Dissipative Mechanical Systems

Ivan Kupka and Waldyr Muniz Oliva

Abstract

The dissipative mechanical systems are second order vector fields on the tangent bundle of the configuration space, a compact Riemannian manifold; they are obtained by the addition of a dissipative field of forces to a conservative one. The main results deal with generic properties and structural stability of these mechanical systems.

Key words: Strongly dissipative forces, Newton's law, transversality, generic properties, structural stability.

Table of Contents

0. INTRODUCTION 70
1. STATEMENTS OF THE RESULTS 71
Dissipative forces and dissipatives mechanical systems 72
Morse Functions, strongly dissipative forces and strongly dissipative mechanical systems 72
Statements of Theorems 1.4, 1.5 and 1.6 73
Statements of Theorem 1.7 74
2. PROOF OF THEOREM 1.4 75
3. PROOFS OF THEOREMS 1.5 AND 1.6 77
Statement of Proposition 3.3 78
Statement of Propositions 3.4 and 3.5 86
Statement of Lemma 3.6 91
Statements of Lemmas 3.7 and 3.8 93
Statements of Theorem 1.5 and Lemma 3.9 100
Statement of Lemma 3.10 103
Statement of Lemma 3.11 107
4. PROOF OF THEOREM 1.7 108
Statement of Lemma 4.1 108
Statement of Lemma 4.2 109
Propostition 4.3 114

Logical scheme in Section 3:

$$
\begin{gathered}
\left.\left.\begin{array}{c}
\text { Lemma 3.6 } \\
\text { Lemma 3.7 } \\
\text { Lemma 3.8 }
\end{array}\right\} \Rightarrow \begin{array}{c}
\text { Prop. 3.3 } \\
\text { Prop. } 3.5 \Rightarrow \text { Prop. 3.4 } \\
\text { Lemma 3.11 } \Rightarrow \text { Lemma 3.10 } \Rightarrow \text { Lemma } 3.9 \Rightarrow \text { Theor. 1.5 }
\end{array}\right\} \Rightarrow \text { Theor. 1.6 }
\end{gathered}
$$

0. Introduction.

The dissipative mechanical systems are second order vector fields on the tangent bundle $T M$ of a given compact Riemannian manifold M (see [1], p.19) and are obtained by the addition of a dissipative field of forces to a conservative one. The dissipative forces are velocity dependent and slow down the system in such a way that the mechanical energy decreases along the non trivial integral curves, making the non-wandering set a collection of singular points. Shashahani in 1972 started a geometric study of the dissipative mechanical systems [13]; later on, in [3], 1986, dissipative systems with constraints were considered. The dissipative mechanical systems are parametrized by a pair (V, D) where V, the potential of the conservative forces, is a smooth real function defined on M and D is the dissipative force. Among the dissipative mechanical systems there are the strongly dissipative ones for which V is a Morse function and D is a strongly dissipative force i.e. satisfies a strongly dissipative condition (see Def. 1.3); they have very simple properties that we will describe below.

There are two well known results in the geometric theory of dynamical systems (see [9], [14]); the so called theorem of Kupka and Smale ([7], [11], [14]) and the theorems of Palis and Smale ($[8],[10]$) on the structural stability of the Morse-Smale systems (including gradient systems). We cannot apply directly the theorems of Kupka and Smale presented in [7], [11] and also the results in [12] for dissipative mechanical systems; the local perturbation arguments used to prove these theorems are not valid since the class of dissipative systems is too small. On the other hand, in spite of the fact that $T M$ is not compact, we will see, in the last section, that many of the arguments used in [8] can be adapted to prove the structural stability of a certain class of complete strongly dissipative mechanical systems (see Theorem 1.7).

Later, Takens ([15], 1983) obtained other generic results on gradient systems with a fixed Riemannian metric and on mechanical (conservative) systems in the special case of zero curvature metric.

In many physical applications the ambient space where the evolution takes place and the geometry of the system cannot be changed. Hence it is meaningful to analyse properties of dissipative systems (V, D) where the friction forces D, corresponding to the action of the ambient space and the Riemannian structure, representing the geometry and distribution of masses, are fixed. One can also
act on the system with small controlling forces or have situations with variable conservative forces; hence the potential V can be changed.

In the present paper the main results deal with generic properties and structural stability of dissipative mechanical systems. Theorem 1.4 proves that in the case of strongly dissipative mechanical systems the non-wandering set consists of hyperbolic singular points only and determines the structure of the invariant manifolds.

The C^{r}-Whitney topology is introduced in the set of all strongly dissipative mechanical systems with a fixed strongly dissipative force D (resp. with a fixed potential V); the Theorems 1.5 and 1.6 state that the collection of the strongly dissipative ones such that the invariant manifolds are in general position is an open dense subset. The Theorem 1.7 proves that the complete systems belonging to these open dense sets are structurally stable.

In proving transversality, it is easy to put the invariant manifolds in general position perturbing D and leaving fixed the potential V; as a matter of fact, this follows from arguments used in the Kupka-Smale result for first order systems (see [7], [9], [11]) together with the same result for general second order vector fields (see [12], p.267). On the other hand, it is much harder to prove the generic transversality of stable and unstable manifolds of the dissipative systems (V, D) if we keep D fixed and allow only V to vary. This is due to the fact that no perturbation of V is local on the tangent structure $T M$ of M since if we change V in some arbitrarily small open set w of M, it will still affect the evolution of the system on the whole tangent space $T w$ of w. For more details see the proof of Proposition 3.5.

1-Statements of the Results

Throughout the paper ($M,<,>$) will be a C^{∞} compact connected Riemannian manifold, without boundary. We call M the configuration space. The C^{∞} metric $<,>$ defines the kinetic energy $K: T M \rightarrow \mathbb{R}$ by $K\left(v_{p}\right)=\frac{1}{2}\left\langle v_{p}, v_{p}\right\rangle, \quad v_{p} \in T_{p} M$. The associated Levi-Civita[E0 covariant derivative will be denoted by ∇. The motivation to introduce the Levi-Civita connection is to enable us to express conveniently the Newton's law which governs the evolution of our systems. A potential V is a C^{r+1} function, $r \geq 1$, $V: M \rightarrow \mathbb{R}$ and the mechanical energy is $E_{V}: T M \rightarrow \mathbb{R}$ defined by $E_{V}(v)=K(v)+V\left(\pi_{M}(v)\right),\left(T M, \pi_{M}, M\right)$ being the tangent bundle of M. Let O_{M} denote the zero section, that is, the set of all zero vectors of this vector bundle and $T M \backslash O_{M}=(T M)_{o}$ be the set of all non zero vectors. A C^{r} second order vector field on $T M$ is a vector field X on $T M$ such that $\left(d \pi_{M}\right) \circ X$ is the identity mapping of $T M$ where $d \pi_{M}: T T M \rightarrow T M$ is the tangent mapping of π_{M}.
preserves each fiber and such that $\langle D(v), v\rangle<0$ for all $v \in(T M)_{o}$.
We easily see that if D is a dissipative force, then for all $0 \in O_{M}$ one has $D(0)=0$.

Definition 1.2. A dissipative mechanical system on the configuration space M is a pair (V, D) of a C^{r+1} potential V and a C^{r} dissipative force $D, r \geq 1$. The pair (V, D) defines a second order C^{r} vector field on $T M$ (sometimes also denoted by (V, D)). If z is a trajectory of (V, D) and q its projection on M, then $z=\frac{d q}{d t}=\dot{q}$ and q satisfies the equation

$$
\nabla_{\dot{q}} \dot{q}=-(\operatorname{grad} V)(q)+D(\dot{q}) .
$$

The curve $t \mapsto q(t) \in M$ verifying that law is called a motion and -grad V is called the conservative field of forces.

The equation above is just the statement of the Newton's law on the manifold M. Recall that $\operatorname{grad} V$ is the vector field on M characterized by:

$$
d V(v)=\left\langle(\operatorname{grad} V)(p), v>\text { for all } p \in M \text { and all } v \in T_{p} M .\right.
$$

Let us denote by $D M S$ the set of all vector fields $X \in C^{r}(T M, T T M)$ such that X is defined by a dissipative mechanical system (V, D) as in Definition 1.2 .

It is useful to remark that the mechanical energy decreases along non trivial integral curves of any mechanical system (V, D). In fact, we have:

$$
\frac{d}{d t} E_{V}(\dot{q}(t))=\frac{d}{d t}\left[\frac{1}{2}\langle\dot{q}, \dot{q}\rangle+V(q(t))\right]=\langle D(\dot{q}), \dot{q}\rangle
$$

which shows that E_{V} decreases on all integral curves not reduced to a singular point. Note also that the integral curves of the system are the derivatives of the motions of the system and its singular points lie on the zero section O_{M}. Moreover $O_{p} \in\left(T_{p} M\right) \cap O_{M}$ is a singular point if, and only if, $(\operatorname{grad} V)(p)=0$, that is, $p \in M$ is a critical point of V.

We recall that a function $V \in C^{r+1}(M, \mathbb{R})$ is said to be a Morse function if the Hessian of V at each critical point is a non-degenerate quadratic form. It is well known that the set of all Morse functions is an open dense subset of $C^{r+1}(M, \mathbb{R})$ with the standard C^{r+1} topology.

Definition 1.3. A dissipative mechanical system (V, D) is said to be strongly dissipative if V is a Morse function and D is a strongly dissipative force i.e. satisfies the following additional condition: for all $p \in M$ and all $w \in$
$(T M)_{o} \cap T_{p} M$ one has $<d_{v} D\left(O_{p}\right) w, w><0$ where $d_{v} D$ denotes the vertical differential of D.

Note that we assume V to be a Morse function for technical reasons only. From now on we denote by $S D M S$ the set of all $X \in D M S$ such that $X=(V, D)$ is strongly dissipative and by \mathcal{D} the set of all strongly dissipative forces.

Theorem 1.4. Let (V, D) be a strongly dissipative mechanical system. Then the following properties hold:
(i) The singular points of (V, D) are hyperbolic.
(ii) The stable and unstable manifolds $W^{s}(O)$ and $W^{u}(O)$ of a singular point O are properly embedded.
(iii) $\operatorname{dim} W^{u}(O)$ is the Morse index of V at $\pi_{M}(O)$.
(iv) $\operatorname{dim} W^{u}(O) \leq \operatorname{dim} M \leq \operatorname{dim} W^{s}(O)$.

Two submanifolds S_{1} and S_{2} of a manifold \mathcal{F} are said to be in general position or transversal if either $S_{1} \cap S_{2}$ is empty or at each point $x \in S_{1} \cap S_{2}$ the tangent spaces $T_{x} S_{1}$ and $T_{x} S_{2}$ span the tangent space $T_{x} \mathcal{F}$.

Let us denote by $S D M S(D)$ the set of all C^{r} strongly dissipative mechanical systems $X=(V, D)$ with a fixed D. Analogously we introduce the set $S D M S(V)$.

All the subsets of $D M S$ are endowed with the topology induced by the C^{r}-Whitney topology of $C^{r}(T M, T T M)$. This topology possesses the Baire property (see [11], p.224, for a definition of the Whitney topology and the proof of this fact).

Theorem 1.5. The set of all systems X in SDMS such that their stable and unstable manifolds are pairwise transversal is open in SDMS.

Theorem 1.6. Assume $\operatorname{dim} M>1$ and $r>3(1+\operatorname{dim} M)$ and let \mathcal{G} be the subset of $S D M S(D)$ (resp. $S D M S(V)$) of all systems X such that their invariant manifolds are pairwise transversal. Then \mathcal{G} is open dense in $\operatorname{SDMS}(D)$ (resp. $S D M S(V)$).

As usual we say that $X \in S D M S$ is structurally stable if there exists a neighbourhood W of X (in the Whitney C^{r}-topology) and a continuous map h from W into the set of all homeomorphisms of $T M$ (with the compact open topology), such that:

1) $h(X)$ is the identity map;
2) $h(Y)$ takes orbits of X into orbits of Y, for all $Y \in W$, that is, $h(Y)$ is a topological equivalence between X and Y.
If the topological equivalence $h(Y)$ preserves the time, that is, if X_{t} (resp. Y_{t}) is the flow map of X (resp. Y) and $h(Y) \circ X_{t}=Y_{t} \circ h(Y)$ for all $t \in \mathbb{R}$, then we say that $h(Y)$ is a conjugacy between X and Y.

As we will see in Proposition 4.3 the subset of all complete C^{r} vector fields of a manifold \mathcal{F} is open in the set of all C^{r} vector fields with the Whitney C^{r}-topology.

Theorem 1.7. Any complete strongly dissipative mechanical system such that all the stable and unstable manifolds of singular points are in general position is structurally stable and the topological equivalence is a conjugacy.

The Theorems 1.6 and 1.7 have also the flavour of an interesting theorem proved by D. Henry ([5]) for a dynamical system in infinite dimensions. On the Sobolev space $H_{0}^{1}=H_{0}^{1}((0, \pi), \mathbb{R})$ he considered the following parabolic PDE:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\lambda f(u)
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function such that $f(0)=0, \quad f^{\prime}(0)=1$, $s f^{\prime \prime}(s)<0$ if $s \neq 0$, and λ is a real positive parameter.

Theorem (D.Henry). If $\sqrt{\lambda}$ is not a positive integer, then all stable and unstable manifolds of the flow defined on H_{0}^{1} by the PDE above are in general position.

If in Theorem 1.7 we do not assume the mechanical system to be complete, the same arguments used in the proof also show that the corresponding time one map is a Morse-Smale map in the sense of [4], then stable with respect to the attractor $\mathcal{A}(V, D)$, which in this case is the union of the unstable manifolds of all singular points of (V, D).

Let us consider an example of a strongly dissipative mechanical system which does not satisfy the conclusions of Theorem 1.6 in the sense that it does not belong to \mathcal{G}; it is the system which describes the motions of a particle (unit mass) constrained on the surface M of a symmetric vertical solid torus of \mathbb{R}^{3} obtained by the rotation, around the x-axis, of a circle defined by the equations $y=0$ and $x^{2}+(z-3)^{2}=1$. The potential V is proportional to the height function of M and the dissipative force D is given by $D(v)=-c v, c>0$, for all $v \in T M$. These data define a strongly dissipative mechanical system with M as the configuration space. The metric of M is the one induced by the usual inner product of \mathbb{R}^{3} and the potential is a well known Morse function with four
critical points. The symmetry of the problem shows that the unstable manifold of dimension one of a saddle is contained in the stable manifold of dimension 3 of the other saddle and hence they are not in general position since $\operatorname{dim} T M=4$.

A dissipative force D is said to be complete if, for any Morse function V, the vector field associated to (V, D) is complete, that is, all of its integral curves are defined for all time.

Let us consider a linear dissipative field of forces, that is, a function D defined by

$$
D(v)=-c\left(\pi_{M}(v)\right) v, \quad \text { for all } v \in T M
$$

where $c: M \rightarrow \mathbb{R}$ is a strictly positive C^{r} function. It is a simple matter to show that D is a strongly dissipative force. We will show that D is complete. If this were not the case, there would exist a smooth function $V: M \rightarrow \mathbb{R}$ and a motion $t \rightarrow q(t)$ of (V, D) whose maximal interval of existence is $] \alpha,+\infty[$ with $-\infty<\alpha<0$. We know that $\frac{d}{d t} E_{V}(\dot{q}(t))=<D(\dot{q}), \dot{q}>$ is negative and also that

$$
0<|<D(\dot{q}), \dot{q}>|\leq \mu| \dot{q}|^{2} \leq 2 \mu\left(E_{V}(\dot{q})+k\right)
$$

where $\mu>0$ is the maximum of the function c on M and $k=|\nu|, \nu$ being the minimum of V on M (recall that M is compact). For all $t, \alpha<t<0$, we may write

$$
-2 \mu\left(E_{V}(\dot{q})+k\right) \leq \frac{d}{d t} E_{V}(\dot{q})=\frac{d}{d t}\left(E_{V}(\dot{q})+k\right)<0
$$

or

$$
\frac{d\left(E_{V}(\dot{q})+k\right)}{E_{V}(\dot{q})+k} \geq-2 \mu d t \quad \text { which implies } \quad E_{V}(\dot{q})+k \leq\left(E_{V}(\dot{q}(0))+k\right) e^{-2 \mu t}
$$

and then $E_{V}(\dot{q}(t))$ is bounded and strictly decreasing, so that there exists $\lim _{t \rightarrow \alpha_{-}} E_{V}(\dot{q}(t))=L<+\infty$.

This shows that $|\dot{q}|^{2}=2\left(E_{V}(\dot{q})-V(q(t))\right)$ is also bounded because V is bounded; now it is immediate that we have a contradiction.

2 - Proof of Theorem 1.4.

Let p be a point of M and U an open neighbourhood of p in M such that there exists a trivialization of $T M$ over U, i.e., $\phi: \pi_{M}^{-1}(U) \rightarrow U \times \mathbb{R}^{m}, m$ being the dimension of M. Let x and v be the projections onto U and \mathbb{R}^{m}. The vector field associated to (V, D) has the following expression on $U \times \mathbb{R}^{m}$:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=v \\
\frac{d v}{d t}=-(\operatorname{grad} V)(x)+D(x, v)-\Gamma(x, v) v
\end{array}\right.
$$

where $\Gamma: U \times \mathbb{R}^{m} \rightarrow \operatorname{End}\left(\mathbb{R}^{m}\right)$ is the difference between the Levi-Civita connection and the trivial connection defined by ϕ. Then, it is clear that the singular points of (V, D) are the vectors $O_{p} \in O_{M} \cap T_{p} M$ such that $(\operatorname{grad} V)(p)=0$. In such a singular point, the linear part of the system is $L: T_{p} M \times \mathbb{R}^{m} \rightarrow T_{p} M \times \mathbb{R}^{m}$ given by

$$
L=\left[\begin{array}{cc}
0 & I \\
-H & \Delta
\end{array}\right]
$$

where $I: \mathbb{R}^{m} \rightarrow T_{p} M$ is the canonical isomorphism defined by the trivialization, H is the Hessian of V at p and Δ is the vertical differential $d_{v} D\left(O_{p}\right)$ of D at O_{p}. The first statement of Theorem 1.4 follows from the next lemma:

Lemma 2.1. Let $\bar{L}: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{m}$ be a linear map given by

$$
\bar{L}=\left[\begin{array}{cc}
0 & I d \\
-\bar{H} & \bar{\Delta}
\end{array}\right]
$$

with \bar{H} symmetric, det $\bar{H} \neq 0$, and $\bar{\Delta}$ negative definite: $(\bar{\Delta} v, v)<0$ for all $v \in \mathbb{R}^{m}$, ($($,$\left.) is the usual inner product of \mathbb{R}^{m}\right)$. Then the eigenvalues of \bar{L} have non zero real parts.

Proof. If $i \beta \neq 0$ (the case $\beta=0$ is excluded otherwise \bar{H} would have a zero eigenvalue) is eigenvalue of \bar{L}, there exist $u \in \mathbf{C}^{m}, u=y+i w \neq 0, y, w \in \mathbb{R}^{m}$, such that $(i \beta)^{2} u-(i \beta) \bar{\Delta} u+\bar{H} u=0$, or equivalently

$$
\left\{\begin{array}{l}
-\beta^{2} y+\beta \bar{\Delta} w+\overline{\bar{H}} y=0 \\
-\beta^{2} w-\beta \bar{\Delta} y+\bar{H} w=0 .
\end{array}\right.
$$

The symmetry of \bar{H} implies $\beta[(\bar{\Delta} y, y)+(\bar{\Delta} w, w)]=0$, which is a contradiction. This proves (i).

The second statement of Theorem 1.4 follows from the fact that the energy E_{V} decreases strictly along non trivial integral curves (see, for instance, [6] Th. 6.1.10). For the last two statements one considers a path of matrices:

$$
\begin{gathered}
\mu\left[\begin{array}{cc}
0 & I d \\
-\bar{H} & -I d
\end{array}\right]+(1-\mu)\left[\begin{array}{cc}
0 & I d \\
-\bar{H} & \bar{\Delta}
\end{array}\right]= \\
{\left[\begin{array}{cc}
0 & I d \\
-\bar{H} & -\mu I_{d}+(1-\mu) \bar{\Delta}
\end{array}\right]}
\end{gathered}
$$

Since $-\mu I_{d}+(1-\mu) \bar{\Delta}$ is negative definite for all $\mu, 0 \leq \mu \leq 1$, the continuity of the spectrum enables us to consider the case

$$
N=\left[\begin{array}{cc}
0 & I d \\
-\bar{H} & -I d
\end{array}\right]
$$

The eigenvalues λ of N are given by

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
-\lambda I d & I d \\
-\bar{H} & -(1+\lambda) I d
\end{array}\right]= \\
\operatorname{det}\left[\begin{array}{cc}
0 & I d \\
-\bar{H}-\lambda(1+\lambda) I d & -(1+\lambda) I d
\end{array}\right]=0
\end{gathered}
$$

or, equivalently, by $\operatorname{det}[-\bar{H}-\mu I d]=0$ where $\mu=\lambda(1+\lambda)$.
But, in the very beginning, we may assume that the trivialization is chosen in such a way that $-\bar{H}$ is a diagonal matrix. Then, for each positive eigenvalue μ of $-\bar{H}$ (the total number is the Morse index of V) corresponds a positive root of N. Thus (iii) is proved. The proof of (iv) is now evident.

3 - Proofs of Theorems 1.5 and 1.6

Although we do not need the next proposition for the proofs of Theorems 1.5 and 1.6 we present it for a sake of completeness.

Proposition 3.1. $S D M S$ is an open dense subset of $D M S$.
Proof. Since the set of Morse functions if open and dense in $C^{r+1}(M, \mathbb{R})$ and

$$
<d_{v} D\left(0_{p}\right) w, w><0 \quad \text { on } \quad A=\{w \in T M| | w \mid \leq 1\}
$$

is an open condition one sees that the openess of $S D M S$ is trivial. We only have to prove the density. Given any neighbourhood of a vector field of $D M S$, parametrized by (V, D), we construct a strongly dissipative force \bar{D}, which is equal to $D-\delta I$ on the compact set A and equal to D outside of a neighbourhood of A, choosing a C^{∞} bump function and a small $\delta>0$, properly. This and the density of the set of Morse functions give the proof.

In the case of a fixed dissipative force we cannot prove the density statement in Proposition 3.4 below for an arbitrary system because perturbing the potential is not a local process on $T M$. Hence we have to restrict ourselves to systems
for which the projections on M of two distinct trajectories have few intersection points. In fact it would be enough to consider the systems such that the projections of the trajectories have few self intersections. More precisely, let $X=(V, D)$ be an element of $S D M S$. By a trajectory of X we understand a maximal solution. Given two trajectories $y:] a_{-},+\infty[\rightarrow T M$, $z:] b_{-},+\infty\left[\rightarrow T M\right.$ of X, we denote by $C(y, z)$ the set of all pairs $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$ such that $a_{-}<t_{1}, b_{-}<t_{2}, y\left(t_{1}\right) \neq z\left(t_{2}\right)$ and $\pi_{M}\left(y\left(t_{1}\right)\right)=\pi_{M}\left(z\left(t_{2}\right)\right)$. Let $p=\pi_{M} \circ y, q=\pi_{M} \circ z$. The projection of the set $C(y, z)$, that is the set $\left\{p\left(t_{1}\right) \mid\left(t_{1}, t_{2}\right) \in C(y, z)\right\}$, is the intersection set of the projections p and q of y and z. The next proposition clarifies the structure of $C(y, z)$.

Definition 3.2. Let $X \in S D M S$. Then:

(i) We say that X has the property $G I$ if, for any two non singular trajectories, $y:] a_{-},+\infty[\rightarrow M, z:] b_{-},+\infty[\rightarrow M$ of X, the set $C(y, z)$ is discrete in the quadrant $] a_{-},+\infty[\times] b_{-},+\infty\left[\right.$ of \mathbb{R}^{2}.
(ii) We say that X has the property GIW (weak GI) if, at any accumulation point $\left(t_{1}, t_{2}\right)$ of $C(y, z)$, at least one of the points $y\left(t_{1}\right), z\left(t_{2}\right)$ lies on the zero section O_{M} of TM.

Proposition 3.3.

(i) If the dimension m of M is greater than 2 and $r>4 m+5$, for any strongly dissipative force $D \in C^{r}(T M, T M)$, there exists a Baire subset $G I(D)$ of $S D M S(D)$ all of whose elements X have the property $G I$.
(ii) If the dimension m of M is greater than 1 and $r>3 m+3$, we have a similar statement replacing $G I$ by $G I W$ and $G I(D)$ by $G I W(D)$.

Proof. For simplicity we shall assume $r=\infty$ in the proof. But the proof is still valid if we replace everywhere ∞-jet by r-jet and "is flat" by "has zero r-jet".

Let $\left(t_{1}, t_{2}\right)$ be an accumulation point of $C(y, z)$ in $] a_{-},+\infty[\times$
$] b_{-},+\infty\left[\right.$. Then $p\left(t_{1}\right)=q\left(t_{2}\right)$. We have to distinguish several cases. First assume that $y\left(t_{1}\right) \neq z\left(t_{2}\right)$. Then one of the vectors $y\left(t_{1}\right), z\left(t_{2}\right)$ is not zero. Permuting the roles of y and z if necessary, we can assume that $y\left(t_{1}\right) \neq 0$. We claim there exist an open interval δ containing t_{2} and a smooth mapping $\sigma: \delta \rightarrow \mathbb{R}$ such that the ∞-jets of q and $p \circ \sigma$ at t_{2} are equal. To see this, choose a coordinate system $x^{1}, x^{2}, \ldots, x^{m}: O \rightarrow \mathbb{R}(m=\operatorname{dim} M)$ in an open neighbourhood O of $p\left(t_{1}\right)$ such that $\left(x^{1} \circ p\right)(t)=t$ and $x^{k} \circ p=0$ if $2 \leq k \leq m$, for all t in an open interval δ_{1} containing t_{1}. There exists a sequence $\left\{\left(t_{1}(n), t_{2}(n)\right) \mid n \geq 1\right\}$ in $C(y, z)$ converging to $\left(t_{1}, t_{2}\right)$. For all $k, 2 \leq k \leq m, x^{k} \circ q\left(t_{2}(n)\right)=x^{k} \circ p\left(t_{1}(n)\right)=0$, for all $n \geq 1$. Hence all the functions $x^{k} \circ q, 2 \leq k \leq m$, are flat at t_{2}. σ will denote the restriction of $x^{1} \circ q$ to δ_{1} and ρ the composition $p \circ \sigma$. Then for any $n \geq 1, \sigma\left(t_{2}(n)\right)=x^{1} \circ q\left(t_{2}(n)\right)=x^{1} \circ p\left(t_{1}(n)\right)=t_{1}(n)$ and $\rho\left(t_{2}(n)\right)=p\left(\sigma\left(t_{2}(n)\right)\right)=p\left(t_{1}(n)\right)=q\left(t_{2}(n)\right)$. So ρ and q have the same ∞-jet
at \boldsymbol{t}_{2}.
As one easily sees, $\quad z\left(t_{2}\right)=y\left(t_{1}\right) \dot{\sigma}\left(t_{2}\right), \dot{\sigma}\left(t_{2}\right)=\frac{d \sigma}{d t}\left(t_{2}\right) . \quad$ We have already assumed that $\dot{\sigma}\left(t_{2}\right)$ cannot be equal to 1 . Now we shall distinguish three cases:

1) $\frac{d \sigma}{d t}\left(t_{2}\right) \neq 0$ or -1 .
2) $\frac{d \sigma}{d t}\left(t_{2}\right)=-1$.
3) $\frac{d \sigma}{d t}\left(t_{2}\right)=0$.
q and p satisfy the following relations:

$$
\begin{align*}
& \nabla_{\dot{p}} \dot{p}-D(\dot{p})+\operatorname{grad} V(p)=0 \\
& \nabla_{\dot{q}} \dot{q}-D(\dot{q})+\operatorname{grad} V(q)=0
\end{align*}
$$

Since ρ and q have the same ∞-jet at t_{2}, ρ satisfies the relation

$$
\nabla_{\dot{\rho}} \dot{\rho}-D(\dot{\rho})+\operatorname{grad} V(\rho)=\lambda
$$

where λ is flat at t_{2}.
Explicitating $E 3$, after setting $\ddot{\sigma}=\frac{d^{2} \sigma}{d t^{2}}$, we get:

$$
\dot{\sigma}^{2}\left(\nabla_{\dot{p}} \dot{p}\right)(\sigma)+\ddot{\sigma} \dot{p}(\sigma)-D(\dot{\sigma} \dot{p}(\sigma))+\operatorname{grad} V(p(\sigma))=\lambda
$$

In the first and second cases above, σ is a local diffeomorphism at t_{2}, that is σ maps some open interval t_{2}, diffeomorphically on the open interval $\sigma\left(\delta_{2}\right)$ containing t_{1}. Set $\chi=\frac{d \sigma}{d t} \circ \sigma^{-1}: \sigma\left(\delta_{2}\right) \rightarrow \mathbb{R}$. Then $E 4$ is equivalent to

$$
\chi^{2}\left(\nabla_{\dot{p}} \dot{p}\right)+\chi \dot{\chi} \dot{p}-D(\chi \dot{p})+\operatorname{grad} V(p)=\mu
$$

where $\mu=\lambda \circ \sigma^{-1}$ is flat at t_{1}.
Subtracting $E 1$ from $E 5$ we get:

$$
\left(\chi^{2}-1\right) \nabla_{\dot{p}} \dot{p}+\chi \dot{\chi} \dot{p}+D(\dot{p})-D(\chi \dot{p})=\mu
$$

$E 6$ is equivalent to an infinite sequence of conditions on the ∞-jet of p, obtained by equating the sucessive covariant derivates at t_{1} on both sides of E6. For this we need some notations. $J^{k}(M, \mathbb{R})$ will denote the space of k-jets of mappings from M into \mathbb{R}, and $J^{k}(\mathbb{R}, 0 ; \mathbb{R})$ will denote the space of all k-jets at 0 of mappings $\mathbb{R} \rightarrow \mathbb{R}$. Taking the $n^{\text {th }}$ covariant derivative of $E 6$ along the curve p, we get for $n \geq 0$:

$$
\begin{aligned}
\sum_{k=0}^{n} & \frac{n!}{k!(n-k)!}\left[\left(\frac{d^{k}}{d t^{k}}\left(\chi^{2}-1\right)\right) \nabla_{\dot{p}}^{n-k+1} \dot{p}+\left(\frac{d^{k}}{d t^{k}}(\chi \dot{\chi})\right) \nabla_{\dot{p}}^{n-k} \dot{p}\right] \\
& +\left[d_{v} D(\dot{p})-\chi d_{v} D(\chi \dot{p})\right] \nabla_{\dot{p}}^{n} \dot{p} \\
& +Q_{n}\left(\dot{p}, \nabla_{\dot{p}} \dot{p}, \ldots, \nabla_{\dot{p}}^{n-1} \dot{p}, j_{0}^{n} \chi_{t_{1}}\right)=\nabla_{\dot{p}}^{n} \mu
\end{aligned}
$$

where Q_{n} is a fiber-bundle mapping:

$$
\underbrace{T M \times_{M} \ldots \times_{M} T M}_{n \text { times }} \times J^{n}(\mathbb{R}, 0 ; \mathbb{R}) \rightarrow T M
$$

and $\chi_{t_{1}}$ is the translate $\chi_{t_{1}}(t)=\chi\left(t+t_{1}\right)$, where $T M \times_{M} \ldots \times_{M} T M$ means a fiber product bundle. Deriving $E 1$ covariantly n times along p we get:

$$
\begin{aligned}
\nabla_{\dot{p}}^{n} \dot{p}=- & \nabla^{n-1} \operatorname{grad} V(\dot{p}, \ldots, \dot{p}) \\
& +R_{n}\left(\dot{p}, \operatorname{grad} V(p), \nabla \operatorname{grad} V(\dot{p}), \ldots, \nabla^{n-2} \operatorname{grad} V(\dot{p}, \ldots, \dot{p})\right)
\end{aligned}
$$

$E 8 n$
where R_{n} is a fiber bundle map: $\underbrace{T M \times_{M} \ldots \times_{M} T M} \rightarrow T M$ depending also on D and its derivates and $\nabla^{n} \operatorname{grad} V: T M \times_{M} \times \ldots \times_{M} T M \rightarrow T M$ is the $n t h$ covariant differential of $\operatorname{grad} V: M \rightarrow T M . E 8 n$ and $E 7 n, n \geq 1$, give us the following:

$$
\begin{aligned}
& \quad\left(\chi^{2}-1\right) \nabla^{n} \operatorname{grad} V(\dot{p}, \ldots, \dot{p})+S_{n}(\dot{p}, \operatorname{grad} V(p) \\
& \left.\ldots, \nabla^{n-1} \operatorname{grad} V(\dot{p}, \ldots, \dot{p}), j_{0}^{n+1} \chi_{t_{1}}\right)=\nabla_{\dot{p}}^{n} \mu, \quad \text { for } n \geq 0, \quad E 9 n
\end{aligned}
$$

where S_{n} is a fiber bundle mapping $S_{n}: T M \times_{M} \ldots \times_{M} T M \times J^{n+1}(\mathbb{R}, 0 ; \mathbb{R}) \rightarrow$ $T M$.

Assume now that we are in the first case, that is, $\quad \chi\left(t_{1}\right)=\frac{d \sigma}{d t}\left(t_{1}\right) \neq-1$. Evaluating $E 9 n$ at t_{1}, since $\chi\left(t_{1}\right)^{2} \neq 1$ we have for $n \geq 0$:

$$
\begin{gathered}
\nabla^{n} \operatorname{grad} V\left(\dot{p}\left(t_{1}\right), \ldots, \dot{p}\left(t_{1}\right)\right)+ \\
+\frac{1}{\chi\left(t_{1}\right)^{2}-1} S_{n}\left(\dot{p}\left(t_{1}\right), \operatorname{grad} V\left(p\left(t_{1}\right)\right), \ldots\right. \\
\left.\nabla^{n-1} \operatorname{grad} V\left(\dot{p}\left(t_{1}\right), \ldots, \dot{p}\left(t_{1}\right)\right), j_{t_{1}}^{n+1} \chi\right)=0
\end{gathered}
$$

$E 10 n$

Denote by J_{1}^{n+1} the topological subspace of $J^{n+1}(\mathbb{R}, 0 ; \mathbb{R})$ of all jets $j_{0}^{n+1} \omega$ such that $\omega(0)^{2} \neq 1$. Define the subset Σ_{n} of $J^{n}(M, \mathbb{R}) \times(T M)_{o} \times J_{1}^{n+1}$ as follows:

$$
\begin{gathered}
\Sigma_{n}=\left\{\left(j_{x}^{n} W, u, j_{0}^{n+1} \omega\right) \mid u \in\left(T_{x} M\right)_{0}, j_{0}^{n+1} \omega \in J_{1}^{n+1}\right. \\
\nabla^{k} \operatorname{grad} W(u, \ldots, u)+ \\
\frac{1}{\omega(0)^{2}-1} S_{k}\left(u, \operatorname{grad} W(x), \ldots, \nabla^{k-1} \operatorname{grad} W(u, \ldots, u)\right. \\
\left.\left.j_{0}^{k+1} \omega\right)=0, \quad 0 \leq k \leq n\right\}
\end{gathered}
$$

We can summarize our discussion up to now as follows: if $\left(t_{1}, t_{2}\right)$ is an accumulation point of $C(y, z)$ at which $y\left(t_{1}\right) \neq 0, z\left(t_{2}\right) \neq 0$ and $y\left(t_{1}\right)+z\left(t_{2}\right) \neq$ 0 , then there exists a $j_{0}^{n+1} \omega$ in J_{1}^{n+1} such that the triple $\left(j_{p\left(t_{1}\right)}^{n} V, y\left(t_{1}\right), j_{0}^{n+1} \omega\right)$ belongs to \sum_{n}.

Assume now that we are in the second case. We claim that $\dot{\chi}\left(t_{1}\right)=\frac{d \chi}{d t}\left(t_{1}\right)$ is not zero. E6 evaluated at t_{1} gives

$$
-\dot{\chi}\left(t_{1}\right) \dot{p}\left(t_{1}\right)+D\left(\dot{p}\left(t_{1}\right)\right)-D\left(-\dot{p}\left(t_{1}\right)\right)=0 .
$$

Multiplying scalarly by $\dot{p}\left(t_{1}\right)$ one has

$$
-\dot{\chi}\left(t_{1}\right)\left\|\dot{p}\left(t_{1}\right)\right\|^{2}+<D\left(\dot{p}\left(t_{1}\right)\right), \dot{p}\left(t_{1}\right)>+<D\left(-\dot{p}\left(t_{1}\right)\right),-\dot{p}\left(t_{1}\right)>=0 .
$$

Since the second and third terms are negative, $\dot{\chi}\left(t_{1}\right)$ cannot be zero.
Evaluating $E 7 n$ at $t=t_{1}$ we get for $n \geq 1$

$$
\begin{align*}
& {\left[-(2 n+1) \dot{\chi}\left(t_{1}\right)+d_{v} D\left(\dot{p}\left(t_{1}\right)\right)+d_{v} D\left(-\dot{p}\left(t_{1}\right)\right)\right]\left(\nabla_{\dot{p}}^{n} \dot{p}\right)\left(t_{1}\right)+} \\
& \quad+\sum_{k=2}^{n} \frac{n!}{k!(n-k)!} \frac{d^{k}}{d t^{k}}\left(\chi^{2}-1\right)\left(\nabla_{\dot{p}}^{n-k+1} \dot{p}\right)\left(t_{1}\right) \\
& \quad+Q_{n}\left(\dot{p}\left(t_{1}\right), \ldots, \nabla_{\dot{p}}^{n-1} \dot{p}\left(t_{1}\right), j_{0}^{n+1} \chi_{t_{1}}\right)=0 .
\end{align*}
$$

Using $E 8 n$ we get for $n \geq 1$:

$$
\begin{gathered}
{\left[+(2 n+1) \dot{\chi}\left(t_{1}\right)-d_{v} D\left(\dot{p}\left(t_{1}\right)\right)-d_{v} D\left(-\dot{p}\left(t_{1}\right)\right)\right] \times} \\
\nabla^{n-1} \operatorname{grad} V\left(\dot{p}\left(t_{1}\right), \ldots, \dot{p}\left(t_{1}\right)\right)+
\end{gathered}
$$

$\Phi_{n}\left(\operatorname{grad} V\left(p\left(t_{1}\right)\right), \ldots, \nabla^{n-2} \operatorname{grad} V\left(\dot{p}\left(t_{1}\right), \ldots, \dot{p}\left(t_{1}\right), j_{0}^{n+1} \chi_{t_{1}}\right)=0 . \quad E 13 n\right.$
Define the subset $\sum_{n}(-1)(n \geq 1)$ of $J^{n-1}(M, \mathbb{R}) \times(T M)_{o} \times J_{11}^{n+1}$, where J_{11}^{n+1} is the subset of $J^{n+1}(\mathbb{R}, 0 ; \mathbb{R})$ of all $j_{0}^{n+1} \omega$ such that $\omega(0)=-1$ and $\omega(0) \neq 0$, as follows: $\sum_{n}(-1)$ is the set of all triples $\left(J_{x}^{n-1} W, u, j_{0}^{n+1} \omega\right)$ in $J^{n-1}(M, \mathbb{R}) \times(T M)_{0} \times J_{11}^{n+1}$ such that for all $k, 1 \leq k \leq n, u \in\left(T_{x} M\right)_{0}$, one has:

$$
\begin{aligned}
{[(2 k} & \left.+1) \omega(0)-d_{v} D(u)-d_{v} D(-u)\right] \nabla^{k-1} \operatorname{grad} W(u, \ldots, u)+ \\
& +\Phi_{n}\left(\operatorname{grad} W(x), \ldots, \nabla^{k-2} \operatorname{grad} W(u, \ldots, u), j_{0}^{n+1} \omega\right)=0 .
\end{aligned}
$$

Then as before $\left(t_{1}, t_{2}\right)$ will be an accumulation point at which $y\left(t_{1}\right) \neq$ $0, z\left(t_{2}\right) \neq 0$ and $y\left(t_{1}\right)+z\left(t_{2}\right)=0$ if and only if there exists a $j_{0}^{n+1} \omega \in J_{11}^{n+1}$ such that the triple $\left(j_{p\left(t_{1}\right)}^{n-1} V, \dot{p}\left(t_{1}\right), j_{0}^{n+1} \omega\right)$ belongs to $\sum_{n}(-1)$.

The case 3) happens when $\dot{z}\left(t_{2}\right)=0$. By taking time translates of y and z we can assume that $t_{1}=t_{2}=0$. This case is more involved than the preceding ones. For a start, we claim that $\frac{d^{2} \sigma}{d t^{2}}(0) \neq 0$. In fact, evaluating $E 4$ at $t=0$, we have $\ddot{\sigma}(0) \dot{p}(0)+\operatorname{grad} V(p(0)) \stackrel{=}{=}$. Since $\operatorname{grad} V(p(0))$ is not zero, $\ddot{\sigma}(0) \neq 0$. From this it follows that there exists a local diffeomorphism ψ at 0 such that $\sigma=\frac{\varepsilon \psi^{2}}{2}$ and ε is +1 if $\ddot{\sigma}(0)>0$ and -1 if $\ddot{\sigma}(0)<0$.

Setting $\eta=\frac{d \psi}{d t} \circ \psi^{-1}$, we see that $E 4$ is equivalent to:

$$
\begin{array}{r}
\tau^{2} \eta\left(\tau^{2}\right)\left(\nabla_{\dot{p}} \dot{p}\right)\left(\frac{\varepsilon \tau^{2}}{2}\right)+\varepsilon\left(\eta(\tau)^{2}+\tau \eta(\tau) \dot{\eta}(\tau)\right) \dot{p}\left(\frac{\varepsilon \tau^{2}}{2}\right) \\
\quad-D\left(\varepsilon \tau \eta(\tau) \dot{p}\left(\frac{\varepsilon \tau^{2}}{2}\right)\right)+\operatorname{grad} V\left(p\left(\frac{\varepsilon \tau^{2}}{2}\right)\right)=\nu(t)
\end{array}
$$

where $\nu=\lambda \circ \psi^{-1}$.
We shall proceed as in the 1st. and 2nd. cases and replace E14 by more manageable conditions on the jets of V and η. To do this, we need the following estimate which can be obtained easily by induction on n. Let ξ be any smooth vector field along the curve p. Then

$$
\nabla_{p}^{n} \xi\left(\frac{\varepsilon \tau^{2}}{2}\right)=\sum_{i=0}^{n_{1}} \varepsilon^{n-i} a_{n, i} \tau^{n-2 i}\left(\nabla_{\dot{p}}^{n-i} \xi\right)\left(\frac{\varepsilon \tau^{2}}{2}\right)
$$

where the coefficients $a_{n, i}$ are positive integers such that $a_{n+1, i}=a_{n, i}+(n-$ $2 i+2) a_{n, i-1}$ and $n_{1}=\frac{n}{2}$ or $\frac{n-1}{2}$ according to n being even or odd. Setting $t=\tau^{2}$ in $E 1$ we get from $E 1$ and $E 14$

$$
\left(\tau^{2} \eta^{2}-1\right)\left(\nabla_{\dot{p}} \dot{p}\right)\left(\frac{\varepsilon \tau^{2}}{2}\right)+\varepsilon\left(\eta^{2}+\tau \eta \dot{\eta}\right) \dot{p}\left(\frac{\varepsilon \tau^{2}}{2}\right)+D\left(\dot{p}\left(\frac{\varepsilon \tau^{2}}{2}\right)\right)-D\left(\varepsilon \tau \eta \dot{p}\left(\frac{\varepsilon \tau^{2}}{2}\right)\right)=\nu . E 16
$$

Deriving E16 covariantly $2 n$ times with respect to τ and evaluating at $\tau=0$ we get the relations

$$
-a_{2 n, n}\left(\nabla_{\dot{p}}^{n+1} \dot{p}\right)(0)+K_{n}\left(\dot{p}(0), \ldots,\left(\nabla_{\dot{p}}^{n} \dot{p}\right)(0) ; j_{0}^{2 n} \eta\right)=0
$$

E17n
where K_{n} is a fiber bundle mapping:

$$
\underbrace{T M \times_{M} \ldots \times_{M} T M}_{n \text { times }} \times J^{2 n}(\mathbb{R}, 0 ; \mathbb{R}) \rightarrow T M .
$$

Using $E 8 n$, the relations $E 17 n$ imply

$$
\begin{aligned}
0= & a_{2 n, n} \nabla^{n} \operatorname{grad} V(\dot{p}(0), \ldots, \dot{p}(0)) \\
& +L_{n}\left(\dot{p}(0), \operatorname{grad} V(p(0)), \ldots, \nabla^{n-1} \operatorname{grad} V(\dot{p}(0), \ldots, \dot{p}(0)), j_{0}^{2 n} \eta\right) .
\end{aligned}
$$

E18n

Let us denote by $\sum_{n}(0)$, the subset of the jet space $J^{n}(M, \mathbb{R}) \times(T M)_{0} \times$ $J_{0}^{2 n}, J_{0}^{2 n}$ being the set of all jets $j_{0}^{2 n} \omega \in J^{2 n}(\mathbb{R}, 0 ; \mathbb{R})$ such that $\omega(0) \neq 0$,
defined as follow: $\sum_{n}(0)$ is the set of all triples $\left(j_{x}^{n} W, u, j_{0}^{2 n} \omega\right), u \in\left(T_{x} M\right)_{0}$, satisfying all the relations

$$
\begin{gathered}
a_{2 \ell, \ell} \nabla^{\ell} \operatorname{grad} W(u, \ldots, u)+L_{n}(u, \operatorname{grad} W(x), \ldots, \\
\left.\nabla^{\ell-1} \operatorname{grad} W(u, \ldots, u), j_{0}^{2 \ell} \omega\right)=0, \quad 0 \leq \ell \leq n
\end{gathered}
$$

As before, a necessary condition for $\left(t_{1}, t_{2}\right)$ to be an accumulation point of $C(y, z)$ when $y\left(t_{1}\right) \neq 0$ but $z\left(t_{2}\right)=0$, is that there exists a jet $j_{0}^{2 n} \omega$ such that, for all integers n, the triple $\left(j_{p\left(t_{1}\right)}^{n} V, \dot{p}\left(t_{1}\right), j_{0}^{2 n} \omega\right)$ belongs to $\sum_{n}(0)$. To finish the proof, we need to consider the case when $y\left(t_{1}\right)=z\left(t_{2}\right)$. Then z is a time translate of $y: z=y_{\tau}, \tau=t_{1}-t_{2}$, that is, $z(t)=y(t+\tau)$ for all $\left.t \in\right] a_{-},+\infty[$. Let $\left\{\left(t_{1}(n), t_{2}(n)\right) \mid n \geq 1\right\}$ be a sequence in $C(y, z)$ converging to ($\left.t_{1}, t_{2}\right)$. Setting, for each integer $n \geq 1, t_{1}^{\prime}(n)=t_{2}(n)+\tau$, the sequence $t_{1}^{\prime}(n)$ converges to t_{1} and $p\left(t_{1}^{\prime}(n)\right)=p\left(t_{1}(n)\right)$ for all n. Since $y\left(t_{1}^{\prime}(n)\right)=z\left(t_{2}(n)\right) \neq y\left(t_{1}(n)\right)$, it follows that $t_{1}^{\prime}(n) \neq t_{1}(n)$ for all n. If for an infinite sequence $\left\{n_{j} \mid j \geq 1\right\}$ of integers, $\left(t_{1}^{\prime}\left(n_{j}\right)-t_{1}\right)\left(t_{1}\left(n_{j}\right)-t_{1}\right)>0, j=1,2, \ldots$, then the ∞-jet of y at t_{1} reduces to $O_{p\left(t_{1}\right)}$. Since $\operatorname{grad} V\left(p\left(t_{1}\right)\right)=D\left(y\left(t_{1}\right)\right)-\nabla_{\dot{p}} \dot{p}\left(t_{1}\right)=0, p\left(t_{1}\right)$ is a singular point of the system. Then y and z both reduce to the point $p\left(t_{1}\right)$ and $C(y, z)$ is empty, which is a contradiction. Hence we assume that $\left(t_{1}^{\prime}(n)-t_{1}\right)\left(t_{1}(n)-t_{1}\right)<0$ for all n. By relabeling some of the $t_{1}^{\prime}(n), t_{1}(n)$, we can assume that $t_{1}^{\prime}(n)<t_{1}<t_{1}(n)$ for all integer n. By taking a time translate of y we can also assume that $t_{1}=0$. Then $y(0)=\dot{p}(0)=0$ and $\nabla_{p} \dot{p}(0)+\operatorname{grad} V(p(0))=0$. If $\operatorname{grad} V(p(0))=0$, then y is reduced to the point $y(0)$ and we get a contradiction as before. Otherwise $\nabla_{\dot{p}} \dot{p}(0) \neq 0$. This implies that there exists a local diffeomorphism $\sigma: \mathbb{R} \rightarrow \mathbb{R}, \sigma(0)=0$, $\dot{\sigma}(0)>0$, at 0 , and a germ of smooth curve $s:(\mathbb{R}, 0) \rightarrow(M, p(0))$ such that $p(t)=s\left(\frac{\sigma(t)^{2}}{2}\right)$ for all t in a neighbourhood of 0 . In fact, taking a coordinate system $x^{1^{2}}, \ldots, x^{m}: O \rightarrow \mathbb{R}$ in a neighbourhood O of $p(0), x^{i}(p(0))=0$, $1 \leq i \leq m$, for some i, say $i=1$, the coordinate function $p^{1}(t)=x^{1}(p(t))$ will have a non zero second derivative at 0 . Then there exists a local diffeomorphism σ such that $p^{1}=\frac{\varepsilon^{1} \sigma^{2}}{2}$ where ε^{1} is $\ddot{p}^{1}(0) /\left|\ddot{p}^{1}(0)\right|$ and $\dot{\sigma}(0)>0$. Since $p^{1}\left(t_{1}^{\prime}(n)\right)=p^{1}\left(t_{1}(n)\right)$ for all $n \geq 1, \sigma\left(\left(t_{1}^{\prime}(n)\right)=-\sigma\left(t_{1}(n)\right)\right.$ for all $n \geq 1$. Let σ^{-1} denote the inverse of σ. Denote by s_{1} the composition $p \circ \sigma^{-1}$ i.e., $p=s_{1} \circ \sigma$. Then for n big enough, setting $\tau_{n}=\sigma\left(t_{1}(n)\right), s_{1}\left(\tau_{n}\right)=s_{1}\left(-\tau_{n}\right)$. This shows that all the derivatives of s_{1} of odd order at 0 are zero. So there exists a germ of smooth curve $s:(\mathbb{R}, 0) \rightarrow(M, p(0))$ such that s_{1} and the curve $t \rightarrow s\left(\frac{t^{2}}{2}\right)$ have the same ∞-jet at $0, j_{0}^{\infty} p=j_{0}^{\infty}\left(s \circ \sigma^{2}\right)$. Using $E 1$, we see that ($\dot{\sigma}=\frac{d \sigma}{d t}$):

$$
(\dot{\sigma} \sigma)^{2}\left(\nabla_{\dot{i}}\right)\left(\frac{\sigma^{2}}{2}\right)+\left(\dot{\sigma}^{2}+\sigma \ddot{\sigma}\right) \dot{s}\left(\frac{\sigma^{2}}{2}\right)-D\left(\sigma \dot{\sigma} \dot{\sigma}\left(\frac{\sigma^{2}}{2}\right)\right)+\operatorname{grad} V\left(s\left(\frac{\sigma^{2}}{2}\right)\right)=\alpha
$$

where σ is flat at 0 .

Setting $\chi=\frac{d \sigma}{d t} \circ \sigma^{-1}$, we have:

$$
(t \chi(t))^{2} \cdot \nabla_{\dot{s}}\left(\frac{t^{2}}{2}\right)+\left(\chi^{2}(t)+t \chi(t) \dot{\chi}(t)\right) \dot{s}\left(\frac{t^{2}}{2}\right)-D\left(t \chi(t) \dot{s}\left(\frac{t^{2}}{2}\right)\right)+
$$ $+\operatorname{grad} V\left(s\left(\frac{t^{2}}{2}\right)\right)=\alpha \circ \sigma^{-1} \quad$ for all t in a neighbourhood of 0.

Deriving E20 covariantly $2 n$ times, $n \geq 1$, along the curve $t \rightarrow s\left(\frac{t^{2}}{2}\right)$, evaluating at $t=0$ we get for $n \geq 1$:

$$
\begin{aligned}
& \chi^{2}(0) c_{n} \nabla_{\dot{s} n}^{n} \dot{s}(0)+G_{n}\left(\dot{s}(0), \ldots, \nabla_{\dot{s}}^{n-1}(0), j_{0}^{2 n} \chi\right)+ \\
& \quad+a_{2 n, n} \nabla^{n} \operatorname{grad} V(\dot{s}(0), \ldots, \dot{s}(0)=0
\end{aligned}
$$

where $G_{n}: \underbrace{T M \times_{M} \ldots \times_{M} T M}_{n \text { times }} \times J^{2 n}(\mathbb{R}, 0 ; \mathbb{R}) \rightarrow T M$ is some polynomial fiber bundle mapping, $c_{n}=2 n(2 n-1) a_{2 n-2, n-1}+22_{2 n, n}, a_{n, i}$ being the positive integers appearing in formula $E 15$. Deriving $E 202 n+1$ times, $n \geq 0$, and evaluating at $t=0$, we get:

$$
\begin{align*}
{\left[(2 n+1) c_{n} \frac{d \chi^{2}}{d t}(0)\right.} & \left.-\chi(0) d_{v} D(0)\right] \nabla_{\dot{s}}^{n} \dot{s}(0)+ \\
& +H_{n}\left(s(0), \ldots, \nabla_{\dot{j}}^{n-i} \dot{s}(0), j_{0}^{2 n+1} \chi\right)=0
\end{align*}
$$

where H_{n} is a polynomial fiber bundle mapping:

$$
\underbrace{T M \times_{M} \ldots \times_{M} T M}_{\mathrm{n} \text { times }} \times J^{2 n+1}(\mathbb{R}, 0 ; \mathbb{R}) \rightarrow T M
$$

Since $c_{n} \neq 0$ for all $n \geq 1$ and $\chi^{2}(0) \neq 0$, we can solve the equations $E 21 n$ successively for the $\nabla_{\dot{j}}^{n} \dot{\dot{s}}(0)$, in terms of

$$
\operatorname{grad} V(s(0)), \ldots, \nabla^{n} \operatorname{grad} V(\dot{s}(0), \ldots, \dot{s}(0))
$$

Carrying these values into the relations $E 22 n$ we shall get the following relations, $n \geq 1$:

$$
\begin{align*}
& {\left[(2 n+1) c_{n} \frac{d \chi^{2}}{d t}(0)-\chi(0) d_{v} D(0)\right] \nabla^{n} \operatorname{grad} V(\dot{s}(0), \ldots, \dot{s}(0))+} \\
& \left.\quad+E_{n}\left(\dot{s}(0), \operatorname{grad} V(s(0)), \ldots, \nabla^{n-1} \operatorname{grad} V(\dot{s}(0)), \ldots, \dot{s}(0)\right), j_{0}^{2 n+1} \chi\right)=0
\end{align*}
$$

where E_{n} is a rational fiber-bundle mapping:

$$
\underbrace{T M \times_{M} \ldots \times_{M} T M}_{n \text { times }} \times J_{0}^{2 n+1} \rightarrow T M
$$

To sum up, if $\left(t_{1}, t_{2}\right)$ is an accumulation point of $C(y, z)$ such that $y\left(t_{1}\right)=$ $z\left(t_{2}\right)$, then, for any integer $n \geq 1$, there exists a jet $j_{0}^{2 n+1} \chi \in J_{0}^{2 n+1}$ such that the triple $\left(j_{p\left(t_{1}\right)}^{n+1} V, u_{0}, j_{0}^{2 n+1} \chi\right)$, where $u_{0}=\frac{\nabla_{\dot{p}} \dot{p}(0)}{\chi(0)^{2}}$ belongs to the subset $\sum_{n}(0,0)$ of $J^{n+1}(M, \mathbb{R}) \times(T M)_{0} \times J_{0}^{2 n+1}$ of all triples $\left(j_{x}^{n+1} W, u, j_{0}^{2 n+1} w\right)$, $u \in\left(T_{x} M\right)_{0}$, satisfying the conditions: $1 \leq k \leq n$,

$$
\begin{aligned}
& {\left[(2 k+1) c_{k} \frac{d w^{2}}{d t}(0)-w(0) d_{v} D\left(0_{x}\right)\right] \nabla^{k} \operatorname{grad} W(u, \ldots, u)+} \\
& \quad+E_{n}\left(u, \operatorname{grad} W(x), \ldots, \nabla^{k-1} \operatorname{grad} W(u, \ldots, u), j_{0}^{2 k+1} w\right)=0 .
\end{aligned}
$$

It is clear that \sum_{n} and $\sum_{n}(0)$ are submanifolds of the jet spaces

$$
J^{n}(M ; \mathbb{R}) \times(T M)_{0} \times J_{1}^{n+1} \quad \text { and } \quad J^{n}(M, \mathbb{R}) \times(T M)_{0} \times J_{0}^{2 n},
$$

respectively, having codimensions $(n+1) m$ and $n m$. Since $w(0) \neq 0$, in the sequence of endomorphisms of $T_{x} M:[\dot{w}(0)-L(u)],[3 \dot{w}(0)-L(u)], \ldots,[(2 n+$ 1) $\dot{w}(0)-L(u)], L(u)$ being the endomorphism $d_{v} D(u)-d_{v} D(-u), u \in\left(T_{x} M\right)_{0}$, at least $n-m$ are invertible. $\sum_{n}(-1)$ is contained in a codimension $(n-m) m$ submanifold $\widetilde{\sum}_{n}(-1)$ of $J^{n-1}(M, \mathbb{R}) \times(T M)_{0} \times J_{11}^{n+1}$. Finally, if $w(0) \neq 0$, in the sequence of endomorphisms of $T_{x} M:\left[3 c_{1} \frac{d w^{2}(0)}{d t}-w(0) d_{v} D\left(O_{x}\right)\right]$, $\left[5 c_{2} \frac{d w^{2}}{d t}(0)-w(0) d_{v} D\left(O_{x}\right)\right], \ldots,\left[(2 m+1) c_{n} \frac{d w^{2}(0)}{d t}-w(0) d_{v} D\left(O_{x}\right)\right]$, at least $n-m$ are invertible. In case $\frac{d w^{2}}{d t}(0)=0$, they are all equal to $w(0) d_{v} D\left(O_{x}\right)$, which is invertible. Hence $\sum_{n}(0,0)$ is contained in a codimension $(n-m) m$ submanifold $\widetilde{\sum}_{n}(0,0)$ of the jet space $J^{n}(M, \mathbb{R}) \times(T M)_{0} \times J_{0}^{2 n+1}$.

To end the proof of Proposition 3.3, we will apply the transversality density Theorem 19.1 p .48 of reference [1] choosing for the \mathcal{A} of that theorem the space of all Morse functions on M. The choices of the manifolds X, Y, W and of the mapping $\rho: \mathcal{A} \rightarrow C(X, Y), V \rightarrow f_{V}$ are indicated in the table below for each case:

Case	X	Y
$\Sigma_{n}(T M)_{0} \times J_{1}^{n+1}$	$J^{k}(M, \mathbb{R}) \times X$	
$\Sigma_{n}(0)$	$(T M)_{0} \times J_{0}^{2 n}$	$J^{n}(M, \mathbb{R}) \times X$
$\Sigma_{n}(-1)$	$(T M)_{0} \times J_{11}^{n+1}$	$J^{n-1}(M, \mathbb{R}) \times X$
$\Sigma_{n}(0,0)$	$(T M)_{0} \times J_{0}^{2 n+1}$	$J^{n}(M, \mathbb{R}) \times X$

W	f_{V}
Σ_{n}	$f_{V}\left(u, j_{0}^{n+1} w\right)=j_{x}^{n} V, x=\pi(u)$
$\Sigma_{n}(0)$	$f_{V}\left(u, j^{2 n} w\right)=j_{x}^{n} V, x=\pi(u)$
$\tilde{\Sigma}_{n}(-1)$	$f_{V}\left(u, j_{0}^{n+1} w\right)=j_{x}^{n-1} V, x=\pi(u)$
$\tilde{\Sigma}(0,0)$	$f_{V}\left(u, j_{0}^{2 n+1} w\right)=j_{x}^{n} V, x=\pi(u)$

For proposition 3.3(i) n has to be chosen greater than $4 m+5$; for Proposition 3.3(ii), greater than $3 m+3$.

An unstable (stable) manifold of a singular point of $X \in S D M S$ will be called simply an unstable (stable) manifold of X.

Proposition 3.4. Given any pair (X_{0}, x_{0}) in $\operatorname{GIW}(D) \times T M$ (resp. $S D M S(V)$ $\times T M$) there exist open neighbourhoods N_{0} of x_{0} in $T M, \mathcal{U}_{0}$ of X_{0} in $S D M S(D)$ (resp. $S D M S(V)$) such that, if N is the number of singular points of X_{0} :
(i) There is a continuous mapping

$$
\mathcal{U}_{0} \ni X \longrightarrow\left(O_{1, X}, \ldots, O_{N, X}\right) \in M^{N}=\underbrace{M \times M \times \ldots \times M}_{\mathrm{N} \text { times }}
$$

such that for each X in $\mathcal{U}_{0},\left\{O_{1, X}, \ldots, O_{N, X}\right\}$ is the set of all singular points of X;
(ii) If x_{0} does not lie on any unstable manifold of X_{0}, for any $X \in \mathcal{U}_{0}$ no unstable manifold of X meets N_{0};
(iii) If x_{0} lies on an unstable manifold of $X_{0}, W_{X_{0}}^{u}\left(O_{1 X_{0}}\right)$ say, then the set of all X in \mathcal{U}_{0} such that $W_{X}^{u}\left(O_{1 X}\right) \cap N_{0}$ is transversal to all the stable manifolds of X is a Baire subset (residual) of \mathcal{U}_{0}.

For the proof of Proposition 3.4, we use Proposition 3.5 below, to be proved later. Given a trajectory $\left.z:] a_{-},+\infty\right) \rightarrow T M$ of (V, D) with projection q, we say that an interval $I \subset] a_{-},+\infty$) is free of multiple points if, for any $t \in I$, $q^{-1}(q(t))=\{t\}$.

Proposition 3.5. Let $X_{0}=\left(V_{0}, D_{0}\right)$ be a system in $S D M S$ and x_{0} a non singular point of X_{0} lying on an unstable manifold $W_{X_{0}}^{u}\left(O_{X_{0}}\right)$ of X_{0}. Let $z_{0}: \mathbb{R} \rightarrow T M$ be the trajectory of X_{0} passing through x_{0} at time 0 . Assume that z_{0} satisfies the property: any open subset \mathcal{O} in \mathbb{R} contains an open interval In free of multiple points for z_{0} and such that $z_{0}(I n)$ does not intersect the zero section of TM. Then there exist neighbourhoods \mathcal{U}_{0} of X_{0}, in $S D M S\left(D_{0}\right)$ (resp. $S D M S\left(V_{0}\right)$), N_{0} of x_{0} in $T M, \Theta$ of O in \mathbb{R}^{c} where c is the codimension of $W_{X_{0}}^{u}\left(O_{X_{0}}\right)$ in $T M$ and a continuous mapping $(X, \theta) \in \mathcal{U}_{0} \times \Theta \longrightarrow V_{X, \theta} \in C^{\infty}(M ; \mathbb{R})$ (resp. $D_{X, \theta} \in \mathcal{D}$) having the following properties:
(i) There exists a continuous mapping $X \in \mathcal{U}_{0} \rightarrow\left(O_{1, X}, \ldots, O_{N, X}\right) \in M^{N}$ such that the set $\left\{O_{1, X}, \ldots, O_{N, X}\right\}$ is the set of all singular points of X and $O_{1, X_{0}}=O_{X_{0}}$.
(ii) For any $X=\left(V_{X}, D_{0}\right)$ in \mathcal{U}_{0} and $\theta \in \Theta$:

$$
V_{X, \theta}=V_{X}+\sum_{i=1}^{c} \theta^{i} V_{i}, \quad \theta=\left(\theta^{1}, \ldots, \theta^{c}\right) \in \mathbb{R}^{c}
$$

where the functions V_{i} have their supports contained in a compact subset Q of M (resp.: For all $\theta \in \Theta, D_{X, \theta}-D_{X}$ has its support contained in a fixed compact subset Q in $T M$).
(iii) For any $X \in \mathcal{U}_{0}$, the fields $X_{\theta}=\left(V_{X, \theta}, D_{0}\right)$ have the same singular set $\left(O_{1, X}, \ldots, O_{N, X}\right)$ as X and they coincide with X in a neighbourhood of this singular set.
(iv) The set $T^{s}\left(N_{0}, X\right)$ of the projections on M of all positive semi trajectories starting in N_{0} (resp. the set $T^{s}\left(N_{0}, X\right)$ of all positive semi-trajectories starting in N_{0}) does not meet Q. Hence $T^{s}\left(N_{0}, X\right)$ is identical with the analogous set $T^{s}\left(N_{0}, X_{\theta}\right)$ for X_{θ}.
(v) For any X in \mathcal{U}_{0}, there exist an open subset P_{X} of $W_{X}^{u}\left(O_{1, X}\right)$ and a diffeomorphism $e_{X}: P_{X} \times \Theta \longrightarrow T M$ such that:

1) the open subset $e_{X}\left(P_{X} \times \Theta\right)$ of $T M$ contains N_{0}.
2) $e_{X, 0}: P_{X} \longrightarrow T M, x \longrightarrow e_{X}(x, 0)$ is just the injection of P_{X} in $T M$.
3) For any θ in Θ we have the inclusions $W_{X_{\theta}}^{u}\left(O_{1, X}\right) \cap N_{0} \subset e_{X}\left(P_{X} \times\right.$ $\{\Theta\}) \subset W_{X_{\theta}}^{u}\left(O_{1, X}\right)$.

Proof of Proposition 3.4. We can easily find an open neighbourhood \mathcal{U}_{1} of X_{0} such that (i) is satisfied. If x_{0} does not lie on an unstable manifold of X_{0}, then the negative semi-trajectory of X_{0} ending at x_{0} cuts any energy level surface $\left\{E_{V_{0}}=A\right\}, V_{0}$ being the potential of X. Choose A so big that all the unstable manifolds of X_{0} lie in $\left\{E_{V_{0}} \leq A\right\}$. There will exist a compact neighbourhood N_{0} of x_{0} in $T M$ such that all the negative semi-trajectories of X_{0} ending in N_{0} cut the level surface $\left\{E_{V_{0}}=2 A\right\}$. Then it is easy to find an open neighbourhood $\mathcal{U}_{0} \subset \mathcal{U}_{1}$ of X_{0} such that: 1) for any X in \mathcal{U}_{0} all the unstable manifolds of X lie in $\left\{E_{V_{0}} \leq \frac{3 A}{2}\right\} ; 2$) all the negative semi-trajectories of X ending in N_{0} cut the level surface $\left\{E_{V_{0}}=2 A\right\}$. Obviously for any X in \mathcal{U}_{0} no unstable manifold of X cuts N_{0}. This ends the proof of Proposition 3.4 when x_{0} does not lie on an unstable manifold of X_{0}.

If x_{0} lies on $W_{X_{0}}^{u}\left(O_{1 X_{0}}\right)$, we can find neighbourhoods \mathcal{U}_{0} of X_{0}, N_{0} of x_{0} satisfying all the properties of Proposition 3.5. Since the stable manifolds are submanifolds of $T M$, it is clear that the set $\mathcal{G}\left(\mathcal{U}_{0}\right)$ of all X in \mathcal{U}_{0} such that $W_{X}^{u}\left(O_{1 X}\right) \cap N_{0}$ is transversal to all the stable manifolds of X is a G_{δ} (countable intersection of open subsets of \mathcal{U}_{0}).

If we prove that $\mathcal{G}\left(\mathcal{U}_{0}\right)$ is dense in \mathcal{U}_{0}, it will follow that it is a Baire subset of \mathcal{U}_{0}.

Take any X in \mathcal{U}_{0}. Using the notations of Proposition 3.5, denote by $\mathrm{pr}_{2}: P_{X} \times \Theta \rightarrow \Theta$ the second canonical projection. Sard's theorem tells us that in any neighbourhood of O in Θ, there exists a $\bar{\theta}$ which is a regular value for the restriction of pr_{2} to the family $\left\{e_{X}^{-1}\left(W_{X}^{s}\left(O_{i X}\right)\right) \mid 1 \leq i \leq N\right\}$ of submanifolds of $P_{X} \times \Theta$ and such that $X_{\bar{\theta}}$ lies in \mathcal{U}_{0}. Since the positive semi-trajectories of $X_{\bar{\theta}}$ starting in N_{0}, do not meet the support Q of the deformation $X_{\bar{\theta}}$, for any $\dot{j}, 1 \leq j \leq N, W_{X_{\bar{\theta}}}^{s}\left(O_{j X_{\bar{\theta}}}\right) \cap N_{0}=W_{X}^{s}\left(O_{j} x\right) \cap N_{0}$ and the choice of $\bar{\theta}$ ensures that the manifold $e_{X}\left(P_{X} \times\{\bar{\theta}\}\right)$ is transversal to
the family $\left\{W_{X}^{s}\left(O_{i X}\right) \mid 1 \leq i \leq N\right\}$. Since $e_{X}\left(P_{X} \times\{\bar{\theta}\}\right)$ contains $W_{X_{\bar{\theta}}}^{u} \cap N_{0}$, we get the statement (iii) of Proposition 3.4.

Proof of Proposition 3.5. We shall discuss only the case where the dissipative force is kept fixed. This case is much harder to handle that the one where the potential is kept fixed because even if we use local perturbation of the potential V (i.e. with small compact support) the corresponding perturbations of the system will not be local anymore, since they will affect all the points in the tangent bundle located above the support of the perturbation of V. Hence more sophisticated tools are needed to treat this case than the case where the dissipative force is perturbed, which can be treated by standard methods.

To prove the Proposition, it is sufficient to construct an open neighborhood \mathcal{V} of X_{0} in $\operatorname{SDMS}\left(D_{0}\right)$, times $\tau_{u}<t_{1}<t_{2}$, compact neighbourhoods N_{u}, N_{s} of $z_{0}\left(\tau_{u}\right), z_{0}(0)$ respectively, in $T M, Q$ of $q_{0}\left(\left[t_{1}, t_{2}\right]\right), q_{0}=\pi_{M} \circ z_{0}$, in M, and c smooth functions $V_{i}: M \rightarrow \mathbb{R}, 1 \leq i \leq c$, with supports contained in Q such that:
$0)$ There exists a continuous mapping $X \in \mathcal{V} \rightarrow\left(O_{1, X}, \ldots, O_{N, X}\right) \in M^{N}$ such that $\left\{O_{1, X}, \ldots, O_{N, X}\right\}$ is the singular set of X and $O_{1 X_{0}}=O_{X_{0}}$. Also $Q \cap\left\{O_{1, X}, \ldots, O_{N, X}\right\}=\emptyset$ for X in \mathcal{V}.

1) Let $T^{s}\left(N_{s}, X\right)$ denote the set of the projections on M of all positive semi-trajectories starting in N_{s}. Let $T^{u}\left(N_{u}, X\right)$ denote the set of all negative semi-trajectories tending to a singular point as t tends to $-\infty$ and ending in N_{u} for $t=0 . T^{s}\left(N_{s}, X\right) \cap Q$ and $T^{u}\left(N_{u}, X\right) \cap Q$ are both empty for any X in \mathcal{V}.
2) The mapping $f_{X_{0}}:\left[N_{u} \cap W_{X_{0}}^{u}\left(O_{X_{0}}\right)\right] \times \mathbb{R}^{c} \rightarrow T M$, defined as: $f_{X_{0}}(x, \theta)$ is the position at time 0 of the trajectory of the system $X_{0 \theta}=$ $\left(V_{0}+\sum_{i=1}^{c} \theta^{i} V_{i}, D_{0}\right)$ passing through x at time τ_{u}, is infinitesimally inversible at x_{0}.
In fact, if we have properties 1-2 above, $f_{X_{0}}$ is a local diffeomorphism at x_{0}. Since $f_{X_{0}}\left(z_{0}\left(\tau_{u}\right), 0\right)=x_{0}$, we can restrict both N_{u} and N_{s} and choose a neighbourhood Θ of O in \mathbb{R}^{c} such that $f_{X_{0}}$ maps $\left[N_{u} \cap W_{X_{0}}^{u}\left(O_{X_{0}}\right)\right] \times \Theta$, $\stackrel{\circ}{N}_{u}=$ interior of N_{u}, diffeomorphically onto a subset of $T M$ containing N_{s}. Then we can find an open subneighbourhood \mathcal{U}_{0} of X_{0} in \mathcal{V} such that this last assertion is true for the mapping f_{X} constructed in the same way as $f_{X_{0}}$, but starting with X instead of $X_{0}: f_{X}$ maps $\stackrel{\circ}{N}_{u} \cap W_{X}^{u}\left(O_{1 X}\right) \times \Theta$ diffeomorphically onto a set in $T M$ containing N_{s}.

Then we define P_{X} and e_{X} as follows:

$$
\begin{aligned}
& P_{X}=f_{X}\left(\stackrel{\circ}{N}_{u} \cap W_{X}^{u}\left(O_{1, x}\right), 0\right) \\
& e_{X}\left(f_{X}(x, 0), \theta\right)=f_{X}(x, \theta)
\end{aligned}
$$

As N_{0} we take N_{s}. Then all the conditions (i), (ii), (iii), (iv), (v)-1, (v)-2 of Proposition 3.5 are obviously satisfied. To check (v) -3 note that by property

1 of N_{u}, the intersection $W_{X_{0}}^{u}\left(O_{1, X}\right) \cap N_{u}$ coincides with the intersection $W_{X}^{u}\left(O_{1, X}\right) \cap N_{u}$. Hence $e_{X}\left(P_{X} \times\{\theta\}\right)=f_{X}\left(\stackrel{o}{N}_{u} \cap W_{X_{\theta}}^{u}\left(O_{1, X}\right), \theta\right)$ is contained in $W_{X_{\theta}}^{u}\left(O_{1, X}\right)$. If y is a point in $W_{X_{\theta}}^{u} \cap N_{0}$ then it is the image $f_{X}(x, \theta)$ of a point x in $\stackrel{\circ}{N}_{u} \cap W_{X}^{u}\left(O_{1, X}\right)$ which is the same as $\stackrel{o}{N}_{u} \cap W_{X_{0}}^{u}\left(O_{1, X}\right)$. Hence $y=e_{X}\left(f_{X}(x, 0), \theta\right)$. This proves the second inequality of (v)-3. It remains to construct $\mathcal{V}, N_{u}, N_{s}, Q$, and the V_{i}^{\prime} s so as to satisfy 0$)$-1)-2).

To check that $f_{X_{0}}$ is infinitesimally inversible at x_{0} it is necessary and sufficient to show that the vectors $\frac{\partial f x_{0}}{\partial \theta^{2}}\left(z_{0}\left(\tau_{u}\right), 0\right), 1 \leq u \leq c$, in $T_{x_{0}} T M$, are linearly independent modulo the subspace $T_{x_{0}} W_{X_{0}}^{u}\left(O_{X_{0}}\right)$ of $T_{x_{0}} T M$. Now these vectors are the values at $t=0$ of vector fields along z_{0} which represent the infinitesimal deformations of the trajectories when X_{0} undergoes the deformation X_{θ}. These vector fields are solutions of the linearized flow equation along z_{0}.

To study this linearized equation we need a good representation of it and more generally of the double tangent bundle $T T M$. In our opinion the best is to use the Levi Civita connection of the Riemannian manifold M. At a great expense in calculations and symbols one could avoid the connection and use coordinate charts. But the computation would be very messy and the results would not be intrinsic.
A) To proceed we have to recall some more or less well known results about the double tangent space $T T M$. It can be considered as a vector space bundle in two ways: first it is the tangent bundle of the tangent bundle $T M$ of M. As such it has a projection $\pi_{T M}: T T M \longrightarrow T M$.

Second, the canonical projection $\pi_{M}: T M \longrightarrow M$ of the tangent bundle $T M$ of M induces a tangent mapping $T \pi_{M}: T T M \longrightarrow T M$. This is a vector bundle projection and we have the relation:

$$
\pi_{M} \circ \pi_{T M}=\pi_{M} \circ T \pi_{M} .
$$

The kernel of $T \pi_{M}$ is a subbundle Ver_{M} of the bundle ($T T M, \pi_{T M}, T M$) called the vertical bundle. Ver_{M} is isomorphic to the fiber product $T M \times_{M} T M$ endowed with the first canonical projection $\mathrm{pr}_{1}: T M \times_{M}$ $T M \longrightarrow T M,(u, v) \longrightarrow u$. A canonical isomorphism $j: T M \times_{M} T M \rightarrow \operatorname{Ver}_{M}$ is defined as follows: if $(u, v) \in T M \times{ }_{M} T M, j(u, v)$ is the tangent vector at $\lambda=0$ of the curve $\lambda \in \mathbb{R} \longrightarrow u+\lambda v \in T M$.

The Levi-Civita connection defines another subbundle \mathcal{H}_{M} of the bundle ($T T M, \pi_{T M}, T M$) called the horizontal bundle as follows. Define a smooth mapping $C: T M \times_{M} T M \longrightarrow T T M$: for any pair $(u, v) \in T M \times_{M} T M$, choose any smooth curve $\sigma:]-\varepsilon, \varepsilon[\longrightarrow M, t \longrightarrow \sigma(t)$ such that its tangent vector at $0, T \sigma(0)$, is u. Let $\tau_{\sigma}(t): T_{q} M \rightarrow T_{\sigma(t)} M\left(q=\sigma(0)=\pi_{M} u=\pi_{M} v\right)$ be the parallel transport along σ defined by the Levi-Civita connection. Then the tangent vector at 0 to the smooth curve $t \in]-\varepsilon, \varepsilon\left[\longrightarrow \tau_{\sigma}(t) v\right.$ is independent of the choice of σ but depends only on the pair (u, v). We denote it by $C(u, v)$.
C defines a vector bundle injection of the bundle ($T M \times_{M} T M, \mathrm{pr}_{2}, T M$) [pr_{2} is the second canonical projection $T M \times_{M} T M \longrightarrow$ $T M,(u, v) \longrightarrow v$] into the bundle $\left(T T M, \pi_{T M}, T M\right)$. Its image \mathcal{H}_{M} is the horizontal bundle.

The following formulas are useful:

$$
\begin{array}{ll}
T \pi_{M} C(u, v)=u & T \pi_{M}(j(u, v))=o \\
\pi_{T M} C(u, v)=v & \pi_{T M} j(u, v)=u
\end{array}
$$

The vector bundle ($T T M, \pi_{T M}, T M$) is the direct sum $\mathcal{H}_{M} \oplus \operatorname{Ver}_{M}$ of its horizontal and vertical subbundles. This direct sum, in turn, is isomorphic to the fiber product $\left(T M \times_{M} T M\right) \times{ }_{\mathrm{pr}_{2}, \mathrm{pr}_{1}}\left(T M \times \times_{M} T M\right)$ which, in turn, is isomorphic to the triple fiber product $T M \times_{M} T M \times_{M} T M$. The isomorphism $\Delta: T M \times_{M} T M \times_{M} T M \longrightarrow T T M$ defined in this way is:

$$
\Delta(u, v, w)=C(u, v)+j(v, w) .
$$

The triple (u, v, w) corresponds to the element $[(u, v),(v, w)]$ of the fiber product

$$
\left(T M \times_{M} T M\right) \times_{\mathrm{pr}_{2}, \mathrm{pr}_{1}}\left(T M \times_{M} T M\right) .
$$

The inverse Δ^{-1} of Δ can be expressed as follows:

$$
\begin{gathered}
\Delta^{-1}: T T M \longrightarrow T M \times_{M} T M \times_{M} T M, \\
\Delta^{-1}(\tau)=\left(T \pi_{M}(\tau), \pi_{T M}(\tau), K(\tau)\right)
\end{gathered}
$$

where the mapping $K: T T M \longrightarrow T M$ is the unique smooth mapping satisfying the relation:

$$
j\left(\pi_{T M}(\tau), K(\tau)\right)=\tau-C\left(T \pi_{M}(\tau), \pi_{T M}(\tau)\right) .
$$

The last element belongs obviously to the vertical bundle.
The following considerations will be useful for the future. Let $z:] a, b[\longrightarrow$ $T M$ be any smooth curve and let $q:] a, b[\longrightarrow M$ be its projection on M, then the image $\Delta^{-1}\left(\frac{d z}{d t}\right)$ of the tangent vector field $\frac{d z}{d t} \in T T M$ along z is:

$$
\begin{equation*}
\Delta^{-1}\left(\frac{d z}{d t}\right)=\left(\frac{d q}{d t}, z, \nabla_{t} z\right) . \tag{1}
\end{equation*}
$$

where $\frac{d q}{d t}$ is the tangent vector field to q and $\nabla_{t} z$ is the covariant derivative of the vector field along q.

We also have the formula:

$$
\begin{equation*}
\frac{d z}{d t}=C\left(\frac{d q}{d t}, z\right)+j\left(z, \nabla_{t} z\right) . \tag{2}
\end{equation*}
$$

B) The preceeding remarks in \mathbf{A}, allow us to avoid the consideration of the double tangent bundle $T T M$ and work with objects in M and $T M$. In
particular we can give the following nice representation of the flow of a system $X=(V, D)$. The projections on M of the trajectories of X are the curves $q:] a_{-},+\infty[\longrightarrow M$ satisfying the second order equation:

$$
\nabla_{\dot{q}} \dot{q}-D(\dot{q})+\operatorname{grad} V(q)=0
$$

where \dot{q} denotes the tangent vector field $\frac{d q}{d t}$ and $\nabla_{\dot{q}}$ the covariant derivative in the \dot{q} direction. The trajectory of X whose projection is q, is simply the tangent vector field $\frac{d q}{d t}$.

Let us now study the linearized flow along a trajectory. Let $\theta \in \Theta$ (open set in $\left.\mathbb{R}^{c}\right) \longrightarrow X_{\theta}=\left(V_{\theta}, D_{\theta}\right)$ denote a smooth deformation of the field X_{0} and let $\left.\theta \in \Theta \longrightarrow z_{\theta}:\right] a_{-}(\theta),+\infty\left[\longrightarrow T M\right.$ be a smooth family of curves such that z_{θ} is a trajectory of X_{θ}. The vector field $\left.\frac{\partial z_{\theta}}{\partial \theta}\right|_{\theta=0}$ is the infinitesimal deformation of the family along z_{0}. Let χ be the vector field $T \pi_{M}\left(\left.\frac{\partial z_{\theta}}{\partial \theta}\right|_{\theta=0}\right)$ along q_{0}, projection of z_{0} on M.

Lemma 3.6. A vector field χ along q_{0} is the projection on M of an infinitesimal deformation of z_{0} corresponding to the deformation X_{θ} of X if and only if:

$$
P_{0} \chi=\left.\frac{\partial D_{\theta}}{\partial \theta}\right|_{\theta=0}\left(\dot{q}_{0}\right)-\left.\operatorname{grad} \frac{\partial V}{\partial \theta}\right|_{\theta=0}\left(q_{0}\right)
$$

where P_{0} is the second order operator along q_{0} :

$$
P_{\xi}=\nabla_{t}^{2} \xi-R\left(\dot{q}_{0}\right) \nabla_{t} \xi+S\left(\dot{q}_{0}\right) \xi .
$$

The tensor fields R, S are defined in the proof of the Lemma. The relation between χ and $\left.\frac{\partial z}{\partial \theta}\right|_{\theta=0}$ is as follows:

$$
\left.\frac{\partial z}{\partial \theta}\right|_{\theta=0}=\Delta\left(\chi, z_{0}, \nabla_{t} \chi\right) .
$$

C) For any interval $I \subset] a_{-}(0),+\infty[$ denote by $\Gamma(I, T M)$ the space of all smooth vector fields along the curve restriction to q_{0} of I.
P_{0} defines a linear operator $\Gamma(I, T M) \longrightarrow \Gamma(I, T M)$ with respect to the L_{2} scalar product defined by the Riemannian metric on $M . P_{0}$ has an adjoint $P_{0}^{*}: \Gamma(I, T M) \longrightarrow \Gamma(I, T M)$

$$
P_{0}^{*} \psi=\nabla_{\dot{q}_{0}}^{2} \psi+\nabla_{\dot{q}_{0}}\left(R\left(\dot{q}_{0}\right)^{*} \psi\right)+S\left(\dot{q}_{0}\right)^{*} \psi
$$

where R^{*}, S^{*} are the adjoints of the tensors R, S with respect to the Riemannian scalar product.

We have a Green's formula: let I be closed, $I=[a, b]$, then:

$$
\left.\int_{a}^{b}\left[<P_{0} \psi_{1}, \psi_{2}>-<\psi_{1}, P_{0}^{*} \psi_{2}>\right] d t=B\left(\dot{q}_{0}\right)\left[\left(\nabla_{t} \psi_{1}, \psi_{1}\right), \nabla_{t} \psi_{2}, \psi_{2}\right)\right]\left.\right|_{a} ^{b}
$$

for all $\psi_{1}, \psi_{2} \in \Gamma(I, T M)$, where for each $u \in T_{q} M, B(u)$ is the multilinear form $T_{q} M \times T_{q} M \times T_{q} M \times T_{q} M \longrightarrow \mathbb{R}$:

$$
\left.B(u)\left[\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right]=<u_{1}, v_{2}>-<u_{2}, v_{1}>-<R(u) v_{1}, v_{2}\right\rangle .
$$

It is clear that $B(u)$ is non-degenerate for each u.
D) Assume now that z_{0} is a trajectory of $X_{0}=\left(V_{0}, D_{0}\right)$ contained in an unstable manifold $W_{X_{0}}^{u}\left(\alpha\left(z_{0}\right)\right)$. The tangent bundle $T W_{X_{0}}^{u}\left(\alpha\left(z_{0}\right)\right) \mid z_{0}$ of $W_{X_{0}}^{u}\left(\alpha\left(z_{0}\right)\right)$ along z_{0} is a subbundle of the tangent bundle $T T M \mid z_{0}$ along z_{0}. Its image E^{u} by the mapping $T \pi_{M} \times \pi_{T M}$ is a subbundle of $q_{0}^{*} T M \times q_{q_{0}}^{*} T M$. Since $T W_{X_{0}}^{u}\left(\alpha\left(z_{0}\right)\right) \mid z_{0}$ is invariant by the linearized flow along z_{0}, E^{u} is invariant by P_{0}, that is, if (u, v) belongs to E^{u} and φ is a solution of $P \circ \varphi=0$ such that $\left(\nabla_{t} \varphi\left(t_{0}\right), \varphi\left(t_{0}\right)\right)=(u, v)$ for some t_{0} then $\left(\nabla_{t} \varphi(t), \varphi(t)\right) \in E_{t}^{u}$ for all t.

Let E^{*} be the subbundle of $q_{0}^{*} T M \times q_{0}^{*} T M$, which is the right orthogonal complement of E^{u} with respect to B. Its fiber E_{t}^{*} at $t \in \mathbb{R}$ is:

$$
\begin{gathered}
E_{t}^{*}=\left\{\left(u_{2}, v_{2}\right) \in T_{q_{0}(t)} M \times T_{q_{0}(t)} M \mid B\left(q_{0}(t)\right)\left[\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right]=0,\right. \\
\left.\forall\left(u_{2}, v_{2}\right) \in E_{t}^{u}\right\} .
\end{gathered}
$$

The bundle E^{*} is invariant by P_{0}^{*}. In fact, take any solution ψ of $P_{0}^{*} \psi=0$ such that $\left(\nabla_{t} \psi\left(t_{0}\right), \psi\left(t_{0}\right)\right) \in E_{t_{0}}^{*}$ for some t_{0}. Then for any solution φ of $P_{0} \varphi=0$ contained in E^{u}, using Green's formula:

$$
\left.B\left(q_{0}(t)\right)\left[\left(\nabla_{t} \varphi, \varphi\right),\left(\nabla_{t} \psi, \psi\right)\right]\right|_{t_{0}} ^{t_{1}}=\int_{t_{0}}^{t_{1}}\left[\left\langle P_{0} \varphi, \psi\right\rangle-\left\langle\varphi, P_{0}^{*} \psi\right\rangle\right] d t=0
$$

for any t_{1} in $] a_{-},+\infty[$.
This relation shows that for any such t_{2} :

$$
B\left(q_{0}\left(t_{1}\right)\right)\left[\left(\nabla_{t} \varphi\left(t_{1}\right), \varphi\left(t_{1}\right)\right),\left(\nabla_{t} \psi\left(t_{1}\right), \psi\left(t_{1}\right)\right)\right]=0 .
$$

Since $\left(\nabla_{t} \varphi\left(t_{1}\right), \varphi\left(t_{1}\right)\right)$ takes all possible values in E_{t}^{u} as φ varies, we get

$$
\left(\nabla_{t} \psi\left(t_{1}\right), \psi\left(t_{1}\right)\right) \in E_{t}^{*}
$$

Since the bilinear form is non-degenerate, the dimension of the fibers of E^{*} is the codimension c of $W_{X_{0}}^{u}\left(\alpha\left(z_{0}\right)\right)$.

In order to construct $V_{\boldsymbol{\theta}}$ we need the following Lemmas:

Lemma 3.7. Let X_{0} be any system in $\operatorname{GIW}(D)$.
(i) For any non singular trajectory $\left.z_{0}:\right] a_{-},+\infty\left[\longrightarrow T M\right.$ of X_{0} and any open subset Ω of $] a_{-},+\infty[$, there exists an open interval In contained in Ω free of any multiple points of $q_{0}=\pi_{M} \circ z_{0}$ and not contaning any time t such that $\frac{d q_{0}}{d t}(t)=z_{0}(t)=O_{M}$.
(ii) Let In be any open interval in] $a_{-},+\infty$ [having the properties stated in i. Let $\tau_{u}<t_{1}<t_{2}<\tau_{s}$ be four times such that $\left.\left[\tau_{u}, \tau_{s}\right] \subset\right] a_{-},+\infty[$ and $\left[\tau_{u}, t_{2}\right] \subset I n$. Then there exists an open neighbourhood \mathcal{U}_{0} of X_{0} in SDMS, a compact neighbourhood Q of $q_{0}\left(\left[t_{2}, t_{2}\right]\right)$, compact neighbourhoods N_{u}, N_{s} of $z_{0}\left(\tau_{u}\right)$ and $z_{0}\left(\tau_{s}\right)$ respectively in $T M$, such that the sets $\bigcup_{X \in \mathcal{U}_{0}} T^{s}\left(N_{s}, X\right)$ and $\bigcup_{X \in \mathcal{U}_{0}} T^{u}\left(N_{u}, X\right)$ do not meet $Q . T^{s}\left(N_{s}, X\right)$ is the set of projections on M of all the positive semi-trajectories of X starting in N_{s} and $T^{u}\left(N_{u}, X\right)$ the set of projections on M of all the negative semi trajectories of X ending in N_{u} and tending to a singular point of X when t goes to $-\infty$.

Lemma 3.8. Let X be a system in $S D M S$ and let $\left.z_{0}:\right] a_{-},+\infty[\rightarrow T M$ be a trajectory of X and q_{0} its projection on M. Then there exists a real number τ_{+}such that $P_{0}^{*} \dot{q}_{0} \neq 0$ for all $t \geq \tau_{+}$. If $\alpha\left(z_{0}\right)$ exists then the same is true for all $t \leq \tau_{-}, \tau_{-}$an appropriate number.

As a consequence \dot{q}_{0} is linearly independent from the space of solutions of $P_{0}^{*} \psi=0$ on any interval contained in $\left[\tau_{+},+\infty\left[\right.\right.$ (resp.] $\left.-\infty, \tau_{-}\right]$).

To start the construction of the V_{θ} we choose an interval In as in Lemma 3.7 and contained in $]-\infty, \tau_{-}$] where τ_{-}is the number defined in Lemma 3.8. Take now three times τ_{u}, t_{1}, t_{2} such that $\tau_{u}<t_{1}<t_{2}<0$ and $\left[\tau_{u}, t_{2}\right]$ is contained in In. Then choose neighbourhoods \mathcal{V} of X_{0} in $\operatorname{SDMS}\left(D_{0}\right), N_{u}$ of $z_{0}\left(\tau_{u}\right), N_{s}$ of $z_{0}(0)=x_{0} \quad\left(\tau_{s}=0\right), Q$ of $q_{0}\left(\left[t_{1}, t_{2}\right]\right)$ as in Lemma 3.7-(ii).

Restricting \mathcal{V}, N_{u} further we can assume that there exists a continuous mapping $X \in \mathcal{V} \longrightarrow\left(O_{1, X}, \ldots, O_{N, X}\right) \in M^{N}$ such that
$\left\{O_{1, X}, \ldots, O_{N, X}\right\}$ is the singular set of X and $O_{1, X_{0}}=O_{X_{0}}$. Moreover, we can assume that the correspondence $X \in \mathcal{V} \longrightarrow N_{u} \cap W_{X}^{u}\left(O_{1, X}\right)$ is continuous in the following sense: there is a continuous mapping $X \in \mathcal{U} \longrightarrow \varepsilon_{X} \in \mathcal{E}, \mathcal{E}$ being the space of all embeddings of $N_{u} \cap W_{X_{0}}^{u}\left(O_{X_{0}}\right)$ into $T M$ with the usual topology, such that for any X in \mathcal{V} :

$$
\varepsilon_{X}\left(N_{u} \cap W_{X_{0}}^{u}\left(O_{X_{0}}\right)\right)=N_{u} \cap W_{X}^{u}\left(O_{1 X}\right)
$$

In order to construct the functions V_{i} with support in Q, we will construct vector fields $F_{i}, 1 \leq i \leq c$, along q_{0} such that for all $t \in \mathbb{R}$, the value $\operatorname{grad} V_{i}\left(q_{0}(t)\right)$ of the gradient of V_{i} at $q_{0}(t)$ will be $F_{i}(t)$. To do this, let
\underline{E}^{*} denote the vector space of all vector fields ψ along $q_{o} \mid\left[t_{1}, t_{2}\right]$, which are contained in the fiber bundle E^{*} along the curve $q_{0} \mid\left[t_{1}, t_{2}\right]$ and which are solutions of the equation $P_{0}^{*} \psi=0$. This space \underline{E}^{*} is a finite dimensional space of dimension c. Choose c vector fields $F_{i}, 1 \leq i \leq c$, along $q_{0} \mid\left[t_{1}, t_{2}\right]$ having compact supports contained in $] t_{1}, t_{2}$ [such that the linear forms ℓ_{i} on \underline{E}^{*}, $\ell_{i}(\psi)=\int_{t_{1}}^{t_{2}}<F_{i}(t), \psi(t)>d t$ form a basis of the dual of \underline{E}^{*} and such that:

$$
\int_{t_{1}}^{t_{2}}<F_{i}(t), \frac{d q_{0}(t)}{d t}>d t=0, \quad 1 \leq i \leq c
$$

This is possible since given the choice of $I n, \frac{d q_{0}}{d t}$ is linearly independent from \underline{E}^{*} on $\left[t_{1}, t_{2}\right.$].

Now we can define the V_{i}. Let B_{ε} be the subset of $q_{0}^{*} T M \mid\left[t_{1}, t_{2}\right]$ of all vectors $\quad v \in T_{q_{0}(t)} M, \quad t_{1} \leq t \leq t_{2}$, such that $\|v\| \leq \varepsilon$ and v is orthogonal to $\frac{d q_{0}}{d t}(t)$. Then there exists an $\varepsilon>0$ such that the exponential mapping $\exp : B_{\varepsilon} \longrightarrow T M, v \longrightarrow \exp v$ associated to the Riemannian metric of M is a diffeomorphism and such that $\exp B_{\varepsilon} \subset Q$.

Finally, let $\rho: \mathbb{R} \longrightarrow[0,1]$ be a C^{∞} function such that ρ is 1 on the interval $\left[-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right]$ and 0 outside the interval $\left[-\frac{3 \varepsilon}{4}, \frac{3 \varepsilon}{4}\right]$.
V_{i} is defined as follows: on the image $\exp \left(B_{\varepsilon}\right)$, if $v \in T_{q_{0}(t)} M, t_{1} \leq t \leq t_{2}$,

$$
V_{i}(\exp v)=\rho(\|v\|)\left[<F_{i}(t), v>+\int_{t_{1}}^{t}<F_{i}(s), \frac{d q_{0}}{d s}(s)>d s\right]
$$

and outside $\exp \left(B_{\varepsilon}\right), \quad V_{i}=0$.
V_{i} is smooth. To check this we have to show that $V_{i}(\exp v)=0$ when v lies in a neighbourhood of the boundary of B_{ε}. This happen when either $\|v\|$ is near ε, but then $V_{i}(\exp v)=0$ since $\rho(\|v\|)=0$ if $\|v\| \geq \frac{3 \varepsilon}{4}$ or when $v \in T_{q(t)} M$ and t is near t_{1} or t_{2}. But then t will lie outside the support of F_{i} and also

$$
\int_{t_{1}}^{t}<F_{i}(s), \frac{d q_{0}}{d s}(s)>d s=\left\{\begin{array}{cl}
0 & \text { if } t \text { is near } t_{1} \\
\int_{t_{1}}^{t_{2}}<F_{i}(s), \frac{d q_{0}}{d s}(s)>d s & \text { if } t \text { is near } t_{2}
\end{array}\right.
$$

But by construction this last integral is zero.
To define V_{θ} and more generally $V_{X, \theta}, X \in \mathcal{V}$, we set:

$$
V_{X, \theta}=V_{X}+\sum_{i=1}^{c} \theta^{i} V_{i}, \quad V_{\theta}=V_{X_{0}, \theta}
$$

The deformation X_{θ} of $X=\left(V_{X}, D\right)$ is defined as the system $\left(V_{X, \theta}, D\right)$.

Finally, we can define a mapping

$$
f_{X}:\left[N_{u} \cap W_{X}^{u}\left(O_{1 X}\right)\right] \times \mathbb{R}^{c} \longrightarrow T M
$$

as in the beginning of the proof of Proposition 3.5: $f_{X}(x, \theta)$ is the position at time 0 of the trajectory of X_{θ} passing through x a time τ_{u}.

It is clear that the conditions $0-1$ stated at the beginning of this proof are satisfied by our choice of $\mathcal{V}, N_{u}, N_{s}, Q, V_{i} 1 \leq i \leq c$. All we have to do is to check the last condition 2). As we have seen, this is equivalent to proving that the vectors $\frac{\partial f x_{0}}{\partial \theta^{i}}\left(z_{0}\left(\tau_{u}\right), 0\right)$ in $T_{x_{0}} T M$ are linearly independent modulo the space $T_{x_{0}} T M$.

By lemma 3.6, the projection $d \pi_{M}\left[\frac{\partial f_{x_{0}}}{\partial \theta^{i}}\left(z_{0}\left(\tau_{u}\right), 0\right)\right]$ is equal to $Y_{i}(0)$, where $Y_{i}, 1 \leq i \leq c$ is the vector field along q_{0}, solution of the Cauchy problem:

$$
\left\{\begin{array}{c}
P_{0} Y_{i}=-F_{i} \\
Y_{i}\left(\tau_{u}\right)=\nabla_{t} Y_{i}\left(\tau_{u}\right)=0
\end{array}\right.
$$

If the vectors $\frac{\partial f x_{0}}{\partial \theta^{2}}\left(z_{0}\left(\tau_{u}\right), 0\right), 1 \leq i \leq c$, were not linearly independent modulo $T_{x_{0}} W_{X_{0}}^{u}\left(\alpha\left(z_{0}\right)\right)$, then the vectors $d \pi_{M} \times \pi_{T M}\left[\frac{\partial \int_{x_{0}}}{\partial \theta^{i}}\left(0\left(\tau_{u}\right), 0\right)\right], 1 \leq i \leq c$, would be linearly dependent modulo E_{0}^{u}. Now $d \pi_{M} \times \pi_{T M}\left(\frac{\partial f x_{0}}{\partial \theta}\left(z_{0}\left(\tau_{u}\right), 0\right)\right)=$ ($\left.\nabla_{t} Y_{i}(0), Y_{i}(0)\right)$. We claim that for any $t>t_{1}$ the c vectors

$$
\left(\nabla_{t} Y_{1}(t), Y_{1}(t)\right), \ldots,\left(\nabla_{t} Y_{c}(t), Y_{c}(t)\right)
$$

in $T_{q_{0}(t)} M \times T_{q_{0}(t)} M$ are independent modulo E_{0}^{u}. Were they not, there would exist a linear combination $Y=\sum_{i=1}^{c} \lambda^{i} Y_{i}, \lambda^{1}, \ldots, \lambda^{c} \in \mathbb{R}$, such that $\left(\nabla_{t} Y(t), Y(t)\right)$ belongs to E_{0}^{u}. But $\left\{\begin{array}{l}P_{0} Y=-F \\ Y\left(\tau_{u}\right)=\nabla_{t} Y\left(\tau_{u}\right)=0,\end{array}\right.$ where $F=$ $\sum_{i=1}^{c} \lambda^{i} F_{i}$.
For any $\psi \in \underline{E}_{t}^{*}$

$$
\begin{aligned}
\left.-\int_{t_{1}}^{t}<F(s), \psi(s)\right\rangle d s & \left.\left.=\int_{t_{1}}^{t}\left[<P_{0} Y(s), \psi(s)\right\rangle-<Y(s), P_{0}^{*} \psi(s)\right\rangle\right] d s \\
& =B\left(\dot{q}_{0}(t)\right)\left[\left(\nabla_{t} Y(t), Y(t)\right),\left(\nabla_{t} \psi(t), \psi(t)\right)\right] \\
& =0
\end{aligned}
$$

By the choice of the F_{i}, this implies that $F=0$.
Hence $\quad\left\{\begin{array}{c}P_{0} Y=0 \\ Y\left(\tau_{u}\right)=\nabla_{t} Y\left(\tau_{u}\right)=0 .\end{array}\right.$
By the uniqueness property in Cauchy's existence theorem, this implies that $Y=$ 0 and proves our claim.

Proof of Lemma 3.6: We start with the relation:

$$
\nabla_{\dot{q}_{\theta}} \dot{q}_{\theta}-D\left(\dot{q}_{\theta}\right)+\operatorname{grad} V_{\theta}\left(q_{\theta}\right)=0 .
$$

Let us introduce the mapping $\left.q: \bigcup_{\theta \in \Theta}\right] a_{-}(\theta),+\infty\left[\longrightarrow M,(t, \theta) \longrightarrow q_{\theta}(t)\right.$ and denote by $\nabla_{t}\left(\right.$ resp. $\left.\nabla_{\theta}\right)$ the covariant derivative in the direction $\frac{\partial q}{\partial t}$ (resp. $\frac{\partial q}{\partial \theta}$). Hence:

$$
\nabla_{t} \frac{\partial q}{\partial t}-D_{\theta}\left(\frac{\partial q}{\partial t}\right)+\operatorname{grad} V_{\theta}(q)=0
$$

Deriving covariantly in the direction of $\frac{\partial q}{\partial \theta}$:

$$
\nabla_{\theta} \nabla_{t} \frac{\partial q}{\partial t}-\nabla_{\theta}\left[D_{\theta}\left(\frac{\partial q}{\partial t}\right)\right]+\nabla_{\theta}\left[\operatorname{grad} V_{\theta}(q)\right]=0 .
$$

Now:

$$
\begin{aligned}
\nabla_{\theta} \nabla_{t} \frac{\partial q}{\partial t} & =\nabla_{t} \nabla_{\theta} \frac{\partial q}{\partial t}+\operatorname{Curv}\left(\frac{\partial q}{\partial \theta}, \frac{\partial q}{\partial t}\right) \frac{\partial q}{\partial t} \\
& =\nabla_{t}^{2} \frac{\partial q}{\partial \theta}+\operatorname{Curv}\left(\frac{\partial q}{\partial \theta}, \frac{\partial q}{\partial t}\right) \frac{\partial q}{\partial t}
\end{aligned}
$$

where Curv is the curvature tensor, since the Levi Civita connection has no torsion.

We have:

$$
\nabla_{\theta}\left(\operatorname{grad} V_{\theta}\right)[q]=\operatorname{grad} \frac{\partial V}{\partial \theta}(q)+\left(\nabla_{\frac{\theta g}{\partial \theta}} \operatorname{grad} V_{\theta}\right)(q) .
$$

The last term we have to compute is $\nabla_{\theta}\left[D_{\theta}\left(\frac{\partial q}{\partial t}\right)\right]$. This case is more involved. For each fixed t, the mapping $\theta \in \Theta \longrightarrow D_{\theta}\left(\frac{\partial q}{\partial t}(t, \theta)\right)$ is a vector field along the curve $\theta \in \Theta \longrightarrow q(t, \theta)$. For simplicity denote by δ this field. Then the vector field $\frac{\partial \delta}{\partial \theta}$ in $T T M$ along the curve $\theta \in \Theta \longrightarrow z(t, \theta)$ (t fixed) is given by the formula:

$$
\frac{\partial \delta}{\partial \theta}=C\left(\frac{\partial q}{\partial \theta}, \delta\right)+j\left(\delta, \nabla_{\theta} \delta\right)
$$

On the other hand we have the relation in $T T M$:

$$
\frac{\partial \delta}{\partial \theta}=T D_{\theta}\left(\frac{\partial q}{\partial t}\right) \frac{\partial^{2} q}{\partial \theta \partial t}+j\left(\frac{\partial q}{\partial t}, \frac{\partial D_{\theta}}{\partial \theta}\left(\frac{\partial q}{\partial t}\right)\right)
$$

where $\frac{\partial^{2} q}{\partial \theta \partial t}$ is the second derivative of $q, \frac{\partial^{2} q}{\partial \theta \partial t}: \mathbb{R} \times \Theta \longrightarrow T T M$ and $T D_{\theta}(u)$ is the tangent mapping $T_{u} T M \longrightarrow T_{u} T M$ of D_{θ}.

We also have the equation (see formula (2), section A, after the proof of Proposition 3.5):

$$
\frac{\partial^{2} q}{\partial \theta \partial t}=C\left(\frac{\partial q}{\partial \theta}, \frac{\partial q}{\partial t}\right)+j\left(\frac{\partial q}{\partial t}, \nabla_{\theta} \frac{\partial q}{\partial t}\right) .
$$

$\nabla_{\theta} \frac{\partial q}{\partial t}=\nabla_{t} \frac{\partial q}{\partial \theta}$ since the Levi Civita connection has no torsion. Hence:

$$
\frac{\partial \delta}{\partial \theta}=T D_{\theta}\left(\frac{\partial q}{\partial t}\right) C\left(\frac{\partial q}{\partial \theta}, \frac{\partial q}{\partial t}\right)+T D_{\theta}\left(\frac{\partial q}{\partial \theta}\right) j\left(\frac{\partial q}{\partial t}, \nabla_{t} \frac{\partial q}{\partial \theta}\right)++j\left(\frac{\partial q}{\partial t}, \frac{\partial D_{\theta}}{\partial \theta}\left(\frac{\partial q}{\partial t}\right)\right)
$$

Since D_{θ} is a fiber mapping $T M \longrightarrow T M$, for any $(u, v) \in T M \times_{M} T M$ $T D_{\theta}(u) j(u, v)$ is a vertical vector in $T_{u} T M$.

Hence there exists a unique smooth mapping $d_{v} D_{\theta}: T M \times_{M} T M \longrightarrow T M$ called the vertical differential of $D_{\boldsymbol{\theta}}$ such that:

$$
T D_{\theta}(u) j(u, v)=j\left(u, d_{v} D_{\theta}(u) v\right) .
$$

$d_{v} D_{\theta}$ is intrinsic (i.e. independent of the connection):

$$
d_{v} D_{\theta}(u) v=\left.\frac{d}{d \lambda}\left[D_{\theta}(u+\lambda v)\right]\right|_{\lambda=0} .
$$

It is easy to check that for any $(u, v) \in T M \times_{M} T M$ the vector

$$
T D_{\theta}(u) C(u, v)-C\left(D_{\theta}(u), v\right)
$$

is a vertical vector. Hence there is a unique mapping $\nabla_{H} D_{\theta}: T M \times_{M} T M \longrightarrow T M$ such that:

$$
T D_{\theta}(u) C(u, v)-C\left(D_{\theta}(u), v\right)=j\left(\nabla_{H} D_{\theta}(u) v, D_{\theta}(u)\right) .
$$

Now we can define the tensors $R: T M \times_{M} T M \longrightarrow T M$ and $S: T M \times_{M}$ $T M \longrightarrow T M$ as follows:

$$
\begin{gathered}
R(u) v=d_{v} D_{0}(u) v \\
S(u) v=\operatorname{Curv}(v, u) u-\nabla_{H} D_{0}(u) v+\left(\nabla_{v} \operatorname{grad} V_{0}\right)(\pi v)
\end{gathered}
$$

and we get the equation

$$
\begin{gathered}
\nabla_{t}^{2} \chi-R\left(\dot{q}_{0}\right) \nabla_{t} \chi+S\left(\dot{q}_{0}\right) \chi=\left.\frac{\partial D}{\partial \theta}\right|_{\theta=0}\left(\dot{q}_{0}\right)-\left.\operatorname{grad} \frac{\partial V_{\theta}}{\partial \theta}\right|_{\theta=0}\left(q_{0}\right) \\
\dot{q}_{0}=\frac{d q_{0}}{d t} .
\end{gathered}
$$

Proof of Lemma 3.7: In the case where X_{0} satisfies $G I$, the statement (i) is obvious. Hence we shall assume that X_{0} satisfies the weaker property GIW only.

Let us denote by C_{1} the projection of the set $C\left(z_{0}, z_{0}\right)$ on the first axis and by \bar{C}_{1} its closure. We are going to study the structure of \bar{C}_{1}. Let τ_{1} be an accumulation point of C_{1}. Then there exists a sequence $\left\{\left(t_{1}(n), t_{2}(n)\right) \mid n \in \mathbb{N}\right\}$ in $C\left(z_{0}, z_{0}\right)$ such that: (α) the sequence $\left\{t_{1}(n) \mid n \in \mathbb{N}\right\}$ converges to τ_{1}; (β) the sequence $\left\{t_{2}(n) \mid n \in \mathbb{N}\right\}$ either converges to a number τ_{2} or it tends to $\pm \infty$.

In the first case of (β), the property $G I W$ implies that either $z_{0}\left(\tau_{1}\right)=0$ or $z_{0}\left(\tau_{2}\right)=0$.

In the second case of (β), if we denote the projection $\pi \circ z_{0}$ of z_{0} by q_{0}

$$
q_{0}\left(\tau_{1}\right)=\lim _{n} q_{0}\left(t_{1}(n)\right)=\lim _{n} q_{0}\left(t_{2}(n)\right)= \begin{cases}\omega\left(z_{0}\right) & \text { if } t_{2}(n) \rightarrow+\infty \\ \alpha\left(z_{0}\right) & \text { if } t_{2}(n) \rightarrow-\infty\end{cases}
$$

This shows that the set of accumulation points of C_{1} is contained in the subset B of all t in \mathbb{R} such that

$$
\frac{d q_{0}}{d t}(t)=0 \quad \text { or } \quad q_{0}(t)=\left\{\begin{array}{l}
w\left(z_{0}\right) \\
\text { or } \\
\alpha\left(z_{0}\right)
\end{array}\right.
$$

If we show that the set B_{1} of all accumulation points of B is discrete, it will follow that \bar{C}_{1} will be nowhere dense.

Let $(\tau(n) \mid n \in \mathbb{N})$ be a sequence in B converging to a number τ. Then there exists a subsequence $\left\{\tau\left(n_{i}\right) \mid i \in \mathbb{N}\right\}$ such that:
either $\frac{d q_{0}}{d t}\left(\tau\left(n_{i}\right)\right)=0$ for all i, or $q_{0}\left(\tau\left(n_{i}\right)\right)= \begin{cases}\omega\left(z_{0}\right) & \text { for all } i \\ \alpha\left(z_{0}\right) & \text { or } \text { for all } i .\end{cases}$
In all these cases the ∞-jet of q_{0} at τ is the ∞-jet of the constant mapping: $t \in \mathbb{R} \longrightarrow q_{0}(\tau) \in M$. This implies that $O_{q_{0}(\tau)}$ is a singular point of the system and hence cannot be reached by the trajectory q_{0} in finite time with zero end speed. We have a contradiction.

This finishes the proof of statement (i).

Proof of (ii). We shall present the proof for N_{u}. The case of N_{s} is similar.
If \mathcal{V} and N_{u} did not exist one could find a sequence $\left\{\left(X_{n}, z_{n}\right) \mid n \in \mathbb{N}\right\}$ of fields X_{n} in SDMS and trajectories z_{n} of X_{n} such that: $\alpha\left(z_{n}\right)$ exists; X_{n} converges to $X_{0} ; \quad z_{n}\left(\tau_{u}\right)$ converges to $z_{0}\left(\tau_{u}\right) ;$ the distance δ_{n} between the sets $\left.\left.q_{n}(]-\infty, \tau_{u}\right]\right)$ and $q_{n}\left(\left[t_{1}, t_{2}\right]\right)$ tends to 0 as n goes to ∞.

Take a compact neighbourhood A of the singular points of X_{0} in M such that $A \cap q_{0}\left(\left[\tau_{u}, t_{2}\right]\right)=\emptyset$. For n sufficiently large, $n \geq n_{0}$ say, $\operatorname{Sing}\left(X_{n}\right) \subset A$ and hence there will exist a $T>0$ such that $\left.\left.q_{n}(]-\infty, T\right]\right) \subset A$ and $T<\tau_{u}$. This implies that the distance δ_{n}^{\prime} between $q_{n}\left(\left[T, \tau_{u}\right]\right)$ and $q_{n}\left(\left[t_{1}, t_{2}\right]\right)$ tends to 0 . Since the restrictions of q_{n} to $\left[T, \tau_{u}\right]$ and $\left[t_{1}, t_{2}\right]$ tend uniformly to the restrictions of q_{0} to the same intervals respectively, then $q_{0}\left(\left[T, \tau_{u}\right]\right) \cap q_{0}\left(\left[t_{1}, t_{2}\right]\right)$ is not empty. This contradicts the choice of $\left[t_{1}, t_{2}\right]$ to be without multiple points.

Proof of Lemma 3.8: Let X be any vector field along an arc of the trajectory q_{0} such that $P_{0} X=P_{0}^{*} X=0$.

This means:

$$
\left\{\begin{array}{l}
\nabla_{t}^{2} X-R\left(\dot{q}_{0}\right) \nabla_{t} X+S\left(\dot{q}_{0}\right) X=0 \\
\nabla_{t}^{2} X+\nabla_{t} R\left(\dot{q}_{0}\right)^{*} X+S\left(\dot{q}_{0}\right)^{*} X=0
\end{array}\right.
$$

Multiplying scalarly by X :

$$
\begin{aligned}
& <\nabla_{t}^{2} X, X>-<R\left(\dot{q}_{0}\right) \nabla_{t} X, X>+<S\left(\dot{q}_{0}\right) X, X>=0 \\
& <\nabla_{t}^{2} X, X>+<\nabla_{t} R\left(\dot{q}_{0}\right)^{*} X, X>+<S\left(\dot{q}_{0}\right)^{*} X, X>=0
\end{aligned}
$$

Subtracting the second relation from the first:

$$
<R\left(\dot{q}_{0}\right) \nabla_{t} X, X>+<X, \nabla_{t} R\left(\dot{q}_{0}\right)^{*} X>=0
$$

or

$$
\frac{d}{d t}<R\left(\dot{q}_{0}\right) X, X>=0
$$

Assume now that $P_{0}^{*} \dot{q}_{0}=0$ on an arc $\left[\tau,+\infty\left[\right.\right.$. Since $P_{0} \dot{q}_{0}=0$, we get:

$$
\frac{d}{d t}<R\left(\dot{q}_{0}\right) \dot{q}_{0}, \dot{q}_{0}>=0 \quad \text { on } \quad[\tau,+\infty[
$$

Integrating between t and $+\infty$

$$
<R\left(\dot{q}_{0}(t)\right) \dot{q}_{0}(t), \dot{q}_{0}(t)>=\lim _{s \rightarrow+\infty}<R\left(\dot{q}_{0}(s)\right) \dot{q}_{0}(s), \dot{q}_{0}(s)>
$$

Now as s tends to $+\infty, \dot{q}_{0}(s)$ tends to $O_{\omega\left(z_{0}\right)}$ and since $R(u)=d_{v} D_{0}(u)$, $R\left(\dot{q}_{0}(s)\right)$ tends to $d_{v} D_{0}\left(O_{\omega\left(z_{0}\right)}\right)$. This means that the limit above is zero and

$$
<R\left(\dot{q}_{0}(t)\right) \dot{q}_{0}(t), \dot{q}_{0}(t)>=0 \quad \text { for all } t \geq \tau
$$

Now for any $v \in T M$

$$
<d_{v} D\left(O_{\pi(v)}\right) v, v>\leq-\alpha\|v\|^{2}
$$

Hence by continuity there is a positive number δ such that if $(u, v) \in T M \times_{M} T M$ $\|u\| \leq \delta:$

$$
<R(u) v, v>\leq-\frac{\alpha}{2}\|v\|^{2}
$$

The relation above shows that

$$
\dot{q}_{0}(t)=0 \quad \text { for } \quad t \geq \tau
$$

This is a contradiction.
The same line of reasoning can be applied to intervals of the form $]-\infty, \tau$] when $\alpha\left(z_{0}\right)$ exists.

We will prove now the first main openness theorem of the section:

Theorem 1.5. The set of all systems X in SDMS such that their stable and unstable manifolds are pairwise transversal is open in SDMS.

The proof of this theorem will result from the Lemma below which we shall state now and prove later. For any field X in $S D M S$, let us call chain of X an ordered sequence $\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{N}\right)$ of trajectories of X such that $\omega\left(\gamma_{i}\right)=\alpha\left(\gamma_{i+1}\right)$, $0 \leq i \leq N-1$ and $\alpha\left(\gamma_{0}\right)$ exists. The support of the chain will be the curve $\overline{\gamma_{0}} * \overline{\gamma_{1}} * \ldots * \overline{\gamma_{N}}$ concatenation of the closures $\overline{\gamma_{i}}=\gamma_{i} \cup\left\{\alpha\left(\gamma_{i}\right), \omega\left(\gamma_{i}\right)\right\}$ of the γ_{i}^{\prime} s.

Lemma 3.9. (i) Let $\left\{\left(X_{n}, \gamma^{n}\right) \mid n \in \mathbb{N}\right\}$ be a sequence of fields X_{n} in SDMS and of trajectories γ^{n} of X_{n} such that the $\alpha\left(\gamma^{n}\right)$ all exist and the sequence X_{n} converges to a field X_{∞} in SDMS. Then any limit set of the sequence of compact curves $\overline{\gamma^{n}}$ in the Hausdorff topology is the support of a chain of X_{∞}.
(ii) The sequence $\left(X_{n}, \gamma^{n}\right)$ being as in (i), assume that 1) The sets $\overline{\gamma^{n}}$ converge to the support of a chain $\left(\gamma_{0}, \ldots, \gamma_{N}\right)$ of X_{∞}; 2) All the invariant manifolds of X_{∞} are pairwise transversal.

Then, given any sequence of points $\left(z_{n}\right)$, such that $z_{n} \in \gamma^{n}$, converging to a z_{∞} which is not a singular point of X_{∞}, any limit plane L^{u} (resp. L^{s}) of the sequence $T_{z_{n}} W_{X_{n}}^{u}\left(\alpha\left(\gamma^{n}\right)\right)$ (resp. $T_{z_{n}} W_{X_{n}}^{s_{n}}\left(\omega\left(\gamma^{n}\right)\right)$) contains $T_{z_{\infty}} W_{X_{\infty}}^{u}\left(\alpha\left(\gamma_{i}\right)\right)$ (resp. $T_{z_{\infty}} W_{\boldsymbol{X}_{\infty}}^{s}\left(\omega\left(\gamma_{i}\right)\right)$), where γ_{i} is the trajectory of the chain on which z_{∞} lies.

Proof of the theorem: Were the theorem not true, there would exist a sequence $\left\{\left(X_{n}, \gamma^{n}\right) \mid n \in \mathbb{N}\right\}$ of fields X_{n} in $S D M S$ and of trajectories γ^{n} of X_{n} such that:

1) sequence $\left(X_{n}\right)$ converges to a field X_{∞} in $S D M S$ such that its stable and unstable manifolds are pairwise transversal.
2) $\alpha\left(\gamma^{n}\right)$ exist for all n and at any point z on $\gamma^{n} T_{z} W_{X_{n}}^{u}\left(\alpha\left(\gamma^{n}\right)\right)$ and $T_{z} W_{X_{n}}^{s}\left(\omega\left(\gamma^{n}\right)\right)$ are not transversal (they are either transversal at all points on γ^{n} or not transversal at all points on γ^{n}).

The union $\bigcup_{n} \overline{\gamma^{n}}$ is relatively compact in $T M$. Then by taking a subsequence of $\left(X_{n}, \gamma^{n}\right)$ we can assume, using the compactness of the Hausdorff space of a compact metric space, that the compact sets $\overline{\gamma^{n}}$ converge in the Hausdorff metric. The limit will be the support of a chain $\left(\gamma_{0}, \ldots, \gamma_{N}\right)$ of X_{∞} by the statement (i) of Lemma 3.9.

Now, taking another subsequence of the sequence $\left(X_{n}, \gamma^{n}\right)$, we can assume that each γ^{n} carries a point z_{n} such that the sequence $\left(z_{n}\right)$ converges to a point z_{∞} non singular for X_{∞} and the sequences of spaces ($T_{z_{n}} W_{X_{n}}^{u}\left(\alpha\left(\gamma^{n}\right)\right)$)
and $\left(T_{z_{n}} W_{X_{n}}^{s}\left(\omega\left(\gamma^{n}\right)\right)\right.$) converge to the subspaces L^{s} and L^{u} of $T_{z} T M$ respectively. By the statement (ii) of Lemma 3.9, $L^{u} \supset T_{z_{\infty}} W_{X_{\infty}}^{u}\left(\alpha\left(\gamma_{i}\right)\right), L^{s} \supset$ $T_{z_{\infty}} W_{X_{\infty}}^{s}\left(\omega\left(\gamma_{i}\right)\right)$ where γ_{i} is the trajectory of the chain containing z_{∞}. Since $W_{X_{\infty}}^{u}\left(\alpha\left(\gamma_{i}\right)\right)$ and $W_{X_{\infty}}^{s}\left(\omega\left(\gamma_{i}\right)\right)$ are transversal, so are L^{u} and L^{s}. This means that the canonical projection $\pi: L^{u} \longrightarrow T_{z_{\infty}} T M / L^{s}$ is onto. But the canonical projections $\pi_{n}: T_{z_{n}} W_{X_{n}}^{u}\left(\alpha\left(\gamma^{n}\right)\right) \longrightarrow T_{z_{n}} T M / T_{z_{n}} W_{X_{n}}^{s}\left(\omega\left(\gamma^{n}\right)\right)$ converge to π. Hence for n big enough π_{n} will be surjective. This contradicts the fact that $T_{z_{\mathrm{n}}} W_{X_{\mathrm{n}}}^{u} \alpha\left(\gamma^{n}\right)$ and $T_{z_{\mathrm{n}}} W_{X_{\mathrm{n}}}^{s}\left(\omega\left(\gamma^{n}\right)\right)$ are not transversal.

Proof of Lemma 3.9: (i) Assume that the sequence of compact sets $\overline{\gamma^{n}}$ converges to a compact set K_{∞} in the Hausdorff metric. K_{∞} will be a union of closures of trajectories of X_{∞}. As the limit of the compact connected sets $\overline{\gamma^{n}}$ it will also be connected. To show that K_{∞} is the support of a chain it is sufficient to show that it cuts every energy level surface $\left\{E_{X_{\infty}}=h\right\}$ in at most one point.

Let R denote the slice $\left\{h-\eta \leq E_{X_{\infty}} \leq h+\eta\right\}$ of $M, \eta>0$ being chosen sufficiently small so that the interval $[h-\eta, h+\eta]$ does not contain any critical value of the energy. Then there exists a neighbourhood \mathcal{U}_{∞} of X_{∞} such that any trajectory γ of X either does not meet R or the intersection $R \cap \gamma$ is an arc $\hat{\gamma}$ meeting all the level surfaces $\Sigma_{t}=\left\{E_{X_{h}}=h+t\right\},-\eta \leq t \leq \eta$, transversally in one point. We can also choose \mathcal{U}_{∞} sufficiently small so that there exists a constant C such that for any X in \mathcal{U}_{∞}, any trajectory γ of X meeting R, any z in Σ_{0},

$$
d_{M}(z, z(\gamma)) \leq C d_{M}(z, \widehat{\gamma})
$$

where $z(\gamma)$ is the intersection point of γ with Σ_{0}. It is also clear that if δ denotes the distance between Σ_{0} and the boundary of R, as soon as $d(z, \gamma)<\delta$,

$$
d(z, \gamma)=d(z, \widehat{\gamma})
$$

We can assume that the γ^{n} meet Σ_{0}, otherwise $K_{\infty} \cap \Sigma_{0}$ is empty.
As soon as $d\left(\bar{\gamma}^{n}, \bar{\gamma}^{m}\right)<\delta$,

$$
d\left(z_{n}, \gamma_{m}\right)=d\left(z_{n}, \hat{\gamma}_{m}\right)
$$

where for simplicity we set $z_{k}=z\left(\gamma_{k}\right), k \in \mathbb{N}$.
By the inequality above,

$$
d\left(z_{n}, z_{m}\right) \leq C d\left(z_{n}, \hat{\gamma}_{m}\right) .
$$

Hence as soon as $d\left(\bar{\gamma}^{n}, \bar{\gamma}^{m}\right)<\delta$

$$
d\left(z_{n}, z_{m}\right) \leq C d\left(z_{n}, \gamma_{m}\right) \leq C d\left(z_{n}, \hat{\gamma}_{m}\right) .
$$

This shows that the sequence $\left\{z_{n} \mid n \in \mathbb{N}\right\}$ is a Cauchy sequence and hence has a unique limit point z_{∞}. It is clear that $K_{\infty} \cap \Sigma_{0}$ contains z_{∞}. But in
fact $K_{\infty} \cap \Sigma_{0}=\left\{z_{\infty}\right\}$. For if z^{\prime} is in $K_{\infty} \cap \Sigma_{0}$, it is a limit point of a sequence $\left\{z_{h}^{\prime} \mid h \in \mathbb{N}\right\}$, where z_{h}^{\prime} lies on some $\gamma_{n_{h}}$. But then z^{\prime} is the limit of the sequence $\left\{z_{n_{h}} \mid h \in \mathbb{N}\right\}$, which converges to z_{∞}.

To Prove (ii), it is sufficient to consider the unstable case. We proceed by induction on the index i of the trajectory γ_{i} to which z_{∞} belongs. If i is $0, z_{\infty}$ belongs to γ_{0}. Since $\alpha\left(\gamma^{n}\right)$ tends to $\alpha\left(\gamma_{0}\right), T_{z_{n}} W_{X_{n}}^{u}\left(\alpha\left(\gamma^{n}\right)\right)$ tends to $T_{z_{\infty}} W_{X_{\infty}}^{u}\left(\alpha\left(\gamma_{0}\right)\right)$. For an arbitrary $i \geq 1$, denote by O_{∞} the singular point $\boldsymbol{w}\left(\gamma_{i-1}\right)=\alpha\left(\gamma_{i}\right)$. We are going to choose an appropriate sequence of points $\left(y_{n}\right)$ such that $y_{n} \in \gamma^{n}$, the sequence $\left(y_{n}\right)$ converges to y_{∞} on γ_{i-1} and the planes $T_{y_{n}} W_{X_{n}}^{u}\left(\alpha\left(\gamma^{n}\right)\right)$ converge to a limit L^{u} containing $T_{y_{\infty}} W_{X_{\infty}}^{u}\left(\alpha\left(\gamma_{i-1}\right)\right)$. To prove this we are going to compare the spaces $T_{z_{n}} W_{X_{n}}\left(\alpha\left(\gamma^{n}\right)\right)$ with the spaces $T_{y_{n}} W_{X_{n}}^{u}\left(\alpha\left(\gamma^{n}\right)\right)$. To do this we shall establish the following form of the λ-Lemma (see Palis [8]).

Let us denote by O_{∞} the singular point $w\left(\gamma_{i-1}\right)=\alpha\left(\gamma_{i}\right)$ of X_{∞}. There exist an open neighbourhood \mathcal{U} of X_{∞}, an open neighbourhood Ω of O_{∞}, and a mapping $X \in \mathcal{U} \longrightarrow \xi_{X} \in \operatorname{Diffeo}(\Omega, S \times U)$, where S, U are vector spaces with $\operatorname{dim} U=$
$\operatorname{dim} W_{X_{\infty}}^{u}\left(O_{\infty}\right), \operatorname{dim} S=\operatorname{dim} W_{X_{\infty}}^{s}\left(O_{\infty}\right)$ such that:

1) Each $X \in \mathcal{U}$ has a unique singular point O_{X} in Ω and $\xi_{X}\left(O_{X}\right)=0$.
2) For any $X \in \mathcal{U}, \xi_{X}\left(\Omega \cap W_{X}^{u}\left(O_{X}\right)\right)=U \cap \widehat{\Omega}_{X}, \quad \xi_{X}\left(\Omega \cap W_{X}^{s}\left(O_{X}\right)\right)=$ $\widehat{\Omega}_{X} \cap S$, where $\widehat{\Omega}_{X}=\xi_{X}(\Omega)$.
Let us denote by X_{u} (resp. X_{s}) the $U-$ (resp. S-) component of the image field $\widehat{X}=\xi_{X *}(X)$. By condition 2) above, there exist smooth mappings $X_{u}^{\prime}: \widehat{\Omega}_{X} \longrightarrow \operatorname{End}(U)$ and $X_{s}^{\prime}: \widehat{\Omega}_{X} \longrightarrow \operatorname{End}(S)$, such that $X_{u}(x, y)=X_{u}^{\prime}(x, y) x$ and $X_{s}(x, y)=X_{s}^{\prime}(x, y) y$ for all (x, y) in $\widehat{\Omega}_{X}$. Since $d \widehat{X}_{\infty}(0)$ is hyperbolic there exist a scalar product $<\mid>$ on $U \times S$ and positive constants a_{s}, a_{u}, b such that by restricting \mathcal{U} and Ω if necessary for all X in \mathcal{U}, all (x, y) in $\widehat{\Omega}_{X}$, all $(u, v) \in U \times S$,

$$
\left\{\begin{array}{l}
<\frac{\partial X_{u}}{\partial x}(x, y) u\left|u>\geq a_{u}<u\right| u> \tag{I}\\
<\frac{\partial X_{s}}{\partial y}(x, y) v\left|v>\leq-a_{s}<v\right| v> \\
<X_{s}^{\prime}(x, y) v\left|v>\leq-a_{s}<v\right| v> \\
a_{u}<u\left|u>\leq<X_{u}^{\prime}(x, y) u\right| u>\leq b<u \mid u>
\end{array}\right.
$$

By condition 2) above, for all X in U, all $x \in \widehat{\Omega}_{X} \cap U$, all y in $\widehat{\Omega}_{X} \cap S$

$$
X_{u}(0, y)=0, \quad X_{s}(x, 0)=0
$$

Hence there exists a constant C such that:

$$
\begin{equation*}
\left\|\frac{\partial X_{u}}{\partial y}(x, y)\right\| \leq C\|x\|, \quad\left\|\frac{\partial X_{s}}{\partial x}(x, y)\right\| \leq C\|y\| \tag{II}
\end{equation*}
$$

for all X in \mathcal{U}, all (x, y) in $\hat{\Omega}_{X}$.
For any X denote by $\varphi_{X, t}$ the flow of \hat{X} in $\widehat{\Omega}_{X}$ and by $T \varphi_{X, t}$ the derived flow on $T \widehat{\Omega}_{x}$. If E is a subspace of $T_{\left(x_{0}, y_{0}\right)}(U \times S)$ of the same dimension as U and transversal to $T_{x_{0}} S \subset T_{\left(x_{0}, y_{0}\right)}(U \times S)$ then it can be represented as the graph of a linear mapping $\Gamma_{0}: T_{x_{0}} U \longrightarrow T_{y_{0}} S$. If its image $T \varphi_{X, t}(E)$ at time t is still transversal to $T_{\varphi_{1}\left(x_{0}, y_{0}\right)} S$, let $\Gamma(t)$ denote the mapping whose graph this image is.

We have the following estimates of the norm $\|\Gamma(t)\|$ of $\Gamma(t)$ as t varies:

Lemma 3.10: For any field X in \mathcal{U}, any trajectory

$$
\left\{\varphi_{X, t}\left(x_{0}, y_{0}\right)=(x(t), y(t)) \mid T_{-}<t \leq T_{+}\right\} \text {of } \xi_{X *}(X),
$$

we have the following estimates of the norm of $\Gamma(t), \quad t \geq 0$:
(i) If $\|x(t)\| \leq a_{s} / 2 C\left[\left\|\Gamma_{0}\right\|+\frac{C}{a_{v}}\left\|y_{0}\right\|\right]$, then,

$$
\|\Gamma(t)\| \leq 2\left[\left\|\Gamma_{0}\right\|+\frac{c}{a_{\star}}\left\|y_{0}\right\|\right]\left(\frac{\left\|x_{0}\right\|}{\|x(t)\|}\right)^{a_{0} / b}
$$

(ii) $\|\Gamma(t)\| \leq 6\left[\left\|\Gamma_{0}\right\|+\frac{C}{a_{\mathbf{*}}}\left\|y_{0}\right\|\right]\left(\frac{\left\|x_{0}\right\|}{\|x(t)\|}\right)^{a, / b}$
provided that: $\left\|x_{0}\right\| \leq\left(\frac{a_{c}}{2 C\left[\left\|\Gamma_{0}\right\|+\frac{c}{a_{\|}}\left\|y_{0}\right\|\right.}\right)^{1+b / a \cdot}\left[\frac{1}{\|x(t)\|^{b} \cdot}\right]$.
We shall prove this Lemma below after we finish the proof of Lemma 3.9-(ii). We can always assume by deleting a finite subset of the X_{n} and by sliding the z_{n} along their trajectories γ^{n} that all the X_{n} belong to \mathcal{U} and all the z_{n} to Ω (z_{∞} included). We can find a sequence $\left(q_{n}\right)$ of points on the trajectories γ^{n}, q_{n} preceeding z_{n} for every n, such that: $q_{n} \in \Omega$ for all n, q_{n} converges to a point q_{∞} on $\Omega \cap \gamma_{i-1}$. Also by taking a subsequence of the X_{n} we can assume that $T_{q_{n}} W_{X_{n}}^{u}\left(\alpha_{X_{n}}\left(\gamma^{n}\right)\right)$ converges to a limit Λ^{u} in $T_{q_{\infty}} T M$. By induction assumption, Λ^{u} contains the space $T_{q_{\infty}} W_{X_{\infty}}^{u}\left(\alpha\left(\gamma_{i-1}\right)\right)$ and hence is transversal to $T_{q_{\infty}} W_{X_{\infty}}^{s}\left(\omega\left(\gamma_{i-1}\right)\right)$.

Using the mappings $\xi_{X_{n}}$, the space $E_{n}=T \xi_{X_{n}}\left(T_{q_{n}} W_{X_{n}}^{u}\left(\alpha_{X_{n}}\left(\gamma^{n}\right)\right)\right)$ in $T_{\left(x_{n}, y_{n}\right)}(U \times S)$, where $\left(x_{n}, y_{n}\right)=\xi_{X_{n}}\left(q_{n}\right)$, will converge to the space $E_{\infty}=$ $\xi_{X_{\infty}\left(\Lambda^{u}\right)}$ in $T_{\left(x_{\infty}, y_{\infty}\right)}(U \times S)$ where $\left(0, y_{\infty}\right)=\xi_{x_{\infty}}\left(q_{\infty}\right)$. Since E_{∞} is transversal to $T_{x_{\infty}} S$, for n big enough E_{n} will be transversal to $T_{x_{n}} S$. The orthogonal complement F_{n} of $E_{n} \cap T_{x_{n}} S$ in E_{n} will be the graph of a mapping $\Gamma_{n}: T_{x_{n}} U \longrightarrow T_{x_{n}} S$ and will converge to the orthogonal complement F_{∞} of $E_{\infty} \cap T_{x_{\infty}} S$ in E_{∞}, graph of a mapping $\Gamma_{\infty}: T_{x_{\infty}} U \longrightarrow T_{x_{\infty}} S$.

Let $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=T \xi_{X_{n}}\left(z_{n}\right)$ and let $t_{n}>0$ be the time such that $z_{n}=$ $e^{t_{n} X_{n}}\left(q_{n}\right)$ or $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\varphi_{X_{n}, t_{n}}\left(x_{n}, y_{n}\right)$. Since the space

$$
G_{n}=T \xi_{X}\left(T z_{n} W_{X_{n}}^{u}\left(\alpha_{X_{n}}\left(\gamma^{n}\right)\right)\right)
$$

is the image $T_{\varphi_{X_{n}, t_{n}}}\left(E_{n}\right)$ of E_{n} under the flow of X_{n}, it contains the space $T_{\varphi_{X_{n}, t_{n}}}\left(F_{n}\right)$. This space is the graph of a mapping $\Gamma_{n}\left(t_{n}\right): T_{x_{n}^{\prime}} U \longrightarrow T_{y_{n}^{\prime}} S$.

By Lemma 3.10, the norm $\left\|\Gamma_{n}\left(t_{n}\right)\right\|$ of $\Gamma\left(t_{n}\right)$ is bounded by

$$
6\left[\left\|\Gamma_{n}\right\|+\left\|y_{n}\right\|\right]\left(\frac{\left\|x_{n}\right\|}{\left\|x_{n}^{\prime}\right\|}\right)^{a_{0} / a}
$$

provided that $\left\|x_{n}\right\| \leq\left(\frac{a_{s}}{2 c}\right)^{1+b / a_{s}} /\left\|x_{n}^{\prime}\right\|\left[\|\left[\Gamma_{n}\|+\| y_{n} \|\right]^{1+b / a_{e}}\right.$.
Since as n goes to $\infty,\left\|\Gamma_{n}\right\|,\left\|y_{n}\right\|,\left\|x_{n}^{\prime}\right\|$ converges to $\left\|\Gamma_{\infty}\right\|,\left\|y_{\infty}\right\|$, $\left\|x_{\infty}^{\prime}\right\|\left(\xi_{X_{\infty}}\left(z_{\infty}\right)=\left(x_{\infty}^{\prime}, 0\right)\right)$ and $\left\|x_{n}\right\|$ tends to 0 , it follows that $\left\|\Gamma_{n}\left(t_{n}\right)\right\|$ tends to 0 . Hence the sequence of spaces $T \varphi_{X_{n}, t_{n}}\left(F_{n}\right)$ tends to $T_{x_{\infty}^{\prime}} U=$ $T \xi_{X_{\infty}}\left(T_{z_{\infty}} W_{X_{\infty}}^{u}\left(O_{\infty}\right)\right.$. Hence L^{u} contains $T_{z_{\infty}} W_{X_{\infty}}^{u}\left(O_{\infty}\right)$.

Proof of Lemma 3.10: The differential system associated with $\widehat{X}=\left(\xi_{X}\right) *(X)$ is:

$$
\frac{d x}{d t}=X_{u}(x, y)=X_{u}^{\prime}(x, y) x \quad \frac{d y}{d t}=X_{s}(x, y)=X_{s}^{\prime}(x, y) y .
$$

The linearized system along a trajectory $\varphi_{X, t}\left(x_{0}, y_{0}\right)=(x(t), y(t))$ is:

$$
\begin{aligned}
& \frac{d \xi}{d t}(t)=\frac{\partial X_{u}}{\partial x}(x(t), y(t)) \xi(t)+\frac{\partial X_{u}}{\partial y}(x(t), y(t)) \eta(t) \\
& \frac{d \eta}{d t}(t)=\frac{\partial X_{s}}{\partial x}(x(t), y(t)) \xi(t)+\frac{\partial X_{s}}{\partial y}(x(t), y(t)) \eta(t)
\end{aligned}
$$

Then $\Gamma(t)$ satisfy the Ricatti equation

$$
\begin{aligned}
\frac{d \Gamma}{d t}(t) & =\frac{\partial X_{s}}{\partial x}(x(t), y(t))+\frac{\partial X_{s}}{\partial y}(x(t), y(t)) \Gamma(t) \\
& -\Gamma(t) \frac{\partial X_{u}}{\partial x}(x(t), y(t))-\Gamma(t) \frac{\partial X_{u}}{\partial y}(x(t), y(t)) \Gamma(t)
\end{aligned}
$$

For any $t_{0} 0 \leq t_{0} \leq t$, its solutions satisfy:

$$
\begin{aligned}
\Gamma(t)=R_{s}\left(t, t_{0}\right) \Gamma\left(t_{0}\right) R_{u}^{-1}\left(t, t_{0}\right) & +\int_{t_{0}}^{t} R_{s}(t, \tau) \frac{\partial X_{s}}{\partial x}(x(\tau), y(\tau)) R_{u}^{-1}(t, \tau) d \tau \\
& \quad-\int_{t_{0}}^{t} R_{s}(t, \tau) \Gamma(t) \frac{\partial X_{u}}{\partial y}(x(\tau), y(\tau)) \Gamma(\tau) R_{u}^{-1}(t, \tau) d \tau
\end{aligned}
$$

where R_{s}, R_{u} are the resolvent mappings

$$
\begin{array}{ccc}
R_{s}: S \longrightarrow S & R_{u}: U \longrightarrow U \\
\frac{\partial R_{s}}{\partial t}\left(t, t_{0}\right) & = & \frac{\partial X_{s}}{\partial y}(x(t), y(t)) R_{s}\left(t, t_{0}\right) \\
\frac{\partial R_{u}}{\partial t}\left(t, t_{0}\right) & = & \frac{\partial X_{u}}{\partial x}(x(t), y(t)) R_{u}\left(t, t_{0}\right) \\
R_{s}\left(t_{0}, t_{0}\right)=I d_{s} & R_{u}\left(t_{0}, t_{0}\right)=I d_{u} .
\end{array}
$$

The inequalities (I) show that

$$
\begin{array}{ll}
\left\|R_{s}\left(t, t_{0}\right)\right\| \leq e^{-a_{0}\left(t-t_{0}\right)} & t \geq t_{0} \\
\left\|\bar{R}_{u}^{1}\left(t, t_{0}\right)\right\| \leq e^{-a_{v}\left(t-t_{0}\right)} & t \geq t_{0} .
\end{array}
$$

The relation (III) and the inequalities (II) imply if $a=a_{s}+a_{u}$:

$$
\text { (IV) } \begin{aligned}
\|\Gamma(t)\| \leq e^{-a\left(t-t_{0}\right)}\left\|\Gamma\left(t_{0}\right)\right\|+ & \int_{t_{0}}^{t} C\|y(t)\| e^{-a(t-\tau)} d \tau \\
& +\int_{t_{0}}^{t} C\|x(\tau)\|\|\Gamma(\tau)\|^{2} e^{-a(t-\tau)} d \tau .
\end{aligned}
$$

The inequalities (I) imply that:

$$
\text { (V) }\left\{\begin{aligned}
e^{a_{v}\left(t-t_{0}\right)}\left\|x\left(t_{0}\right)\right\| \leq & \|x(t)\| \leq x\left(t_{0}\right) \| e^{b\left(t-t_{0}\right)} \\
& \|y(t)\| \leq\left\|y\left(t_{0}\right)\right\| e^{-a_{s}\left(t-t_{0}\right)}
\end{aligned}\right.
$$

Hence:

$$
\int_{t_{0}}^{t}\|y(\tau)\| e^{-a(t-\tau)} d \tau \leq \frac{1}{a_{u}}\left\|y\left(t_{0}\right)\right\| e^{-a,\left(t-t_{0}\right)}
$$

By multiplying (IV) by $e^{a,\left(t-t_{0}\right)}$ and setting $\gamma(t)=\|\Gamma(t)\| e^{a,\left(t-t_{0}\right)}$, for simplicity we obtain:
(VI) $\quad\|\gamma(t)\| \leq\left\|\Gamma\left(t_{0}\right)\right\|+\frac{C}{a_{u}}\left\|y\left(t_{0}\right)\right\|+\int_{t_{0}}^{t} C\|x(\tau)\| e^{-a_{0}(t-\tau)} \gamma(\tau)^{2} d \tau$.

The simple Lemma 3.11 below implies that:

$$
\begin{equation*}
\|\gamma(t)\| \leq 2\left[\left\|\Gamma\left(t_{0}\right)\right\|+\frac{C}{a_{u}}\left\|y\left(t_{0}\right)\right\|\right] \tag{VII}
\end{equation*}
$$

if $\quad\left[\left\|\Gamma\left(t_{0}\right)\right\|+\frac{C}{a_{u}}\left\|y\left(t_{0}\right)\right\|\right] \sup _{t_{0} \leq \tau \leq t}\|x(\tau)\| \leq \frac{a_{s}}{2 C}$.

But the inequality (V) implies that $x(t)$ is an increasing function. Hence:
(VIII) (VII) is valid when $\|x(t)\|\left[\left\|\Gamma_{0}\right\|+\frac{C\left\|y_{0}\right\|}{a_{u}}\right] \leq \frac{a_{s}}{2 C}$.

Applying (VIII) with $t_{0}=0$, we get that:

$$
\|\Gamma(t)\| \leq 2\left[\left\|\Gamma_{0}\right\|+\frac{C\left\|y_{0}\right\|}{a_{u}} \|\right] \cdot e^{-a, t}
$$

Since by (V), $e^{-b t} \leq \frac{\left\|x_{0}\right\|}{\|x(t)\|}$ we get:

$$
\|\Gamma(t)\| \leq 2\left[\left\|\Gamma_{0}\right\|+\frac{C}{a_{u}}\left\|y_{0}\right\|\right]\left(\frac{\left\|x_{0}\right\|}{\|x(t)\|}\right)^{a_{,} / b} .
$$

This is the first inequality of Lemma 3.10.
Now if $\|x(t)\|>a_{s} / 2 C\left[\left\|\Gamma_{0}\right\|+\frac{c}{a_{v}}\left\|y_{0}\right\|\right]$, let t_{1} be the instant such that:

$$
\left\|x\left(t_{1}\right)\right\|=a_{s} / 2 C A
$$

where for simplicity we set $A=\left\|\Gamma_{0}\right\|+\frac{c}{a_{2}}\left\|y_{0}\right\|$.
Applying the first part of Lemma 3.10 just proved, to $t_{0}=0$ and $t=t_{1}$ we get:

$$
\begin{equation*}
\left\|\Gamma\left(t_{1}\right)\right\| \leq 2 A\left\|x_{0}\right\|^{a_{e} / b}\left(\frac{2 C A}{a_{s}}\right)^{a, / b} . \tag{IX}
\end{equation*}
$$

Using the inequalities (V) we have:

$$
\left\|y\left(t_{1}\right)\right\| \leq\left\|y_{0}\right\| e^{-a, t_{1}} \leq\left\|y_{0}\right\|\left(\frac{\left\|x_{0}\right\|}{\left\|x\left(t_{1}\right)\right\|}\right)^{a, / b} \quad \text {, so }
$$

(X)

$$
\left\|y\left(t_{1}\right)\right\| \leq\left\|y_{0}\right\|\left(\frac{2 C A}{a_{s}}\right)^{a, / b}\left\|x_{0}\right\|^{a, / b} .
$$

Now we can apply (VIII) with $t_{0}=t_{1}$ and we get:

$$
\begin{gathered}
\|\Gamma(t)\| \leq 2\left[\left\|\Gamma\left(t_{1}\right)\right\|+\frac{C}{a_{u}}\left\|y\left(t_{1}\right)\right\|\right] e^{-a_{s}\left(t-t_{1}\right)} \\
\text { provided that }\|x(t)\|\left[\left\|\Gamma\left(t_{1}\right)\right\|+\frac{C}{a_{u}}\left\|y\left(t_{1}\right)\right\|\right] \leq \frac{a_{s}}{2 C} .
\end{gathered}
$$

This last condition can be expressed as follows, using (IX) and (X):

$$
\left[2 A+\frac{C}{a_{u}}\left\|y_{0}\right\|\right]\left(\frac{2 C A}{a_{s}}\right)^{a_{,} / b}\left\|x_{0}\right\|^{a_{s} / b} \leq \frac{a_{s}}{2 C\|x(t)\|} .
$$

This proves the second inequality in Lemma 3.10.

Lemma 3.11. Let $z:\left[t_{0}, t_{1}\right] \longrightarrow \mathbb{R}_{+}$be a continuous function satisfying for all $t \in\left[t_{0}, t_{1}\right]$ the inequality:

$$
z(t) \leq \alpha+\int_{t_{0}}^{t} b(\tau) z(\tau)^{2} d \tau
$$

where α is a constant and $b:\left[t_{0}, t_{1}\right] \longrightarrow \mathbb{R}_{+}$a positive continuous function.
Then: $z(t) \leq 2 \alpha$ for all $t \in\left[t_{0}, t_{1}\right]$ such that $\int_{t_{0}}^{t} b(\tau) d \tau \leq \frac{1}{2 \alpha}$.
Finally, we are able to prove the main density theorem of the section:
Theorem 1.6. Assume $\operatorname{dim} M>1$ and $r>3(1+\operatorname{dim} M)$ and let \mathcal{G} be the subset of $\operatorname{SDMS(D)}$ (resp. $S D M S(V)$) of all systems X such that their invariant manifolds are pairwise transversal. Then \mathcal{G} is open dense in $\operatorname{SDMS}(D)$ (resp. $S D M S(V)$).

Proof. Since we know by theorem 1.5 that \mathcal{G} is open, it is sufficient to prove that \mathcal{G} is everywhere dense in $S D M S(D)$ (resp. $S D M S(V)$). As before we shall give the proof in the first case only. The second case is similar but easier. Since the set $G I W(D)$ is dense in $S D M S(D)$, it is sufficient to prove the following: every X_{0} in $\operatorname{GIW}(D)$ has an open neighbourhood \mathcal{V}_{0} such that $\mathcal{V}_{0} \cap \mathcal{G}$ is a Baire subset of \mathcal{V}_{0}.

To start, if $O_{1, X_{0}}, \ldots, O_{N, X_{0}}$ denote the singular points of X_{0}, we can find neighbourhoods $\Omega_{1}, \ldots, \Omega_{N}$ of $O_{1, X_{0}}, \ldots, O_{N, X_{0}}$ respectively and constants $\alpha_{1}, \ldots, \alpha_{N}$ such that for each i, the manifold $\Sigma_{i}=\Omega_{i} \cap\left\{E_{X_{0}}=\alpha_{i}\right\}$ satisfies the following conditions:

1) Σ_{i} is transversal to X_{0};
2) $\Sigma_{i} \cap W_{X_{0}}^{u}\left(O_{i X_{0}}\right)$ is a compact connected manifold;
3) Each trajectory of X_{0} in $W_{X_{0}}^{u}\left(O_{i X_{0}}\right)$ cuts Σ_{i} in one and only one point.
Then we can find an open neighbourhood \mathcal{V}_{1} of X_{0} in $\operatorname{SDMS(D)}$ satisfying the statement (i) of Proposition 3.4 and such that for any X in \mathcal{V}_{1} the conditions $1-2-3$ are satisfied if we replace $W_{X_{0}}^{u}\left(O_{i X_{0}}\right)$ and X_{0} by $W_{X}^{u}\left(O_{i X}\right)$ and X respectively, in them.

Applying Proposition 3.4 and using the compactness of the sets

$$
\Sigma_{i} \cap W_{X_{0}}^{u}\left(O_{i X_{0}}\right)
$$

we can find, for each i, n_{i} pairs ($\mathcal{U}_{0}^{h, i}, N_{0}^{k i}$) of an open neighbourhood $\mathcal{U}_{0}^{k, i}$ of X_{0}, an open set $N_{0}^{k, i}$ satisfying the assertions of Proposition 3.4 with respect to the pair $\left(\mathcal{U}_{0}, N_{0}\right)$ and such that the $\left\{N_{0}^{k, i} \mid 1 \leq k \leq n_{i}\right\}$ cover $\Sigma_{i} \cap W_{X_{0}}^{u}\left(O_{i X_{0}}\right)$. We can always restrict \mathcal{V}_{1} so that for any $\bar{X} \in \mathcal{V}_{1}$ and any $i, 1 \leq i \leq N$,
$\Sigma_{i} \cap W_{X}^{u}\left(O_{i X}\right)$ is contained in $\bigcup_{k=1}^{n_{i}} N_{0}^{k, i}$. Then we can restrict the $\mathcal{U}_{0}^{k, i}$ so that $\mathcal{U}_{0}^{k, i} \subset \mathcal{V}_{1}$ for all k, i.

Proposition 3.4 states that the subset $\mathcal{G}^{k, i}$ of $\mathcal{U}_{0}^{k, i}$ of all systems X such that $W_{X}^{u}\left(O_{i X}\right) \cap N_{0}^{k, i}$ is transversal to all the stable manifolds of X is a Baire subset of $\mathcal{U}_{0}^{k, i}$. The set $\mathcal{V}=\bigcap_{i=1}^{N} \bigcap_{k=1}^{n_{i}} \mathcal{U}_{0}^{k, i}$ is an open neighbourhood of X_{0} in $S D M S(\mathrm{D})$ and the intersection $\bigcap_{i=1}^{N} \bigcap_{k=1}^{n_{i}} \mathcal{G}^{k, i}$ is a Baire subset of \mathcal{V}. But the condition 3) on the Σ_{i} (valid for all X in \mathcal{V}_{1}) implies that this intersection is $\mathcal{G} \cap \mathcal{V}$.

4 - Proof of Theorem 1.7.

As we said in the Introduction, the main arguments in the proof of Theorem 1.7 follow the lines of [8]; we include them in the paper for completeness of exposition. Throughout the proof we implicitely assume D to be complete.

The following facts are more or less standard, some of them are remarks already made and a complete proof can be found in [3]. Denote by $\mathcal{A}=\mathcal{A}(V, D)$, $(V, D) \in D M S$, the attractor of (V, D), that is, $\mathcal{A}=\{v \in T M \mid$ the trajectory of (V, D) through v is bounded $\}$. Then
i) \mathcal{A} is connected and is the largest compact invariant set;
ii) \mathcal{A} is uniformly asymptotically stable set for the flow on $T M$;
iii) $\mathcal{A}(V, D)$ is an upper semicontinuous function of (V, D) in $D M S$;
iv) If $f=e^{X}$ is the time one map associated to (V, D) and

$$
\mathcal{B}_{a}=\{v \in T M \mid E(v)<a\}
$$

then, for a sufficient large $a>0$,

$$
\mathcal{A}=\bigcap_{n \geq 0} f^{n}\left(\mathcal{B}_{a}\right)
$$

v) The map $\pi_{M} / \mathcal{A}: \mathcal{A} \rightarrow M$ is surjective;
vi) If $(V, D) \in S D M S$, that is, (V, D) is strongly dissipative, then \mathcal{A} is the union of the unstable manifolds of all (finite number) singular points.

Lemma 4.1. Let $(V, D) \in \mathcal{G}, \quad P \in \operatorname{Sing}(V, D)$ and $\operatorname{dim} W^{u}(P)=n$. Fix a n-disc B_{n}^{u} centered at P contained in $W_{\text {loc }}^{u}(P)$. Given $\varepsilon>0$, there exist neighbourhoods U of P and W of (V, D) in $S D M S$ such that if $(\bar{V}, D) \in W, Q \in \operatorname{Sing}(V, D)$ and $Q^{*} \in \operatorname{Sing}(\bar{V}, D)$ is the corresponding singular point near Q and moreover, if $W^{u}\left(Q^{*}\right) \cap U \neq \emptyset$, then $W^{u}\left(Q^{*}\right) \cap U$ is fibered by n-discs $\varepsilon-C^{1}$ close to B_{u}^{n}.

A partial order in the set $\operatorname{Sing}(V, D)$ of a strongly dissipative mechanical system (V, D) is the following (see [8], [14]):

$$
P \leq Q \quad \text { iff } \overline{W^{u}(Q)} \cap W^{u}(P) \neq \emptyset \quad \forall P, Q \in \operatorname{Sing}(V, D)
$$

The phase diagram of (V, D) is $(\operatorname{Sing}(V, D), \leq)$. If $P \leq Q$ there exists a chain $\left(P_{1}=Q, P_{2}, \ldots, P_{\ell}=P\right)$ such that

$$
W^{u}\left(P_{j}\right) \cap W^{s}\left(P_{j+1}\right) \neq \emptyset, \quad 1 \leq j \leq \ell-1 ;
$$

define depth $(Q \mid P)$ as maximum of the lenghts ℓ of all chains connecting Q to P; depth $(Q \mid P)=0$ means that $W^{u}(Q) \cap W^{s}(P)=\emptyset$. Remark that if depth $(Q \mid P)=1$ and $G^{s}(P)$ is a fundamental domain $\left(G^{s}(P)\right.$ is the boundary of a cell $B_{s}(P)$ centered at P and contained in $W_{\text {loc }}^{s}(P)$) then $W^{u}(Q) \cap G^{s}(P)$ is compact. For any $Q \in \operatorname{Sing}(V, D)$ there exists at least one maximal chain of lenght $n \geq 1,\left(P_{1}=Q, \ldots, P_{n}\right)$, that is, P_{n} is a sink and depth $\left(P_{j} \mid P_{j+1}\right)=1$, $j=1,2, \ldots, n-1$.

The next lemma is lemma 7.3 of [9], pg. 87:

Lemma 4.2. Let P be a singular point of $(V, D) \in S D M S(D)$. There exists a neighbourhood \tilde{U} of P and a continuous map $\tilde{\pi}: \tilde{U} \rightarrow B_{s}$ where

$$
B_{s}=B_{s}(P)=\tilde{U} \cap W_{\mathrm{loc}}^{s}(P)
$$

such that

1) $\tilde{\pi}^{-1}(P)=B_{u}=\tilde{U} \cap W_{\mathrm{loc}}^{u}(P)$ is a disc containing P;
2) for each $x \in B_{s}, \tilde{\pi}^{-1}(x)$ is a C^{r}-submanifold of TM transversal to $W_{\mathrm{loc}}^{s}(P)$ at the point x;
3) $\tilde{\pi}$ is of class C^{r} except possibly at the points of B_{u};
4) the fibration defined by $\tilde{\pi}$ is invariant for the flow φ_{t} of the vector field defined by (V, D), that is, if $t \geq 0$ then

$$
\varphi_{t}\left(\tilde{\pi}^{-1}(x)\right) \supset \tilde{\pi}^{-1}\left(\varphi_{t}(x)\right), \quad \forall x \in B_{s} .
$$

In proving lemmas 4.1 and 4.2 we really have an Unstable Foliation of \tilde{U} at $P \in \operatorname{Sing}(V, D),(V, D) \in \mathcal{G}$, that is, a continuous foliation

$$
\mathcal{F}(P, \tilde{U}): x \in \tilde{U} \rightarrow \mathcal{F}_{x}(P, \tilde{U})=\tilde{\pi}^{-1}(\tilde{\pi}(x)) .
$$

Moreover, this unstable foliation can be easily globalized through saturation by φ_{t}. This way we obtain a global unstable foliation $\mathcal{F}(P, U)$ where

$$
U=\bigcup_{t \in \boldsymbol{R}} \varphi_{t}(\tilde{U})
$$

and a projection $\pi: U \rightarrow W^{s}(P)$ given by $\pi \circ \varphi_{t}(p)=\varphi_{t} \circ \tilde{\pi}(p), p \in \tilde{U}$, and such that:
a) the leaves are C^{1} manifolds with tangent spaces varying continuously in the Grassmanian and

$$
\mathcal{F}_{P}(U, P)=W^{u}(P)
$$

b) the leaf $\mathcal{F}_{x}(P, U)$ containing $x \in U$ is equal to

$$
\pi^{-1}(\pi(x)) ;
$$

c) $\mathcal{F}(P, U)$ is invariant for the flow φ_{t} of (V, D); that is,

$$
\begin{aligned}
& \varphi_{t}\left(\mathcal{F}_{x}(P, U)\right)=\mathcal{F}_{\varphi_{t}(x)}(P, U), \quad t \in \mathbb{R}, \quad x \in U, \quad \text { or } \\
& \pi \circ \varphi_{t}=\varphi_{t} \circ \pi \text { in } U .
\end{aligned}
$$

The same holds for (\bar{V}, D) near (V, D) in \mathcal{G}.
For any maximal chain ($P_{1}, P_{2}, \ldots, P_{n}$) on the phase diagram of (V, D) we obtain, by induction, a compatible system of global unstable foliations,

$$
\left(\mathcal{F}\left(P_{1}, U_{1}\right), \mathcal{F}\left(P_{2}, U_{2}\right), \ldots, \mathcal{F}\left(P_{n}, U_{n}\right)\right)
$$

and the associated projections

$$
\pi_{i}: U_{i} \rightarrow W^{s}\left(P_{i}\right), \quad \pi_{i} \circ\left(\varphi_{t} / U_{i}\right)=\varphi_{t} \circ \pi_{i}, \quad i=1,2, \ldots, n
$$

The compatibility means that if a leaf F of $\mathcal{F}\left(P_{k}, U_{k}\right)$ intersects a leaf \tilde{F} of $\mathcal{F}\left(P_{\ell}, U_{\ell}\right), k<\ell \leq n$, then $F \supset \tilde{F}$; moreover, the restriction of $\mathcal{F}\left(P_{\ell}, U_{\ell}\right)$ to a leaf of $\mathcal{F}\left(P_{k}, U_{k}\right)$ is a C^{1} foliation.

Consider again $(V, D) \in \mathcal{G}$ and fix $a>0$, sufficiently large, such that the bounded set \mathcal{B}_{a} contains O_{M} and the set $\mathcal{A}(V, D)$. We know that for any small $\varepsilon>0$ there exists a neighbourhood W of (V, D) in G such that $\mathcal{A}(\bar{V}, D)$ is contained in the ε-neighbourhood of $\mathcal{A}(V, D)$ in \mathcal{B}_{a}, for all $(\bar{V}, D) \in W$. We may also assume that the vector field corresponding to $(\bar{V}, D) \in W$ points inward at every point of $\partial \mathcal{B}_{a} . \quad \mathcal{B}_{a}$ is a disc bundle in $T M$ with sphere bundle $\partial \mathcal{B}_{a}$ and

$$
\mathcal{B}_{a}=\bigcup_{P_{i} \in \operatorname{Sing}(V, D)} W^{s}\left(P_{i}\right) \cap \mathcal{B}_{a} .
$$

From now on, in this section, we call $W^{s}(P) \cap \mathcal{B}_{a}$ the stable manifold of P which we denote simply by $W^{s}(P)$. Let us denote by $\bar{W}^{s}(P)$ the closure of $W^{s}(P)$ in \mathcal{B}_{a}. The topological boundary of $W^{s}(P)$ in \mathcal{B}_{a} is $\partial W^{s}(P)=\bar{W}^{s}(P)-W^{s}(P)$. Then $x \in \partial W^{s}(P)$ if and only if there exists a sequence of points y_{i} in a fundamental domain $G^{s}(P)$ and $T_{i} \rightarrow-\infty$ as $i \rightarrow \infty$ such that

$$
x=\lim _{i \rightarrow \infty} \varphi_{t_{i}}\left(y_{i}\right)
$$

where φ_{t} denotes the flow corresponding to (V, D). Remark also that $\partial W^{s}(P)$ is positively invariant. If P, Q are two distinct points of Sing ($V D$) such that $\bar{W}^{s}(P) \cap W^{s}(Q) \neq \emptyset$, then $Q \in \bar{W}^{s}(P)$ and there exists $x \in W^{s}(P) \cap W^{u}(Q)$, $x \neq Q$; furthermore, by transversality condition $\operatorname{dim} W^{s}(P)>\operatorname{dim} W^{s}(Q)$.

The following sequence L_{i} is similar to the one considered by Shashahani [13]: $L_{0}=\emptyset ; L_{1}$ is the union of all stable manifolds whose topological boundary is empty; for $i \geq 1$ one defines L_{i+1} to be the union of L_{i} with the union of all stable manifolds whose topological boundary is contained in L_{i}. It is clear that for all $i \geq 0, L_{i}$ is closed, $L_{i+1}-L_{i}$ is a disjoint union of stable manifolds and $\phi=L_{0} \subset L_{1} \subset L_{2} \subset \ldots \subset L_{p}=\mathcal{B}_{a}$.

Denote by P^{*} the singular point of (\bar{V}, D) corresponding to $P \in$ Sing (V, D), for (\bar{V}, D) near $(V, D) \in \mathcal{G}$.

We start now the construction of a homeomorphism h mapping the flow of the system (V, D) onto that of (\bar{V}, D).

Take any $W^{s}\left(P_{1}\right) \in L_{1}$ and the corresponding $W^{s}\left(P_{i}^{*}\right)$. Since $W^{s}\left(P_{1}\right)$ and $W^{s}\left(P_{1}^{*}\right)$ are $\varepsilon-C^{r}$-close on compact sets (see [9], pg.75), for (\bar{V}, D) near (V, D) there is a diffeomorphism

$$
\tilde{h}_{1}: G^{s}\left(P_{1}\right) \rightarrow G^{s}\left(P_{1}^{*}\right)
$$

and let us extend it to the full $W^{s}\left(P_{1}\right)$ using the flows φ_{t} and φ_{i}^{*} of (V, D) and (\bar{V}, D). That is, if $x \in W^{s}\left(P_{1}\right), x \neq P_{1}, t \in \mathbb{R}$ is the unique time t such that $\varphi_{t}(x) \in G^{s}\left(P_{1}\right)$, then we define $h_{1}\left(P_{1}\right)=P_{1}^{*}$ and $h_{1}(x)=\varphi_{-t}^{*} \circ \tilde{h}_{1} \circ \varphi_{t}(x) \in$ $W^{s}\left(P_{1}^{*}\right)$. The map

$$
h_{1}: W^{s}\left(P_{1}\right) \rightarrow W^{s}\left(P_{1}^{*}\right)
$$

is a homeomorphism (a diffeomorphism on $W^{s}\left(P_{1}\right)-\left\{P_{1}\right\}$).
Do the same for all stable manifolds of L_{1}.
The second step is to define a homeomorphism h_{2} from

$$
W^{s}\left(P_{2}\right) \in L_{2}-L_{1}
$$

onto the corresponding $W^{s}\left(P_{2}^{*}\right)$ in such a way that h_{2} will be compatible with the defined above h_{1}, for the case in which $\bar{W}^{s}\left(P_{2}\right) \cap W^{s}\left(P_{1}\right) \neq \phi$. The manifolds $W^{u}\left(P_{1}\right)$ and $W^{u}\left(P_{1}^{*}\right)$ are $\varepsilon-C^{r}$-close on compact sets and we have depth $\left(P_{1} \mid P_{2}\right)=1$. Then the set $V_{12}=G^{s}\left(P_{2}\right) \cap W^{u}\left(P_{1}\right)$ is a compact manifold and also $W^{s}\left(P_{2}\right)$ and $W^{s}\left(P_{2}^{*}\right)$ are $\varepsilon-C^{r}$-close on compact sets. By the transversality conditions of the invariant manifolds of (V, D) and of (\bar{V}, D) near (V, D) there exists a diffeomorphism h_{2} from V_{12} onto $V_{12}^{*}=G^{s}\left(P_{2}^{*}\right) \cap W^{u}\left(P_{1}^{*}\right)$.

Let $\pi_{1}: U_{1} \rightarrow W^{s}\left(P_{1}\right)$ and $\pi_{1}^{*}: U_{1}^{*} \rightarrow W^{s}\left(P_{1}^{*}\right)$ be the projections associated to the global unstable foliations $\mathcal{F}\left(P_{1}, U_{1}\right)$ and $\mathcal{F}\left(P_{1}^{*}, U_{1}^{*}\right)$. The transversality conditions imply that we may consider $\pi_{12}=\pi_{1} / T V_{12}$ and $\pi_{12}^{*}=\pi_{1}^{*} / T V_{12}^{*}$ for suitable tubular neighbourhoods

$$
\left(T V_{12}, \sigma_{2}, V_{12}\right) \text { of } V_{12} \text { in } G^{s}\left(P_{2}\right)
$$

and

$$
\left(T V_{12}^{*}, \sigma_{2}^{*}, V_{12}^{*}\right) \text { of } V_{12}^{*} \text { in } G^{s}\left(P_{2}^{*}\right)
$$

chosen in such a way that the open maps $h_{1} \circ \pi_{12}$ and π_{12}^{*} have the same image in $W^{s}\left(P_{1}^{*}\right)$. The maps

$$
\begin{aligned}
& \left(\pi_{12} \times \sigma_{2}\right): T V_{12} \rightarrow W^{s}\left(P_{1}\right) \times V_{12} \\
& \left(\pi_{12}^{*} \times \sigma_{2}^{*}\right): T V_{12}^{*} \rightarrow W^{s}\left(P_{1}^{*}\right) \times V_{12}^{*}
\end{aligned}
$$

and the homeomorphism

$$
\left(h_{1} \times h_{2}^{\prime}\right): W^{s}\left(P_{1}\right) \times V_{12} \rightarrow W^{s}\left(P_{1}^{*}\right) \times V_{12}^{*}
$$

enables us to define $h_{2}^{\prime \prime}: T V_{12} \rightarrow T V_{12}^{*}$, uniquely, such that the diagram below is commutative:

Note that $h_{2}^{\prime \prime} /\left(T V_{12}-V_{12}\right)$ is a diffeomorphism.
We have to repeat the same construction of $h_{2}^{\prime \prime}$ for all Q_{1} such that $W^{s}\left(Q_{1}\right) \in L_{1}$ and $\bar{W}^{s}\left(P_{2}\right) \cap W^{s}\left(Q_{1}\right) \neq \phi$. Using the Isotopy Extension Theorem (IET) for diffeomorphisms (see [4], pg. 133 for a statement and references) we extend all the $h_{2}^{\prime \prime}: T V_{12} \rightarrow T V_{12}^{*}$ to $G^{s}\left(P_{2}\right)$ and obtain a homeomorphism $\tilde{h}_{2}: G^{s}\left(P_{2}\right) \rightarrow G^{s}\left(P_{2}^{*}\right)$ which is a diffeomorphism except at the points of the compact manifolds V_{12} considered above. Finally $h_{2}: W^{s}\left(P_{2}\right) \rightarrow W^{s}\left(P_{2}^{*}\right)$ is constructed by $h_{2}(z)=\varphi_{-t}^{*} \circ h_{2} \circ \varphi_{t}(z)$ for $z \neq P_{2}$, where $t \in \mathbb{R}$ is the unique time such that $\varphi_{t}(z) \in G^{s}\left(P_{2}\right)$, and $h_{2}\left(P_{2}\right)=P_{2}^{*}$. The second step is finished if we do the same for all $W^{s}\left(Q_{2}\right)$ of $L_{2}-L_{1}$. Consider the union $h_{1} \cup h_{2}$ defined on the union of all stable manifolds of L_{2}.

Thus it remains to prove the continuity of $h_{1} \cup h_{2}$. The only point where to check continuity are those $x \in \partial W^{s}\left(P_{2}\right)$ such that, say, $x \in W^{s}\left(P_{1}\right)$. We may (and will) assume that x is sufficiently close to P_{1}. Recall that h_{2} takes leaves of $\mathcal{F}\left(P_{1}, U_{1}\right)$ near $W^{u}\left(P_{1}\right)$ to leaves of $\mathcal{F}\left(P_{1}^{*}, U_{1}^{*}\right)$. Take a sequence $x_{n} \in W^{s}\left(P_{2}\right), x_{n} \rightarrow x$. The leaf through $h_{2}\left(x_{n}\right)$ converges to the leaf through $\left(h_{1} \cup h_{2}\right)(x)=h_{1}(x)$. It remains to prove that $h_{2}\left(x_{n}\right)$ converges to $W^{s}\left(P_{1}^{*}\right)$. But this happens since the sequence of times t_{n} such that $\varphi_{t_{n}}\left(h_{2}\left(x_{n}\right)\right) \in G^{s}\left(P_{2}^{*}\right)$ tends to infinity.

The next (third) step is the consideration of P_{3} such that $W^{s}\left(P_{3}\right) \in L_{3}-L_{2}$ and we will construct a homeomorphism h_{3} from $W^{s}\left(P_{3}\right)$ onto the corresponding $W^{s}\left(P_{3}^{*}\right)$ in such a way that h_{3} will be compatible with h_{1} and h_{2}. The fact that $W^{s}\left(P_{3}\right) \in L_{3}-L_{2}$ implies that there exists at least one point $P \in \operatorname{Sing}(V, D)$
such that depth $\left(P \mid P_{3}\right) \leq 2$. For each singular point Q_{1} such that depth $\left(Q_{1} \mid P_{3}\right)=1, W^{s}\left(Q_{1}\right) \in L_{1}$ and h_{1} is defined on $W^{s}\left(Q_{1}\right)$; we proceed as in the second step and construct germs of diffeomorphisms $h_{3}^{\prime \prime}$, defined (locally) on $G^{s}\left(P_{3}\right)$, exactly as we did before when we constructed $h_{2}^{\prime \prime}$. For points P_{1} such that depth $\left(P_{1} \mid P_{3}\right)=2$ one considers a sequence $\left(P_{1}, P_{2}, P_{3}\right)$ such that depth $\left(P_{1} \mid P_{2}\right)=\operatorname{depth}\left(P_{2} \mid P_{3}\right)=1$. That implies that the manifolds $W^{u}\left(P_{2}\right)$ (resp. $\left.W^{s}\left(P_{3}\right)\right)$ and $W^{u}\left(P_{2}^{*}\right)$ (resp. $\left.W^{s}\left(P_{3}^{*}\right)\right)$ are $\varepsilon-C^{r}$-close on compact sets. By the transversality conditions $V_{23}=G^{s}\left(P_{3}\right) \cap W^{u}\left(P_{2}\right)$ is a compact manifold and there is a diffeomorphism h_{3}^{\prime} from V_{23} onto $V_{23}^{*}=G^{s}\left(P_{3}^{*}\right) \cap W^{u}\left(P_{2}^{*}\right)$. Let $\pi_{2}: U_{2} \rightarrow W^{s}\left(P_{2}\right)$ and $\pi_{2}^{*}: U_{2}^{*} \rightarrow W^{s}\left(P_{2}^{*}\right)$ be the projections associated to $\mathcal{F}\left(P_{2}, U_{2}\right)$ and $\mathcal{F}\left(P_{2}^{*}, U_{2}^{*}\right)$. The transversality conditions imply that we may consider

$$
\pi_{23}=\pi_{2} / T V_{23} \text { and } \pi_{23}^{*}=\pi_{2}^{*} / T V_{23}^{*}
$$

for suitable tubular neighbourhoods

$$
\left(T V_{23}, \sigma_{3}, V_{23}\right) \text { of } V_{23} \text { in } G^{s}\left(P_{3}\right)
$$

and

$$
\left(T V_{23}^{*}, \sigma_{3}^{*}, V_{23}^{*}\right) \text { of } V_{23}^{*} \text { in } G^{s}\left(P_{3}^{*}\right),
$$

such that the open maps $h_{2} \circ \pi_{23}$ and π_{23}^{*} have the same image in $W^{s}\left(P_{2}^{*}\right)$. As we did before we construct $h_{3}^{\prime \prime}$ such that the following diagram is commutative:

The construction shows us that $h_{3}^{\prime \prime}$ takes leaves of $\mathcal{F}\left(P_{2}, U_{2}\right) \cap T V_{23}$ to leaves of $\mathcal{F}\left(P_{2}^{*}, U_{2}^{*}\right) \cap T V_{23}^{*}$. But moreover, since h_{2} takes leaves of $\mathcal{F}\left(P_{1}, U_{1}\right)$ near $W^{u}\left(P_{1}\right)$ to leaves of $\mathcal{F}\left(P_{1}^{*}, U_{1}^{*}\right)$ and by the compatibility of the system of foliations we see that $h_{3}^{\prime \prime}$ takes leaves of $\mathcal{F}\left(P_{1}, U_{1}\right) \cap T V_{23}$, to leaves of $\mathcal{F}\left(P_{1}^{*}, U_{1}^{*}\right) \cap T V_{23}^{*}$.

We have to repeat the same construction of the last $h_{3}^{\prime \prime}$ for all sequences ($P_{1}, P_{2}^{\prime}, P_{3}$) such that

$$
\operatorname{depth}\left(P_{1} \mid P_{2}^{\prime}\right)=\operatorname{depth}\left(P_{2}^{\prime} \mid P_{3}\right)=1
$$

with P_{1} fixed. We assume also that we did the same for all P_{1} such that depth $\left(P_{1} \mid P_{3}\right)=2$. Using properly the (IET) for diffeomorphisms we extend to $G^{s}\left(P_{3}\right)$ all the $h_{3}^{\prime \prime}$ constructed in the second step and obtain a homeomorphism $\tilde{h}_{3}: G^{s}\left(P_{3}\right) \rightarrow G^{s}\left(P_{3}^{*}\right)$. Finally we extend \tilde{h}_{3} to $W^{s}\left(P_{3}\right)$ using the flows φ_{t} and φ_{t}^{*} and obtain $h_{3}: W^{s}\left(P_{3}\right) \rightarrow W^{s}\left(P_{3}^{*}\right)$ by $h_{3}(u)=\varphi_{-\tau}^{*} \circ \widetilde{h}_{3} \circ \varphi_{\tau}(u)$ for
$u \neq P_{3}$, where $\tau \in \mathbb{R}$ is the unique time such that $\varphi_{\tau}(u) \in G^{s}\left(P_{3}\right)$, and $h_{3}\left(P_{3}\right)=P_{3}^{*}$.

The third step is finished if we do the same for all $W^{s}\left(Q_{3}\right)$ of $L_{3}-L_{2}$. Consider the union $h_{1} \cup h_{2} \cup h_{3}$ defined on the union of all stable manifolds in L_{3}. The continuity of $h_{1} \cup h_{2} \cup h_{3}$ is proved in the same way as we did in the second step. The induction procedure is now evident.

We finish the section with the proof of a standard result that we needed, implicitely, for the conclusions of the theorem above:

Proposition 4.3. The subset of all complete C^{r} vector fields of a manifold \mathcal{F} is open in the set of all C^{r} vector fields with the Whitney C^{r}-topology.

Proof. Let d be the distance function on the manifold \mathcal{F} associated with a complete Riemannian metric. Take any complete vector field F on \mathcal{F}. Call $\Phi: \mathbb{R} \times \mathcal{F} \rightarrow \mathcal{F}$ the flow mapping associated to $F: \Phi(t, p)=\varphi_{t}^{F}(p)$.

To any compact subset K of \mathcal{F} we associate the subset $E(K)$ of \mathcal{F} :

$$
E(K)=\Phi([-1,+1] \times K) \cup \bar{B}(K, 1)
$$

where $\bar{B}(K, 1)=\{x \mid d(x, K) \leq 1\}$. Then $E(K)$ is compact as union of two compact sets and $E(K) \supset K$.

We define a sequence of compact subsets K_{n} of \mathcal{F} as follows: take any point p_{0} in $\mathcal{F} ; K_{0}=\bar{B}\left(p_{0}, 1\right)$ and $K_{n+1}=E\left(K_{n}\right)$. Then $K_{n+1} \supset K_{n}$ for all $n \geq 0$.

We claim that $\mathcal{F}=\cup_{n} K_{n}$: if $x \in \mathcal{F}$ and $q-1 \leq d\left(x, K_{0}\right)<q, q$ integer, then, $x \in K_{q}$. In fact, let $\bar{x} \in K_{0}$ be such that $d(x, \bar{x})=d\left(x, K_{0}\right)$ and let $\gamma:[0, d(x, \bar{x})] \rightarrow \mathcal{F}$ be the minimizing geodesic jorning \bar{x} to x. Let $x_{i}=\gamma(i)$, $i<q$. Since $d\left(x_{i}, x_{i+1}\right)=1$, we see by induction that $x_{i} \in K_{i}, i<q$. Since $d\left(x_{q-1}, x\right)<1$ and $x_{q-1} \in K_{q-1}, x$ is in K_{q}.

Also it is clear that K_{n+1} is a compact neighbourhood of K_{n} for all $n \geq 0$.
For each n there exists a constant $\varepsilon_{n}>0$ such that if G is a vector field on \mathcal{F} and $d_{1}\left(F, G, K_{n+1}-\stackrel{\circ}{K_{n}}\right) \leq \varepsilon_{n}, \stackrel{\circ}{K_{n}}$ interior of K_{n}, where

$$
\begin{gathered}
d_{1}\left(F, G, K_{n+1}-\stackrel{\circ}{K}_{n}\right)=\sup \{\|F(x)-G(x)\|+ \\
\left.\|\nabla F(x)-\nabla G(x)\|, \quad x \in K_{n+1}-\stackrel{\circ}{K}_{n}\right\},
\end{gathered}
$$

∇ being the Levi-Civita covariant differential, then φ_{t}^{G} is defined on $K_{n+1}-\stackrel{o}{K_{n}}$ for all $t,-1 \leq t \leq+1$ and $\varphi_{t}^{G}\left(K_{n+1}-\stackrel{o}{K_{n}}\right) \subset K_{n+3}$ for all $t,-1 \leq t \leq+1$.

The set U of all G such that for any $n, d_{1}\left(F, G, K_{n+1}-\stackrel{o}{K}_{n}\right)<\varepsilon_{n}$, is a neighbourhood of F for the Whitney topology. We claim that every G in \mathcal{U} is complete. We shall write the proof for positive times only.

Take a G in \mathcal{U} and a x in \mathcal{F}. Then $x \in K_{n_{0}}$ for some n_{0}. By induction on q, it is easy to see that $\varphi_{t}^{G}(x) \in K_{n_{0}+2 q}$ if $0 \leq t \leq q$; if $t \in[q, q+1]$, $\varphi_{t}^{G}(x)=\varphi_{t-q}^{G} \varphi_{q}^{G}(x) \in \varphi_{t-q}^{G}\left(K_{n_{0}+2 q}\right) \subset K_{n_{0}+2 q+2}$. Hence $\varphi_{i}^{G}(x)$ is defined for all $t \geq 0$.

References

1 R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin (1967).

2 A.L. Besse, Manifolds all of whose Geodesics are closed. A Series of Modern Surveys in Math. Springer-Verlag, (1978).
3 G. Fusco \& W.M. Oliva, Dissipative systems with constraints, J.Diff. Equations, vol.63, n° 3, July 1986, p.362-388.
4 J.K. Hale, L.T. Magalhães \& W.M. Oliva, An Introduction to infinite dynamical systems - Geometric Theory, Springer, Applied Math. Sciences, 47 (1984).

5 D. Henry, Some infinite dimensional Morse Smale systems defined by parabolic differential equations. J.Diff. Equations, vol.59, n ${ }^{\circ}$ 2, Sept.1985, pp.165-205.
6 D. Henry, Geometric Theory of Semi-Linear Parabolic Equations, Lec. Notes in Mathematics 840, Springer-Verlag, 1981.
7 I. Kupka, Contribution à la Théorie des champs génériques, Contrib. Diff. Equations, 2 pp.457-484. (1963).
8 J. Palis, On Morse-Smale dynamical systems, Topology 8 (1969), pp.385-404.
9 J. Palis \& W. de Melo, Geometric theory of dynamical systems - An Introduction, Springer-Verlag (1982).
10 J. Palis \& S. Smale, Structural stability theorems, Global Anal. Proc. Symp. Pure Math., AMS 14 (1970), pp.223-404.
11 M.M. Peixoto, On an approximation theorem of Kupka and Smale, J. Diff. Equations, vol.3, n ${ }^{o}$ 2, April 1967, p.214-227.
12 S. Shashahani, Second order ordinary differential equations on differentiable manifolds, Global Anal. Proc. Symp. Pure Math., A.M.S. 14 (1970), p.265272.

13 S. Shashahani, Dissipative systems on manifolds, Invent.Math. 16 (1972), p.177-190.

14 S. Smale, Differentiable dynamical systems, Bull.Amer.Math.Soc., 73 (1967), pp.747-817.
15 F. Takens, Mechanical and gradient systems; local perturbations and generic properties, Bol.Soc.Bras.Mat., vol.14, 2, (1983), p.147-162.

Ivan Kupka
Department of Mathematics
University of Toronto
Toronto, M5S, IAI, CANADA

Waldyr Muniz Oliva
Instituto de Matemática e Estatística
Universidade de São Paulo
CP 20.570, CEP 01498 BRAZIL

