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LARGE GROUPS OF UNITS OF 
INTEGRAL GROUP RINGS OF FINITE NILPOTENT GROUPS 
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Abstract: This paper surveys recent results regarding 
large subgroups of units in integral group rings of nilpotent 
groups, exibiting families of generators in .several cases. 
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§1. Introduction 
Let G be a finite group and U(7lG) the group of units of the integral group 

ring 7lG. It is an interesting and difficult question to describe U(7lG) by giving 
generators and relations. But this is to be expected as it is not possible even to 
find fundamental units in rings of algebraic integers. So as in number theory one 
should be satisfied to find generators upto finite index of U(7lG). We report in 
this note on the recent progress on the problem for the case of nilpotent groups 
G . In the next section we record the various recipes for construction of units and 
in the third section we state the results. 

§2. Examples 
(2.1) Trivial units. Of course, the elements ±g, 9 E G are invertible in 7lG. 
They are called trivial units. 

(2.2) Bass cyclic units. To introduce our second example we recall the notion 
of "cyclotomic units." These are elements of 7l[(] where ( is a primitive nth root 
of unity and are of the form 

0'= 1-(i/1-(= 1+(+ .. · +(i-1 where (i,n)= 1. 

The inverse of 0' is given by 

where ij == 1 (mod n). 
Now let a be an element of order n in a group G. Then the element of 7l(a) 

analogous to a cyclotomic unit, namely, f3 = 1 + a f ... + ai - 1 , (i, n) = ~ is 
not invertible in 7l(a) as the augmentation €(f3) = i > 1. Remember that the 
augmentation map €(Eci9i) = ECi E 7l is a ring homomorphism and as such 
€ (unit) is ±l. We need to be a little more clever. 
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The rational group algebra Q (a) is a direct sum of fields: 

@ @ 
as can be seen by the isomorphism a -+ L(d. Clearly, Z(a) injects into L Z[(d] = 

din 

1M, the unique maximal order. Since Z(a) C 1M are orders, an element of Z(a) 
is a unit if and only if it has an inverse in 1M (see [11, p. 19]). Thus to check 
if an element of Z(a) is a unit it suffices to produce its inverse in 1M. Let us 
consider the element f3 above. Its image under any projection Z(a) -+ Z[(d] is a 
cyclotomic unit except when d = n. Thus we need to modify f3 to go around the 
augmentation obstruction. For technical reasons, let k be a fixed multiple of IGI 
and cp(IGI) with cp denoting Euler's function. Since (i, n) = 1, i'P(n) == 1 (mod n) 
and so i k == 1 (mod n) . Then the element 

n 

U = (1 + a + ... + ai-I)k + (1- ik In) a, a = L:>i 
I 

belongs to Z(a). Moreover, c(u) = 1, u is invertible in Th1 and hence u E U(Z(a). 
These units are called Bass cyclic units of ZG. We denote by Bl = Bl (G) the 
group generated by them. 

(2.3) Hoechsmann units. Again let G = (a) be of order n. We modified the 
element f3 = 1 + a + ... + ai-I, (i, n) = 1 to obtain the Bass cyclic unit. One 
could take a quotient of two elements of equal augmentation. In this spirit let 

v=l+ai + ... +ai (i-l)/l+a+···+a(i-l), (i,n)=I, (j,n)=1 

be an element of cQ (a) . It is easily seen that v«(d) is a unit of ~[(dJ for all din . 
Thus v is a unit of Th1. In fact, 

v = (1 + ai + .. . + ai (i-l»(1 + a i + ... + a(l-I)i) + (1 - ifln)a 

where if == 1 (mod n) is an element of Z(a) (see [11, p. 34]). Hence v is a unit 
of ~ (a ). All these units are called Hoechsmann units and we denote by '}l(G) the 
group generated by them. It is known that '}l(G) contains Bl(G). 

(2.4) Alternating units. If n is odd it is possible to fix the augmentation 
difficulties in a straight forward manner. Let (i, 2n) = 1 then 

u = 1 - a + a2 _ . •• + a i - I 
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clearly has augmentation equal to one. Moreover, u{() = 1- (+(2 + ... +(;-1 = 
1 - ( + (_()2 + . . . + (_();+l is a cyclotomic unit. Thus u is a unit of 7lC. We call 
these type of units alternating units and denote the group generated by them by 
A(C). 

(2.5) The group Ct. Before introducing these units, which have only one non­
identity component in the decomposition 

ED 

QC = Q(a)' = L Q«d), 
din 

we recall the formulae for the primitive idempotents of QC. Let (d) be the Sylow 
p-subgroup of C for a prime dividing n. Then it can be checked directly that the 
primitive idempotents of Q (d) are given by 

epo = d, epl = dP - d, ... , epnp = it - 1 

with n = [lpnp and f = pnp-l. It follows that the primitive idempotents of Q C 
p 

are given bye = [lep;p, 0 ~ ip ~ np. 
p 

Let a E 7l(a) and e = e2 E Q (a) be a primitive idempotent as described above. 
Then in the decomposition (*) we have 

ae= (O, ... ,O,Q,O, . . . ,O), 

1 - e = (1, ... ,1,0,1 , ... ,1), 

ae + (1 - e) = 1 + (a - l)e = (1, .. . , 1, Q , 1, ... , 1) . 

Let us specialize a to elements of the form 1 + a + .. . + ai-I, (i, n) = 1. Then 
1 + (a - l)e is a unit of the maximal order 1M. It follows from [7 , p . 379] that 
nM ~ 7l(a) and thus there is a fixed number k depending only on n so that 

(1 + (a - l)e)k E U71(a) (see [11, p. 19]). It is easy to prove that C1 = «(1 + (a­

l)e)k : a = 1 + a + ... + a;-l, (i, n) = I} is a subgroup of finite index in U71(a}. 
We have given some recipes for writing down explicitly units in some abelian 

group rings. The next example is a noncommutative one. 

(2.6) Bicyclic units. Let a, bEG then (a - l)a = a(a - 1) = O. Consider the 
element 7] = (a -1)ba. It is nilpotent, in fact, 7]2 = O. Thus (I + 7])(1-1]) = 1. We 
have found units 

ua,b=I+{a-l)ba, a,bEG. 

Similary, U~,b = 1 + a b{a - 1) is also invertible. We call B2 = (Ua ,b: a, bEG) 
the group of bicyclic units. We set B~ = (u~,b : a , bEG). Clearly, Ua ,b = 1 if and 
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only if b normalizes (a). Thus 8 2 = 1 if and only if all subgroups of G are normal 
in G. A nonabelian group with this property is called Hamiltonian. It turns out 
that a Hamiltonian group can be written as Kg x E x 0 where E2 = 1,0 is an 
odd abelian group and Kg is the quaternion group of order 8. In this situation 
there are other useful units. 

(2.7) The group 8 3 • These units can be constructed whenever G has a homo­
morphic image Kg x Cp , with p an odd prime and Q (Kg x Cp ) contains nilpotent 
elements. For simplicity, we shall illustrate only the case G = Kg x Cpo We have 
Kg = (a,b: a2 = b2 = z, ab = a-I). Let 

be the rational Hamiltonian (skew) field. Then 

Q Kg = 4 Q EB 1lI (Q). 

Moreover, 

Q (I{s x Cp ) = (4 QEB 1lI( Q» <9 (QEB Q«p») 
= 4 QEB 4 Q«p) EB III(Q) EB III (Q«p») 

where (p is a primitive pth root of unity. We have assumed that 1lI (Q «p» splits. 

Therefore, it is possible to find explicitly x' , y' E 1Z[(p) so that x" + y" = -1. Let 
x , y be chosen in IZ( Cp) so that x( (p) = x', y( (p) = y'. Let e be the idempotent 
corresponding to III (Q «p»). Then e is given by e = l; z . (1 .:... C) where (c) = Cpo 
Furthermore, (x 2 + y2 + l)e = O. Define TJ = IGI(ya + b + xab )e, TJ' = IGI(ya - b + 
xab)e. Then 

TJ2 = IGI2(xy(I + z)b + y(I + z)ab + x(I + z)a)e = O. 

Similarly, (TJ')2 = O. Therefore, (TJ IZGTJ)2 = 0 = (TJ'IZGTJ')2. We have units 1 + TJXTJ 
and 1 + TJ' XTJ', x E IZG. We define 

B3 = (1 + TJgTJ, 1 + TJ'gTJ', 9 E G). 

These units can be extended to the general situation (see [3]). 
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§3. Generators of Large Subgroups 
We shall say that a subgroup is large if it is of finite index. In many cases it is 

possible to find very nice explicit generators oflarge subgroups of U(~G) . We shall 
present these results below. We begin with a classical result of Graham Higman 
[1] . 

Theorem (3.1). Let A be a finite abelian group of order n. Then U(~A) = 
±A x F where F is free of rank p = ! (n + 1 + n2 - 2£) with n2 denoting the 
number of elements of order 2 in G and £ the number of cyclic subgroups of G. 

Proof See [10, p. 54]. 

Corollary (3.2). All units of~A are trivial if and only if A4 = 1 or A6 = 1. 

Now let C be cyclic of order n then H. Bass [1] has proved 

Theorem (3.3). The subgroup 8 1 of the Bass cyclic units in ~C is free and of 
finite index in U{~C). 

Proof. See [1] or [11, p. 45] . 

We shall see now that this solves the problem for the abelian case. Let M( A ) = 
TI 8 1 (C) denote the product of the Bass cyclic units where C runs over the cyclic 

CCA 
su-bgroups of the finite abelian group A . We have 

Theorem (3.4) (Bass-Milnor). M(A) is of finite index in U(~A) and the 
product is direct. 

Proof See [11, p. 63] . 

The above result says, in particular, that the units of cyclic subgroups genera te 
a large subgroup of U ~A . In fact , more is true. 

Theorem (3.5) (Bass-Milnor). Let G be a finite group. The image of 
(U{~C»)cCG under the natural map j : U(~G) -+ /(1 (~G) as C runs over the 
cyclic subgroups of G is of finite index. 

Proof. See [1] . 

A straight forward extension of (3.4) , namely, (U(~G) : (U(~C»)c~A) < 00 is 
not true as seen by the following example. 

Example (3.6). Let G = (a3 = 1 = b2 : ab = a-I) be the symmetric group on 
three letters. Then every cyclic subgroup of G has order 1,2 or 3. Thus U (~C) = 
±C for all C ~ G. Thus (U(~C»)cCG = ±G whereas U(~G) contains elements of 
infinite order, for example , Ub,a = f + (b - l)a(b + 1). 

However, if one considers the normal subgroup of U(~G) generated by all 
U{~C) then we do get a subgroup of finite index as was proved by Kleinert [6] . 
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Theorem (3.7) (Kleinert). But for a few exceptions, we have that the normal 
closure of(U 7lC}cCG in U(71G) is of finite index in U(71G). 

Proof. See [11, p. 116]. 

The exceptions referred to above arise from the failure of the congruence sub­
group theorem. We shall discuss this soon. Let us establish some notation first. 

Let 

Q G = S1 EB ... EB St 

be the decomposition of Q G into its simple Wedderburn components and let 7rj 
be the projections. We identify Sj with (Ddn;xn;, the ring of nj x nj matrices 
over the division ring Dj. Suppose nj ~ 2. Let OJ be a maximal order in Dj and 
p an ideal in OJ. Let E(p) be the p-elementary matrices and SLj the matrices of 
reduced norm one contained in (OJ)n;xn , . We shall assume that in our case, G 
satisfies the following conditions: 

(i) (SLj: E(p» < 00 for all p <lOj. 
(ii) Any subgroup H of SLj normalized by a subgroup of finite index in SLj contains 

E(p) for some 0 :j; p <l OJ. 

We say that the component (D;)n,xn, satisfies (C.S.T.). If all the components 
have this property, we shall say that G satisfies (C.S.T.). In fact, it is a result of 
Bass-Milnor-Serre-Vaserstein that (i) and (ii) always hold if nj ~ 3 and for nj = 2 
they hold provided that Dj :j; Q or imaginary quadratic or a definite quaternion 
algebra. We shall further assume that if nj = 1 then Dj is a totally definite 
quaternion algebra, namely, the group of units of OJ of reduced norm 1 is finite. 
If G is nilpotent of odd order then all the D;'s are commutative and also nj = 2. 
Our first main result for noncommutative groups is 

Theorem (3.8) (Ritter-Sehgal). If G is nilpotent of odd order then (81 ,82 ) 

is of finite index in U(71G). 

R emark. In fact, it is proved in [9] that if G is a nilpotent group, satisfying 
(C.S.T.), for whose Sylow 2-subgroups the Dj's are commutative then (81 ,82 ) is 
a large subgroup of U(71G). If G has no subhomomorphic image Ks, the quaternian 
group of order 8, then the second condition holds (see [11, p. 106]). 

Now, some words about the strategy of proof of a result as above. By using 
(3 .5) it follows that in order to prove that (81 , H) is of finite index in U(71G) it 
suffices to show that H contains a subgroup Wj of finite index in SLj for all i with 
n; ~ 2 (see [11, p. 123]). To produce Wj we prove 

(3 .9) 7r;(H) contains a subgroup of finite index in SLj. 

Under the assumption of (C.S.T.) it suffices to produce an E(p) in 7rj(H). This 
assumption is used also to obtain the reduction (3.9). 

We return to the discussion of the case when G has a homomorphic image Kg. 
Remember that Q Kg = 4 Q EB III(Q) has no nilpotent elements and moreover, 



122 Sudarshan K . Sehgal 

U('ff..Ks) = ±Ks (see [10, p. 47]). Further, if ( is a primitive pth root of unity, 
IH(4X()) is not always a division ring. The result here is the 

Theorem (3.10). IH(Q «)) is not a division ring ¢::::} 0(2) mod p is even 
¢::::} x 2 + y2 = -1 has a solution in Q«). 

Proof. See [10, p. 173] . 

Remark. If p == 3 (mod 8) then certainly 0(2) mod p is even as 

Here is a list of few orders of 2 mod p. 

p 3 5 7 13 17 19 23 
0(2) 2 4 3 12 8 18 11 

Recall that IH(Q(R)) ~ (Q(i))2X2 by the map 

( R ) i~ R ' . (0 
J ---+ -1 

This can be extended to IH(Q «)) ~ (Q «))2X2 if Q «) has elements x, y 

satisfying x 2 + y2 = -1 by the map 

. (x y) ~~ , 
y -x 

. (0 
J ~ -1 

Jespers and Leal extended (3.8) to prove 

Theorem (3.11). a) IfG is nilpotent satisfying (C.s.T.) and has no llOmomor­
phic image Ks x Cp where p is an odd prime then (81, 82, 8~) is a large subgroup 
ofU('ff..G). 

b) If G is nilpotent satisfying (C.S.T.) and all odd primes dividing IGI are 
== 3 (mod 8) then there is a finite set 84 (explicitly defined) so that (81 , 8 2 , 8~ , 84 ) 

is a large subgroup of U('ff..G). 

Proof See [4] and [5] . 

This was further extended by Giambruno-Sehgal who proved the following 
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Theorem (3.12). Let G be a finite nilpotent group such that for each odd 
prime p dividing IGI, the order of 2 (mod p) is even. If G satisfies (C.s.T.) 
then (81,82 ,82, 8a) is a large subgroup of U(71..G). 

Proof See [3]. 

In order to complete the study for nilpotent groups one needs to know units in 
cyclotomic quaternions. We suggest the 

PROBLEM. Let ( be a root of unity so that the Hamiltonian quater ions 
IH( Q«(») do not split. Find explicit generators of a large subgroup of U(R) where 

Remark. To prove the sufficiency of (3 .9) for exhibiting generators of large sub­
groups it is possible to allow one simple component of Q G which doesn't satisfy 
(C.S.T.). This is used to prove that if G is dihedral then (81 , 82) is a large sub­
group (see [11, p. 125]). The same result is also true for G = Sn (see [11, p. 146]). 
It is possible to find generators for U{RG) where R = 7l..[(] for a suitable root of 
unity (. This was done by Ritter-Sehgal and Jespers-Leal (see [11, p. 154]). We 
do not know how to descend to 7l..G. 

1 A.V. Babin, M.1. Vishik, Attractors an Evolutionary Equations (Russian), 
Nauka (1989). 
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