1) sequence (Xn) converges to a field Xoo in SDM S such that its stable 
and unstable manifolds are pairwise transversal. 

2)0(-yn) exist for all n and at any point Z on In Tz W~Jo(/n» and 
TzW1-,.(w(/n» are not transversal (they are either transversal at all points on 
In or not transversal at all poin ts on In). 

The union Un In is relatively compact in T M. Then by taking a subse
quence of (Xn, In) we can assume, using the compactness of the Hausdorff space 
of a compact metric space, that the compact sets In converge in the Hausdorff 
metric. The limit will be the support of a chain (1o, ... , IN) of Xoo by the 
statement (i) of Lemma 3.9. 

Now, taking another subsequence of the sequence (Xn, In), we can assume 
that each In carries a point Zn such that the sequence (zn) converges to a 
point Zoo non singular for Xoo and the sequences of spaces (Tzn wx,.(o(-yn») 
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and (Tz .. wx,.(w(,n») converge to the subspaces L' and LU of TzTM 
respectively. By the statement (ii) of Lemma 3.9, LU:> Tzoo W~.., (O(,i», L':> 
Tzoo WXoo (W(,i)) where ,i is the trajectory of the chain containing Zoo. Since 
W~..,(O({i)) and WX..,(W('i» are transversal, so are LU and L'. This means 
that the canonical projection 7r: LU -+ TzooTM/L' is onto. But the canonical 
projections 7rn : Tz .. Wx .. (o(,n)) -+ Tz .. TM/Tz .. Wx .. (w(,n» converge to 7r. 

Hence for n big enough 7rn will be surjective. This contradicts the fact that 
Tz .. Wl. o(,n) and Tz .. wx,.(w{,n)) are not transversal. 

Proof of Lemma 3.9: (i) Assume that the sequence of compact sets ,n 
converges to a compact set [{co in the Hausdorff metric. [{co will be a union 
of closures of trajectories of Xoo. As the limit of the compact connected sets 
,n it will also be connected. To show that [{co is the support of a chain it is 
sufficient to show that it cuts every energy level surface {Exoo = h} in at most 
one point. 

Let R denote the slice {h - 1/ ::; Ex.., ::; h + 1/} of M, 1/ > 0 being 
chosen sufficiently small so that the interval [h - 1/, h + 1/] does not contain any 
critical value of the energy. Then there exists a neighbourhood U oo of Xoo such 
that any trajectory , of X either does not meet R or the intersection R n, 
is an arc 9 meeting all the level surfaces E t = {Exh = h + t}, -1/::; t ::; 1/, 
transversally in one point . We can also choose Uoo sufficiently small so that there 
exists a constant C such that for any X in Uoo , any trajectory , of X 
meeting R, any Z in Eo, 

where z({) is the intersection point of , with Eo . It is also clear that if 6 
denotes the distance between Eo and the boundary of R, as soon as d(z,,) < 6, 

d(z,,) = d(z, 9). 

We can assume that the ,n meet Eo, otherwise [{co n Eo is empty. 
As soon as d(-;yn, -;ym) < 6, 

where for simplicity we set Zl< = z(,I<), Ie E IN. 
By the inequality above, 

Hence as soon as df;;yn, r) < 6 

This shows that the sequence {zn In E BY} is a Cauchy sequence and hence 
has a unique limit point Zoo. It is clear that Koo n Eo contains Zoo' But in 
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fact KoonEo={zoo}. For if z, isin KoonEo, it is a limit point ofa sequence 
{zh 1 h E IN}, where zh lies on some -Yn... But then z' is the limit of the 
sequence {Zn .. 1 h E IN}, which converges to Zoo . 

To Prove (ii), it is sufficient to consider the unstable case. We proceed by 
induction on the index i of the trajectory -Yi to which Zoo belongs. If i is 
0, Zoo belongs to -Yo. Since a(-yn) tends to a(-yo), T •• Wx,.(a(-yn» tends 
to T • ..., Wx ..., (a(-yo». For an arbitrary i ~ 1, denote by 0 00 the singular point 
W(-Yi-t} = a(-Yi). We are going to choose an appropriate sequence of points (Yn) 
such that Yn E -yn, the sequence (Yn) converges to Yoo on -Yi-l and the 
planes Ty.Wx.(a(-yn» convergetoalimit LU containing TYooWx...,(a(-Yi-d) . 
To prove this we are going to compare the spaces T •• W x. (a(-yn» with the 
spaces Ty. Wx .. (a(-yn». To do this we shall establish the following form of the 
A-Lemma (see Palis [8]). 

Let us denote by 0 00 the singular point w(-yi-d = a(-Yi) of Xoo. There 
exist an open neighbourhood U of Xoo , an open neighbourhood 0 of 0 00 , 

and a mapping X E U ---+ {x E Diffeo(O, S x U), where S, U are vector spaces 
with dim U = 
dim WXoo (000 ), dim S = dim Wx..., (000 ) such that: 

1) Each X E U has a unique singular point Ox in 0 and {x(Ox) = O. 

2) For any X EU, {x(OnWx(Ox» = Unfix, {x(onWx(Ox» = 
fix n S, where fix = {x(O). 

Let us denote by Xu (resp. X,) the U- (resp. S-) component of the 
image field X = {x. (X). By condition 2) above, there exist smooth mappings 
X~ : fix ---+ End(U) and X; : fix ---+ End(S), such that Xu(x,y) = X~(x,y)x 
and X,(x,y) = X;(x,y)y for all (x,y) in fix. Since dXoo(O) is hyperbolic 
there exist a scalar product <I> on U x S and positive constants a" au, b 
such that by restricting U and 0 if necessary for all X in U, all (x,y) in 
Ox, all (u,v) E U x S, 

(I) 

< a~u (x, y)u 1 u >~ au < u 1 u > 

< aaX , (x, y)v 1 v >< -a, < v 1 v > 
y -

< X;(x, y)v 1 v >~ -a. < v 1 v > 

au < u 1 u >~< X~(x, y)u 1 u >~ b < u 1 u > 

By condition 2) above, for all X in U, all x E fix n U, all y In fix n S 

Xu(O, y) = 0, X,(x,O) = O. 
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Hence there exists a constant C such that: 

(II) 

for all X in U, all (x, y) in Ox. 
For any X denote by cpx,t the flow of X 10 Ox and by Tcpx,t the derived 

flow on TOx' If E is a subspace of 1(X O,Yo)(U x S) of the same dimension as 
U and transversal to TxoS C T(xo,yo)(U x S) then it can be represented as the 
graph of a linear mapping fo: TxoU --+ TyOS. If its image Tcpx,t(E) at time 
t is still transversal to Tcp,(xO,yo)S, let f(t) denote the mapping whose graph 
this image is. 

We have the following estimates of the norm lIf(t)1I of f(t) as t varies: 

Lemma 3.10: For any field X in U, any trajectory 

{CPX,t(xo, YO) = (x(t), y(t» I L < t 5 T+} of eX. (X), 

we have the following estimates of the norm of f(t), t ~ 0: 

(i) If IIx(t)1I 5 a./2C[llfoll + ~ lIyolI], then, 

lIf(t) II 5 2[1lfoll + ~ IIYolI](I/L(~~llIt·/b 

(ii) IIf(t)1I5 6[1lfoll + ~ IIYolI](I/L(~~llIt·/b 

provided that: IIxoll5 (2C[III'oli+"f,;"lIyoll) l+b/(J. [lIx(t)il£'.']' 
We shall prove this Lemma below after we finish the proof of Lemma 3.9-(ii). 

We can always assume by deleting a finite subset of the Xn and by sliding the Zn 
along their trajectories ")'n that all the Xn belong to U and all the Zn to n 
(zoo included). We can find a sequence (qn) of points on the trajectories ")'n, qn 
preceeding Zn for every n, such that: qn E n for all n, qn converges to a 
point qoo on n n ")'i-l. Also by taking a subsequence of the Xn we can assume 
that Tqn W~JaXn(")'n» converges to a limit AU in TqooTM. By induction 
assumption, AU contains the space Tqoo WXoo (a(")'i-d) and hence is transversal 
to Tqoo w.,xoo (w(")'i-d)· 

Using the mappings ex n' the space En = Tex n (Tqn W~"< ax n (")'n))) in 
T(xn,Yn)(U x S), where (xn,Yn) = eXn(qn), will converge to the space Eoo = 
eXoo(AU) in 1(xoo ,Yoo)(U x S) where (0, Yoo) = exoo(qoo). Since Eoo is 
transversal to TxcoS, for n big enough En will be transversal to T", .. S. The 
orthogonal complement Fn of En nTx .. S in En will be the graph of a mapping 
fn : T"'nU --+ Tx .. S and will converge to the orthogonal complement Foo of 
Eoo n TxooS in Eoo, graph of a mapping f 00 : T",oo U --+ T",oo S . 
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Let (z~, fin) = Tex .. (zn) and let tn > 0 be the time such that Zn = 
e, .. x"(qn) or (z~,11..) = CPx .. " .. (zn,Yn)' Since the space 

is the image T'Px ...... (En) of En under the flow of X n, it contains the space 
T'Px .. , ... (Fn). This space is the graph of a mapping r n(tn) : Tz~ U -- Ty~ S. 

By Lemma 3.10, the norm IIr n(tn)1I of r(tn) is bounded by 

6[11rnll + IIYnll](:::~::t·/a 

( a )1+6/a. 
provided that IIznll ~ 2~ / IIz~II[IIr nil + IIYnlll1+b/ a •. 

Since as n goes to 00, IIr nil, llYn II, IIz~1I converges to IIr 0011. IIYool1. 
IIz~1I (exoo(zoo) = (z~,O» and IIznll tends to 0, it follows that IIrn(tn)1I 
tends to O. Hence the sequence of spaces Tcpx .. " .. (Fn ) tends to Tz'ooU = 
Texoo(Tzoo W.xoo (000 ), Hence LU contains TzooW.xoo(Ooo) . 

Proof of Lemma 3.10: The differential system associated with X = (ex ).(X) 
IS: 

!; = Xu(z,y) = X~(z,y)z ~~ = X.(z, y) = X~(z, y)y. 

The linearized system along a trajectory cpx,,(zo. Yo) = (z(t), y(t» IS: 

~ (t) = o~u (z(t), y(t»e(t) + o~u (z(t), y(t»7J(t) 

~~ (t) = o~. (z(t), y(t»e(t) + 0:V' (z(t), y(t»7J(t). 

Then r(t) satisfy the Ricatti equation 

!~ (t) = o~. (z(t), y(t» + o~, (z(t), y(t»r(t) 

- r(t) o~u (z(t), y{t» - r(t) o~u (z(t), y(t»r(t) . 

For any to 0 ~ to ~ t, its solutions satisfy: 

l' ax r(t) = R,(t,to)r(to)R;;I(t, to) + R,(t,r)~(z(r),y(r»R;;1(t,r)dr 
to vZ 

l ' ax - R,(t, r)r(t)y(z(r), y(r»r(r)R;;I(t, r)dT 
'0 y 
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where R., Ru are the resolvent mappings 

R, :S-S 

oR, (t t ) at ,0 

oRu 
{jt(t, to) 

R,(to, to) = Id, 

The inequalities (I) show that 

= 

= 

Ru:U-u 

o~, (z(t), y(t»R, (t, to) 

o~u (z(t), y(t»Ru(t, to) 

Ru(to, to) = Idu . 

IIR.(t, to)11 :5 e-a.(t-to) 
IIR~(t, to)1I :5 e-a.(t-to) 

t ? to 
t ? to . 

The relation (III) and the inequalities (II) imply if a = a, + au: 

(IV) IIr(t)lI:5 e-a(t-to)lIr(to)1I + It Clly(t)lIe-a(t-T)dr 
to 

105 

+It Cllx(r)lIl1r(r)1I 2e-a(t-T)dr . 
to 

The inequalities (I) imply that: 

Hence: 

By multiplying (IV) by ea.(t-to) and setting ')'(t) = IIr(t)lIea.(t-to), for 
simplicity we obtain: 

(VI) 

The simple Lemma 3.11 below implies that: 

(VII) 

if [I1f(to)1I + C lIy(to)1Il sup IIx(r)lI:5 2aC' . 
au to~T~t 
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But the inequality (V) implies that x(t) is an increasing function. Hence: 

(VIII) (VII) is valid when IIx(t)II[11roll + C~:oll] ::; ;~ . 

Applying (VIII) with to = 0, we get that: 

Since by (V), e-6t ::; IIlt~rll we get: 

IIr (t)1I < 2[lIr 11+ C lIy II](~ )40/6 
- 0 au 0 IIx(t)1I . 

This is the first inequality of Lemma 3.10. 
Now if IIx(t)1I > a, / 2C[IIroil + ;'IIYoll1, let tl be the instant such that: 

IIx(tdll = a, / 2CA 

where for simplicity we set A = Ilfoll + : lIyoli. 
Applying the first part of Lemma 3.io just proved, to to = 0 and t = tl 

we get: 

(IX) 

Using the inequalities (V) we have: 

(X) 

Now we can apply (VIII) with to = tl and we get: 

provided that IIx(t)II[IIr(tl)1I + ~ lIy(tdlll ::; ;;;. 

This last condition can be expressed as follows, using (IX) and (X): 
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This proves the second inequality in Lemma 3.10. 

Lemma 3.11. Let z: [to, ttl --+ 1R+ be a continuous function satisfying for all 
t E [to, tl] the inequality: 

where 0' is a constant and b : [to, ttl ---+ 1R+ a positive continuous function. 

Then : z(t) ~ 20' for all t E [to,ttJ such that J,: b(T)dT ~ 2~' 
Finally, we are able to prove the main density theorem of the section: 

Theorem 1.6. Assume dim M > 1 and r > 3(1 + dim M) and let g be 
the subset of SDMS(D) (resp. SDMS(V)) of all systems X such that their 
invariant manifolds are pairwise transversal. Then g is open dense in SDMS(D) 
(resp. SDM sevy). 

Proof. Since we know by theorem 1.5 that g is open, it is sufficient to prove that 
g is everywhere dense in SDMS(D) (resp. SDMS(V». As before we shall 
give the proof in the first case only. The second case is similar but easier. Since 
the set GIW(D) is dense in SDMS(D), it is sufficient to prove the following: 
every Xo in GIW(D) has an open neighbourhood Vo such that Vo n g is a 
Baire subset of Vo . 

To start, if OI,Xo , " " ON,Xo denote the singular points of Xo, we can find 
neighbourhoods nl , ... , nN of OI ,X o "'" ON,Xo respectively and constants 
O' t , . . . , aN such that for each i, the manifold Ei = ni n {Exo = ad satisfies 
the following conditions: 

1) Ei is transversal to X 0; 
2) Ei n Wxo(OiXo) is a compact connected manifold; 
3) Each trajectory of Xo in W.xo(OiXo) cuts Ei in one and only one 

point. 
Then we can find an open neighbourhood VI of Xo in SDM S(D) satisfying 

the statement (i) of Proposition 3.4 and such that for any X in VI the conditions 
1-2-3 are satisfied if we replace Wxo(OiXo) and Xo by Wx(OiX) and X 
respectively, in them. 

Applying Proposition 3.4 and using the compactness of the sets 

we can find, for each i, ni pairs (U; ,i, Nti) of an open neighbourhood U;,i of 
Xo , an open set N;,i satisfying the assertions of Proposition 3.4 with respect to 
the pair (Uo,No) and such that the {N; ,i 11 ~ k ~ nil cover EinW.xo(OiXo)' 
We can always restrict VI so that for any X E VI and any i, 1 ~ i ~ N, 
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Ei n W~( OiX) is contained in U~~l N;·i. Then we can restrict the U~·i so that 
U~·i C V1 for all k, i. 

Proposition 3.4 states that the subset g".i of U~,i of all systems X such 
that W~ (OiX) n N;·i is transversal to all the stable manifolds of X is a Baire 
subset of U~·i . The set V = n~l n;~l U~,i is an open neighbourhood of Xo 
in SDMS(D) and the intersection n~l n;~l g",i is a Baire subset of V. But 
the condition 3) on the Ei (valid for all X in Vd implies that this intersection 
is g n V. 

4 - Proof of Theorem 1.7. 

As we said in the Introduction, the main arguments in the proof of Theo
rem 1.7 follow the lines of [8]; we include them in the paper for completeness of 
exposition. Throughout the proof we implicitely assume D to be complete. 

The following facts are more or less standard, some of them are remarks 
already made and a complete proof can be found in [3] . Denote by A = A(V, D), 
(V, D) E DM S, the attractor of (V, D), that is, A = {v E T M I the trajectory 
of (V, D) through v is bounded}. Then 

i) A is connected and is the largest compact invariant set; 
ii) A is uniformly asymptotically stable set for the flow on T M; 

iii) A(V, D) is an upper semicontinuous function of (V, D) in DMS; 
iv) If f = eX is the time one map associated to (V, D) and 

Ba = {v E T M I E( v) < a} 

then, for a sufficient large a > 0, 

A = n I"(Ba) ; 
n~O 

v) The map 1fM/A: A -+ M is surjective; 
vi) If (V, D) E SDMS, that is, (V, D) is strongly dissipative, then A is 

the union of the unstable manifolds of all (finite number) singular points . 

Lemma 4.1. Let (V, D) E g, P E Sing (V, D) and dim WU(P) = n. Fix 
an-disc B;: centered at P contained in Wl~c(P) . Given c: > 0, there 
exist neighbourhoods U of P and W of (V, D) in SDMS such tllat 
if (17, D) E W, Q E Sing (V, D) and Q* E Sing (V, D) is the corresponding 
singular point near Q and moreover, if WU(Q*) n U #0, then WU(Q*) n U is 
libered by n-discs c:-G1 close to B::. 

A partial order in the set Sing (V, D) of a strongly dissipative mechanical 
system (V, D) is the following (see [8], [14]) : 

P 5, Q iff WU(Q) n WU(P) 10 V P, Q E Sing (V, D) 
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The phase diagram of (V, D) is (Sing (V, D), :::;). If P:::; Q there exists 
a chain (PI = Q , P2, . .. , Pl = P) such that 

define depth (Q I P) as maximum of the lenghts l of all chains connecting Q to 
P; depth (Q I P) = 0 means that WU(Q) n W'(P) = 0. Remark that if depth 
(Q I P) = 1 and G'(P) is a fundamental domain (G'(P) is the boundary of a 
cell B.(P) centered at P and contained in Wl~c(P» then WU(Q) n G'(P) 
is compact. For any Q E Sing (V, D) there exists at least one maximal chain of 
lenght n ~ 1, (PI = Q, ... , Pn), that is, Pn is a sink and depth (Pj I PHI) = 1, 
j = 1,2, ... ,n- 1. 

The next lemma is lemma 7.3 of [9], pg. 87: 

Lemma 4.2. Let P be a singular point of (V, D) E SDM SeD). There exists 
a neighbourhood fj of P and a continuous map 1T : fj -+ B, where 

such that 
1) 1T- 1(P) = Bu = fj n Wl~c(P) is a disc containing P; 
2) for each x E B II 1T- 1 (x) is a Cr -su bmanifold of T M transversal to 

Wl~c(P) at the point x; 
3) 1T is of class Cr except possibly at the points of Bu; 
4) the fibration defined by 1T is invariant for the flow CPt of the vector 

field defined by (V, D), that is, if t ~ 0 then 

In proving lemmas 4.1 and 4.2 we really have an Unstable Foliation of fj 
at P E Sing (V, D), (V, D) E g, that is, a continuous foliation 

F(P, fj) : x E fj - F",(P, fj) = 1T- 1(1T(X». 

Moreover, this unstable foliation can be easily globalized through saturation 
by CPt . This way we obtain a global unstable foliation F(P, U) where 

and a projection 11': U - W'(P) given by 11' 0 cp,(p) = cP, 01T(p), p E U, and 
such that: 
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a) the leaves are Cl manifolds with tangent spaces varying continuously 
in the Grassmanian and 

b) the leaf :F:r(P, U) containing x E U is equal to 

c) :F(P, U) is invariant for the flow !.pt of (V, D); that is, 

!.pt(:F:r(P, U» = :F",.(:r)(P, U), t E JR, x E U, or 

'If' O!.pt = !.pt 0 'If' in U. 

The same holds for (V, D) near (V, D) in g. 
For any maximal chain (PI, P2 , ••• , Pn ) on the phase diagram of (V, D) we 

obtain, by induction, a compatible system of global unstable foliations, 

and the associated projections 

The compatibility means that if a leaf F of :F(Pk, Uk) intersects a leaf F 
of :F(Pl, Ul), k < f ~ n, then F:J F; moreover, the restriction of :F(Pl , Ul) 
to a leaf of :F(Pk, Uk) is a CI foliation . 

Consider again (V, D) E g and fix a > 0, sufficiently large, such that the 
bounded set Sa contains OM and the set A(V, D) . We know that for any small 
e > 0 there exists a neighbourhood W of (V, D) in C such that A(V, D) 
is contained in the e-neighbourhood of A(V, D) in Sa, for all (V, D) E W . 
We may also assume that the vector field corresponding to (V, D) E W points 
inward at every point of 8Sa. Sa is a disc bundle in T M with sphere bundle 
8Sa and 

Sa = u W'(Pi) n Sa. 
PiESing(V,D) 

From now on, in this section, we call W'(P) n Sa the stable manifold 
of P which we denote simply by W'(P). Let us denote by W' (P) the 
closure of W'(P) in Sa. The topological boundary of W'(P) in Sa is 
8W'(P) = W'(P) - W'(P). Then x E 8W'(P) if and only if there exists 
a sequence of points Yi in a fundamental domain C'(P) and 1i -+ -00 as 
i -+ 00 such that 

x = .Jim !.pti(Yi) 
'-00 
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where <Pt denotes the flow corresponding to (V, D). Remark also that oW'(P) 
is positively invariant. If P, Q are two distinct points of Sing (V D) such that 
w'(p)nw'(Q) f;0, then QEW'(P) and there exists XEW'(p)nWU(Q), 
x f; Qj furthermore, by transversality condition dim W'(P) > dim W·(Q). 

The following sequence Li is similar to the one considered by Shashahani 
[13] : Lo = 0j L1 is the union of all stable manifolds whose topological boundary 
is empty; for i ~ lone defines Li+1 to be the union of Li with the union of 
all stable manifolds whose topological boundary is contained in Li . It is clear 
that for all i ~ 0, Li is closed, Li+1 - Li is a disjoint union of stable manifolds 
and ¢ = Lo C L1 C L2 C .. . C Lp = Ba · 

Denote by P* the singular point of (V, D) corresponding to P E 
Sing(V, D), for (\7, D) near (V, D) E g. 

We start now the construction of a homeomorphism h mapping the flow of 
the system (V, D) onto that of (V, D) . 

Take any HT'(Pt} E L1 and the corresponding W·(Pt). Since W'(Pt) 
and W'(Pi) are € - Cr-close on compact sets (see [9], pg.75), for (V, D) near 
(V, D) there is a diffeomorphism 

and let us extend it to the full W·(Pt} using the flows <Pt and <P; of (V, D) and 
(V, D). That is, if x E W'(Pt}, x f; PI, t E IR is the unique time t such that 
'Pt(x) E C'(Pd, then we define h1(Pt} = Pi and h1(X) = <P:t 0 hI 0 <p,(x) E 
W' (Pi). The map 

hI : W·(Pt} --> W'(P:) 

is a homeomorphism (a diffeomorphism on W·(Pt) - {Pd). 
Do the same for all stable manifolds of L 1 • 

The second step is to define a homeomorphism h2 from 

onto the corresponding W'(P:!) in such a way that h2 will be compatible 
with the defined above hI, for the case in which W'(P2) n W·(Pt} f; ¢. The 
manifolds WU(Pt} and WU(Pi) are € - Cr-close on compact sets and we 
have depth (PI I P2) = 1. Then the set V12 = C'(P2) n WU(PJ) is a compact 
manifold and also W'(P2) and W'(P;) are €_Cr -close on compact sets. By the 
transversality conditions of the invariant manifolds of (V, D) and of (\7, D) near 
(V, D) there exists a diffeomorphism h2 from V12 onto Vt2 = c·(p2)nWU(pi) . 

Let 7f1 : UI --> W'(PI) and 7fi : Ui --> W'(Pi) be the projections associated 
to the global unstable foliations :F(P1, UI) and :F(Pi, Ui). The transversality 
conditions imply that we may consider 7f12 = 7fdTV12 and 7fh = 7fi/TVt2 for 
suitable tubular neighbourhoods 
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and 
(TV1"2'0'2,V1"2) of V1"2 in G'(pn 

chosen in such a way that the open maps hi 01r12 and 1ri2 have the same image 
in W·(Pi). The maps 

(11"12 x 0'2) : TV12 - W·(P.) X V12 

(1I"i2 X 0'2) : TVt2 - W·(Pi) x Vt2 

and the homeomorphism 

enables us to define h~: TV12 - TVt2, uniquely, such that the diagram below 
is commutative: 

h" 
TV12 

2 
TVt2 --+ 

(11"12 x 0'2) 1 1 (7ri2 x 0'2) 

W8(P') x V12 
(hI xh;) 

W'(Pi) x Vt2 --+ 

Note that hU(TVI2 - V12 ) is a diffeomorphism. 
We have to repeat the same construction of h~ for all Ql such that 

W'(Ql) E Ll and W 8(P2)nW'(Q.) f; ¢. Using the Isotopy Extension Theorem 
(lET) for diffeomorphisms (see [4], pg.133 for a statement and references) we 
extend all the h~ : TV12 - TVt2 to G'(P2) and obtain a homeomorphism 
h2 : G'(P2) - G'(Pi) which is a diffeomorphism except at the points of the 
compact manifolds V12 considered above. Finally h2 : W'(P2) --> W8(Pi) is 
constructed by h2(Z) = 'P:t 0 h2 0 'Pt(z) for z # P2, where t E IR is the unique 
time such that 'Pt(z) E G'(P2), and h2(P2) = P;. The second step is finished if 
we do the same for all W8(Q2) of L2 - Ll. Consider the union hi U h2 defined 
on the union of all stable manifolds of L 2 . 

Thus it remains to prove the continuity of hi U h2 • The only point where 
to check continuity are those x E 8W'(P2) such that, say, x E W8(Pt}. We 
may (and will) assume that x is sufficiently close to Pl. Recall that h2 takes 
leaves of :F(PI , U1) near W"(P,) to leaves of :F(Pi, Un. Take a sequence 
Xn E W'(P2), Xn - x. The leaf through h2(xn) converges to the leaf through 
(hI U h2)(Z) = hl(Z) . It remains to prove that h2(xn) converges to W'(Pi) . 
But this happens since the sequence of times tn such that 'Pt. (h2(xn» E G8(pn 
tends to infinity. 

The next (third) step is the consideration of P3 such that W'(P3) E L3-L2 
and we will construct a homeomorphism h3 from W' (P3) onto the corresponding 
W'(P;) in such a way that h3 will be compatible with hI and h2 . The fact that 
W'(P3) E L3 - L2 implies that there exists at least one point P E Sing (V, D) 
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such that depth (P I P3 ) ~ 2. For each singular point Ql such that depth 
(Ql I P3) = 1, W'(QI) E Ll and hI is defined on W'(QI)i we proceed as 
in the second step and construct germs of diffeomorphisms h~, defined (locally) 
on G'(P3), exactly as we did before when we constructed h~. For points PI 
such that depth (PI I P3) = 2 one considers a sequence (PI, P2, P3) such that 
depth (PI I P2) = depth (P2 I P3) = 1. That implies that the manifolds WU(P2) 
(resp. W'(P3)) and WU(P2) (resp. W'(P;)) are €-C"-close on compact sets. 
By the transversality conditions V23 = G'(P3) n WU(P2) is a compact manifold 
and there is a diffeomorphism h~ from V23 onto V23 = G'(P;) n WU(P2). 
Let 11"2: U2 - W'(P2) and 11"2: U2 - W'(P2) be the projections associated 
to :F(P2, U2) and :F(Pi, U2). The transversality conditions imply that we may 
consider 

11"23 = 1I"2/TV23 and 11";3 = 1I";/TV2'3 
for suitable tubular neighbourhoods 

and 
(TV23 , 0";, Vi3) of V2*3 in G'(P;), 

such that the open maps h201l"23 and 1I"h have the same image in W'(P2). As 
we did before we construct h~ such that the following diagram is commutative: 

h" 
TV23 3 

TV2*3 -
(11"23 X 0"3) 1 1 (11"23 x 0";) 

W'(P2) X V23 
(h~xh~) 

W'(P*) x Y.* - 2 23 

The construction shows us that h~ takes leaves of :F(P2, U2) n TV23 to 
leavesof :F(Pi,Ui)nTV23 . But moreover, since h2 takes leaves of :F(P1 ,UI) 
near WU(Pt} to leaves of :F(Pi, Un and by the compatibility of the system 
of foliations we see that h~ takes leaves of :F(PI , Ut} n TV23 , to leaves of 
:F(Pt, Un n TV23 · 

We have to repeat the same construction of the last h~ for all sequences 
(PI, P2, P3) such that . 

depth (PI I P2) = depth (P2 I P3) = 1 

with PI fixed. We assume also that we did the same for all PI such that 
depth (PI I P3) = 2. Using properly the (lET) for diffeomorphisms we extend to 
G'(P3 ) all the h~ constructed in the second step and obtain a homeomorphism 
h3 : G'(P3) - G'(P;). Finally we extend h3 to W'(P3) using the flows <p, 
and <pi and obtain h3: W'(P3) - W'(P;) by h3(U) = <P:'T 0 h3 0 <PT(U) for 
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U ::fi P3, where T E IR is the unique time such that <PT(U) E G'(P3), and 
h3(P3) = P;. 

The third step is finished if we do the same for all W'(Q3) of L3 - L 2 • 

Consider the union hI U h2 U h3 defined on the union of all stable manifolds in 
L3. The continuity of hI U h2 U h3 is proved in the same way as we did in the 
second step. The induction procedure is now evident .• 

We finish the section with the proof of a standard result that we needed, 
implicitely, for the conclusions of the theorem above: 

Proposition 4.3. The subset of all complete C" vector fields of a manifold :F 
is open in the set of all C" vector 'fields with tlle Whitney C" -top;logy. 

Proof. Let d be the distance function on the manifold :F associated with 
a complete Riemannian metric. Take any complete vector field F on :F. Call 
~: IR x:F -:F the flow mapping associated to F: ~(t,p) = <pf(p). 

To any compact subset K of :F we associate the subset E(K) of :F: 

E(K) = ~([-1, +1] x K) U B(K, 1) 

where B(K, 1) = {x I d(x, K) :5 1}. Then E(K) is compact as union of two 
compact sets and E(I<):J K. 

We define a sequence of compact subsets Kn of :F as follows: take any 
point Po in :F; Ko = B(po, 1) and [(n+l = E(I<n). Then Kn+1:J Kn for 
all n ~ o. 

We claim that :F = UnKn: if x E:F and q - 1:5 d(x, [(0) < q, q integer, 
then, x E Kg. In fact, let x E Ko be such that d(x ,x) = d(x, Ko) and let 
I : [0, d( x, x)] -:F be the minimizing geodesic jorning x to x. Let Xi = ,( i), 
i < q. Since d(Xi,Xi+tl = 1, we see by induction that Xi E Ki , i < q. Since 
d(Xq_l,X) < 1 and X q-l E K q- 1 , X is in K q • 

Also it is clear that Kn+1 is a compact neighbourhood of Kn for all n 2: o. 
For each n there exists a constant gn > 0 such that if G is a vector field 

o 0 

on:F and d1(F,G,Kn+1-Kn ):5gn, Kn interior of Kn, where 

o 
d1(F, G, K n +1- K n) = sup{IIF(x) - G(x)lI+ 

o 

IIV F(x) - VG(x)lI, x E Kn +1- K n }, 

o 
V being the Levi-Civita covariant differential, then <pr is defined on ]<n+l- K n 

o 

for all t, -1:5 t:5 +1 and <pr(I<n+l- Kn) C ]<n+3 for all t, -1:5 t:5 +1. 
o 

The set U of all G such that for any n, d1(F,G,Kn+1-Kn) <gn, isa 
neighbourhood of F for the Whitney topology. We claim that every G in U 
is complete. We shall write the proof for positive times only. 
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Take a G in U and a x in T. Then x E J(no for some no. By induction 
on q, it is easy to see that if'f(x) E J(no+2q if O:S t :s q: if t E [q, q + 1], 
if'f(x) = if'f_qif'~(x) E if'f- q(I(no+2q) C J(no+2q+2. Hence if'f(x) is defined for 
all t ~ 0 .• 
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