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Rigorous Results on the Hopfield Model of
Neural Networks !

Anton Bovier® and Véronique Gayrard

Abstract: We review some recent rigorous results in
the theory of neural networks, and in particular on the ther-
modynamic properties of the Hopfield model. In this context,
the model is treated as a Curie-Weiss model with random in-
teractions and large deviation techniques are applied. The
tractability of the random interactions depends strongly on
how the number, M. of stored patterns scales with the size,
N . of the system. We present an exact analysis of the ther-
modynamic limit under the sole condition that M /N | 0,
as N | oC, i.e. we prove the almost sure convergence of the
free energy to a non-random limit and the a.s. convergence
of the measures induced on the overlap parameters. We also
present results on the structure of local minima of the Hop-
field Hamiltonian, originally derived by Newman. All these
results are extended to the Hopfield model defined on dilute
random graphs.

Key words: Disordered systems, neural networks, me-
mory capacity, random graphs.

I. Introduction

In this lecture we review some results on a disordered mean field spin system
that has over the last decade attracted, under the name of “Hopfield model™, con-
siderable attention in the context of modelling of cognitive phenomena in neural
networks such as the brain, and in particular has been used as the prototypical
model for autoassociative memory. Our main point of view here will be, however,
that of statistical mechanics of disordered systems and we will only comment on
the interpretation of the thermodynamical properties of this model in terms of
memory. For a more detailed exposition of these aspects, see e.g. the book by
Amit [A].

Let us first describe this model. Let Sy = {—=1, 1}" be the space of functions
o:{l.....N} — {=1,1}. We call ¢ a spin configuration on the set {1,..., N},
and o; € {—1,+1} the spin at (neural state of) the vertex (neuron) i. We shall
write § = {—1, 1} for the space of half infinite sequences equipped with the
product topology of discrete topology on {—1,1}. We denote by Bx and B the
corresponding Borel sigma algebras. We will define a random Hamiltonian func-
tion on the spaces Sy as follows. Let (Q, F, IP) be an abstract probability space.
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Let £ = {&'}i uev be a two-parameter family of independent, identically dis-
tributed random variables on this space such that [P(¢f' = 1) = IP(¢! = —1) = L.
For a given non-decreasing integer valued function M : IN — IN we denote by
1<p<MIN) We
I1<i<N s tYES
will occasionally denote this sub-family of random variables by &|x. A vector
&* = {€'}i=1, . is a particular random state of the system (neural network) and
often called a *pattern’. The Hopfield Hamiltonian on Sy is then given by

Fn the sub-sigma algebra generated by the random variables {&/*

N M(N)
I el
Hy(o) =~ 5 3 > eteloio; (1.1)
‘ 1,j=1 p=1

The history of this Hamiltonian is quite interesting. The simplest version
of it, where M(N) = 1, was proposed by Mattis [Ma] as a simple model of a
disordered magnet, but it was of course immediately realized that such a model
is entirely trivial and differs from a ferromagnet only by a gauge transformation
o; — o} = &io; of the spins. Luttinger [Lu] proposed a less trivial variant with
M(N) = 2 as a model of a spin glass and finally in 1977, Figotin and Pastur
[FP1] proposed a fairly large class of models, which included the above with
arbitrary, but fixed M, again as soluble model of a spin glass. Their paper, and
two follow-ups [FP2, FP3] contain a very nice and detailed analysis, including the
quantum and the Kac version of the model. As a spin glass model, this remained,
however, somewhat unsatisfactory, and this may be the reason why these papers
remained largely ignored (in fact, [ only became aware of them when meeting
Pastur during this very conference in Sao Paulo!!!). Five years later, Hopficld
[Ho] apparently unaware of this previous work, proposed the above Hamiltonian.
this time, however, as a model for autoassociative memory, and notably with
M(N) a possibly non-constant function of N. His work was inspired by Hebb's
learning rule [He] and arose from a dynamics point of view (a related model
had already been propsed by Little [Li] in 1974). It was however the fact that
the thermodynamic properties of his model show an immediate bearing on the
memory properties of the associated dynamical model that sparked the interest of
the physics and notably the spin-glass community in this new field. The findings of
Figotin and Pastur for the case of bounded M were recovered in papers by Amit,
Gutfreund and Sompolinski [AGS1] and van Hemmen [vH], and interpreted in
the new context as perfect functioning of the memory. However, more interesting
phenomena were discovered if M was allowed to grow with N; a seminal paper by
Amit, Gutfreund and Sompolinsky [AGS2] analysed this case using the method
of replicas and the idea of replica symmetry breaking, developed by Parisi et al.
[P] in the study of the Sherrington-Kirkpatrick spin glass model. They discovered
that if M was chosen as M(N) = aN, several phase transitions occurred as the
value of the parameter « increased. In particular, for & > a. = 0.14 the model
would enter into what they interpreted as a genuine spin glass phase. In terms of
memory, this phase was interpreted as a breakdown of memory and the critical
parameter a. is called the memory capacity of the system. These findings were
also confirmed by numerous numerical investigations.
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The rich structure of this model thus invites a more rigorous mathematical
investigation. Here it may be seen as an advantage over. say, the classical spin
glass models, that the function M(N) provides a parameter that allows to tune
the model from an essentially trivial ferromagnetic situation to complex spin glass
like behaviour. In spite of that, progress on the mathematical level has been fairly
slow and is still lagging considerably behind the heuristic understanding provided
by the 1985 paper of Amit et al. [AGS2]. In this paper we try to summarize part
of the few rigorously established results. These results are essentially of two types:
One, originally due to Newman [N], concerns the structure of the local minima of
the Hamiltonian only and thus is immediately relevant for the a noiseless gradient
dynamies. The second concerns the actual thermodynamics at finite temperature
and is relevant for noisy dynamics, which will have to be employed if spurious
‘false’ minima are to be avoided. This turns out, however, to bring about serious
new difficulties. The next two sections will be devoted to these two situations,
respectively.

Many variants of the classical Hamiltonian (1.1) have been proposed over
the years to more appropriately reflect particular model situations. They involve
the modification of the state space of a single neuron to accommodate more that
two values (Potts-Hopfield model [Ka,ES,FMP,G], modification of the a-priori
distribution of the patterns to accommodate asymmetries (biased model [BM])
or correlations, and many others. A variant that we want to highlight here is
the so-called dilute model, where not all neurons are interconnected, but where
this counection is described by a underlying, pattern-independent (dilute) random
graph. While this appears an important point for the modelling of actual neural
networks, it turns out that many of the results for fully connected model carry
over, suitably modified, to this situation. As we will come back to this model, we
give hiere a precise definition.

The Hamiltonian of the dilute Hopfield model is given by

m

Hy(o) = —\%P PITOIN T I (1.2)
& =

where p = [F(€;;) > 0. For given N, the ¢;; for i,j € {1...., N} form a family
of N2 independent., identically distributed random variables with common distri-
bution such that [P(e;; = 1) = 1 — IP(¢;; = 0) = p(N). The precise dependence
of these random variables on N can be set up in various ways (see e.g. [BG2])
but this will not be an issue here. We just notice that these variables of course
deseribe a random graph process with edge density p(N). It will be of interest to
allow p(NV) to decrease with N and in particular to see how fast it may be allowed
to decrease in order to maintain certain properties.

II. Thermodynamics of the Hopfield model
In this chapter we review some of the results on the thermodynamics of the
Hopfield model. To do this, let us briefly introduce the thermodynamic formalism.



164 Anton Bovier and Véromque Gayrard

For n € IN, we denote by g\,ﬁh the random probability measure (finite
volume Gibbs measure) on (Sy, B(Sy)) that assigns to each ¢ € Sy the mass

~BHN(O)=BR Y _ Ela,

GL (o=
o ?N A.h

(2.1)

where Z;{.‘th is a normalizing factor usually called partition function. The quan-
tity |

Thps 8= IN —InZy 4, (2.2)
is called the free energy. Note that all these quantities are Fy-measurable random
variables. The parameter /3 is the inverse temperature and h is called a magnetic
field aligned on the pattern £7. The purpose of thermodynamics is to identify
and characterize the nature of these measures in the limit as N tends to infinity.
In particular, one asks the question what happens with the limiting measures
when the parameter h is taken to zero. In the case where this procedure leads to
measures depending on the index 7 and the sign of h, we speak of ‘coexistence’
of several infinite volume measures for the zero-field model, or of a first order
phase transition. If these distinct measures are in one-to-one correspondence
with the original patterns, this phenomenon can also be interpreted in the sense
of a functioning memory, due to the fact that the Gibbs states furnish in fact
the invariant measures for the retrieval dynamices of the memory. This situation
is expected to take place at low temperature (and not too large M). Another
possibility, expected (and in fact essentially proven by ‘T'irozzi and Scaccitelli [1S])
at high temperature is uniqueness, i.e. the i | 0 limits of all the infinite volume
Gibbs measures should coineide. This clearly has the interpretation of no memory.
A more interesting breakdown of memory is expected even at low temperature, if
the number of patterns grows too rapidly with N: in this situation one may still
expect non-uniqueness but no simple correspondence between the set of extremal
Gibbs measures and the patterns.

A remark is in order concerning the above definition of the Gibbs measures,
and in particular concerning the magnetic field term. In principle, we might just
set h = 0 for the finite volume measures and consider the limits as N | ~. I this
is done in the usual ferromagnetic Curie-Weiss model, one finds a limit which
is, depending whether (7 is larger or smaller than 1, a delta measure concentrated
at 0 or a symmetric mixture of delta-measures concentrated at +a(/?) and —a(,3)
(for some a(d) > 0, see below), resp., where the latter two represent the actual
extremal (clustering) Gibbs measures of the model (which can be obtained as
limits with added positive or negative magnetic fields). In the present disordered
situation, such a procedure would encounter additional difficulties. Namely, the
corresponding sequence of measures would not be expected to converge at all, and
only suitably chosen random subsequences would converge to specific limit points.
One can then ask the question whether all extremal measures can be obtained
as limit points in this way, and for the situation we will treat below, there are
arguments that make this plausible, although this has not been proven. Adding
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the magnetic fields as done above is a very convenient tool to circumvent this
difficulty. What it does is, in fact, to give infinitely more weight to one specific
extremal measure and so to favour convergence to this particular limit, no matter
how small h is. However, it should be noticed that in order for such a scheme to
work, we need to be able to guess correctly what these extremal measures should
look like, which, as we will see works for M not growing too fast. If M grows
faster and the system gets into a spin glass phase, no such information is (yet)
available, and this makes such a procedure impracticable.

An important observation is that the value of the measure G,’L‘ﬁlh(a) does
depend on ¢ only through the quantities

N
!
my(0) = =3 Eloi, p=1,....M (2.3)
i=1

called overlap parameters, since the Hamiltonian may be written in the form
M )
Hy(o) = =N Z (mly (o))" (2.4)

This suggests to define the random map
My : Sy — IRM

25
o — Mn(o) = (my(0),...,mX(0)) S

and the measures Q?\".ﬂ‘h on (IRM B(IRM)) that are induced by GN s.p through
the map My, i.e.
Q!\'Jh_gN,@hoM [26)

Since

1
G804 = [RETMuen] ores M) =0

these induced measures determine the original measures uniquely. Thus it suffices
to determine the limiting induced measures. It turns out that a complete solution
to this problem is possible as long as M(N)/N | 0 as N | oo. Namely the
following theorem has been proven by Bovier, Gayrard and Picco [BGP]:
Theorem 1: [BGP] Assumne that M is non-decreasing and satisfies J'Efilm @
p :

= 0. Let a*(B) denote the largest (resp. smallest) solution of @ = tanh(8a).
Then, for all 3 > 0,

h]_l-lll)li‘lll'll ‘LN Sh = = 83dpyens O-8. (2.8)

where the limils are understood in the sense of weak convergence of probability
distributions; 875 5., denotes the Dirac-measure concentrated on a®(p)e" and "

is the n-th unit vector in IR™ . Moreover,

. 2 1 -
!!rITI‘éL fIng=15% = ;‘éi;?z (yj =% In (‘o:sh(;'}y)) ,  a.s. (2.9)
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Under stronger hypothesis on the growth ol M. this theorem has bheen proven
before in a slightly weaker form (i.e. rather then considering the limiting measures
themselves, generally only the expectation values of the overlap parameters were
studied): For the case of bounded M. a proof was given first by Figotin and Pastur
[FPI1, I'P2], and later reproduced, with more or less mathematical rigour. in papers
by Amit et al. [AGSI], von Henunen [vH]. ete. Later, Koch and Piasko [KP], using
a method due to Grensing and Kithn [(GK] (who, as we note in passing, were also
interested in models for disordered magnets and apparently at first quite unaware
of the neural network aspects of the models they discussed) obtained a result for
unbounded A, however under the rather strong hypothesis that A(N) < %
This result was extended to the Potts-Hopfield model and presented in the form of
Theorem 1 by Gayrard [G]. In 1992, two quite different. approaches were presented
to get results on the free encrgy under weaker hypothesis on M. One, due to
Shcherbina and: Tirozzi [ST] proved (2.9) with convergence in probability. while
another, much simpler one due to Koch [K], proved convergence of the miean, but
could, as was noted by Bovier and Gayrard [BG2]. easily be modified to yield tl
almost sure convergence. lu fact, the basic idea used in [K] furnished the starting
point. for the proof of Theorem | in [BGP].

The conditions in Theorems 1 are certainly optimal for the conclusions to
hold. They represent in a certain sense an ideal situation for memorization. As
M is allowed to be proportional to N this situation is expected to change in that
the Gibbs measures are no longer expected to be concentrated on configurations
that have exactly overlap 1 (or —1) with one of the original patterns. However,
Theorem 1 should be structurally stable in the sense that for small enough «
and low enough temperature, the Gibbs states of the model can be seen as simall
perturbations of the previous ones. A weak version ol such a result was proven in
[BGP]. To state it, we first need some notations:

For & > 0, we denote by a(é, 7) the largest solution of the equation

da = tanh(da) (2.10)
Let || - || be the £-norm on ™. Given that iy e 'wf\:vl = o, we set, for fixed
B,
Hf,,”"‘} = {u | [la = sa(l = 2\/ev. 3)e”|| < p} (2.11)
IFinally, put
B, = U Bl (2.12)

(v )EINX|—1,41}

Theorem 2: There ersts oy > 0 such thal ;f!imé%?ﬁ—’ = o, wilh a < oy,
then, for all 3 > 1 4+ 3/a, if p* > C'(a(l = 2\/a, :3}}””(:”"‘1 a7, for almost
surely,
lim Q:\'.J.h:[] []};r] =1 21-”
N~
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The set B, is a union of disjoint balls as long as 7 > m (The power 1/4
is probably not optimal and due to technical problems in the proofs; we would
expect this result with a power 1/2). In this case, one would naturally expect that
the exiremal Gibbs measures are concentrated on these individual balls, that is
would really be perturbations of the measures in the & = 0 case. Unfortunately,
we have so far no rigorous argument to proof this.

We will not give the proofs of these Theorems here, as they are quite involved,
but only indicate a broad outline. The first step in the proofs consist of slightly
smoothening out the induced measures Q?\".ﬁ.ﬁ by convoluting them with a normal
distribution of variance 1/(7N). While this does not change the limiting measures,
the resulting measures have a density with respect to M-dimensional Lebesgue
measure and, moreover, their density can be written in quite explicit form as

exp (_5"\"(’?\!.;1&(3))

n e ‘
Nan(®)= (2.14)
v [ dMz exp (*d.-’\r'dblrl_ﬁl,,(.r))
with
% L, ()= l(.r — he’ & — he") — 2 i In cosh (3(&x);) (2.15)
N.G.h 9 ) - .dN < . i -

f=1

Thus, we are almost in the standard situation for an application of Laplace’s
method, except that

(a) the function @ is random and

(b) the dimension M of the underlying space depends on our large parameter N.

As a matter of fact, if M remains bounded, problem (b) does not exist, and
problem (a) is almost non-existent, as ® converges to a non-random limit (by
the law of large numbers). These points have been noted and exploited already
in [FP1]. For unbounded M our proof is pushing Laplace’s methods beyond
its immediate domain of applicability ‘by hand’, but this requires the growth
~conditions on M(N). In fact, we show that under the condition of Theorem 1 (i.e.
if M = o(N)). the position and values of the absolute minima of the function ®
are asymptotically non-random and that problem (b) is harmless. The proof of
Theorem 2 relies on the fact that even for M = aN with small enough o« we can
localize approximately the absolute minima, but with much less precision. We
expect, however, that these estimates can still be improved.
Let us note that the statements of Theorem 1 can be generalized in particular

to the dilute Hopfield model with Hamiltonian (1.2). Namely

Theorem 3: The conclusions of Theorem [ hold for the dilute Hopfield model
(1.2) aof the dilution rate p(N) and the number of patterns M(N) satisfy the con-
ditions

(i) p(N)N | oc as N | oc and

(i1) S5E 10 as N | .
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The conditions on the dilution rate in Theorem 3 is presumably the weakest
possible for the result in this sharp form. The basic result in [BG2] that allows to
prove Theorem 2 is a bound that states that with large probability the Hamiltonian
(1.2) and its mean with respect to the dilution (i.e. the ¢; which is of course
nothing but the original Hopfield Hamiltonian (1.1)) are close to each other in the
sense that their difference is of order o(N). untformly in the ¢ € Sy, provided
hypothesis (i) and (ii) hold. For the precise statemient, see [BG2].

Before closing this section, let us mention one more recent result by Pastur,
Shcherbina and Tirozzi [PST]. They consider the so-called Edwards-Anderson
parameter,

N

in= 5 3 [Ghanton)] (2.16)

=]

Their result can be paraphrased by saying that of the variance ol gy tends to zero
as N | oo, then the order-parameters of the model are those given by the simiple-
minded use of the “replica-method™ (see [AGS2]). This result is analogous to the
one obtained for the Sherrington-Kirkpatrick model by Pastur and Sheherbina
[PS]. The problem is ol course to determine whether the assumption on gy is
verified. From our ‘I'heorem 1, it follows that this is the case il a = 0, and from
[Se'T] this is known to be true at high temperature. In general, at low temperature,
one cannol expect this ‘self-averaging’ to hold.

Summarizing, we see that the low-temperature properties of the Hopficld
model for o > 0 still remain to be analyzed from a mathematical point ol view:;
Theorem 2 is a first step into this direction. In the next section we discuss some
results concerning at least the structure of the Hamiltonian function in this regime,

II1. Bounds on the storage capacity

The results on the thermodynamics in the last section concern the true stable
states of the dynamics of the infinite svstem at finite temperature (noise). If one
is interested in functioning of the memory on some long. but not inlinite tine-
scale, this may not necessarily be the relevant issue. and it definitely is not the
relevant issne for a deterministic gradient dynamies. Newmian [N] therefore in 1987
considercd the following question: For which range of the parameter o is there a
correspondence between the patterns and the local minima of the Hamiltonian i
the sense that each pattern is surrounded by an energy barrier ol extensive height”
Clearly, for the gradient dynamics this condition means that starting not too far
from a stored pattern. the system will remain elose to this pattern for all tines:
and even il noise is added, this should remain true for a rather long, though finite
time.

Newman's result. has been generalized to the Potts-version of the Hoplield
model in [I'MP] and to the dilute model in [BG1]. We give a precise formulation
of it in this latter context.
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We define on the space of spin configurations the usual Hamming distance,
(3 l r L
d(o.o') = E[N—(U,o’)], (3.1)
that is the number of components of the spins ¢ and o’ that disagree. For any o

and any number é € [0, 1] we denote by §(e,8) the sphere of radius 8 N centered
al o, 1e.

S(a,8) = {o’'|d(a,0') = [§N]}, (3.2)
Let us set
hy(e,8)= min  Hy(o) (3.3)
a'e€S(o,8)

We will say that there exists an energy barrier of height e N centered at £, if for
some & € (0,1/2),
ha(€#,6) > Hy(E") + €N (3.4)

Then
Theorem 4: [BG1] Suppose p > c\a'-l-“w"\'—r, Then there exists o, > 0, such that
if M < a.pN ., then there exists € > 0 and 0 < & < 1/2 such that

llmlnf mf (hN(E,u,&} — Hy(E")—€eN) >0 as (3.5)

Moreover, «, ~> (16(In(2/8(1 + a))In(2))~", where
(i) a~0 if n %N [ oc

(it) a < :fr- > 7, and

(1) a = l + = ofhrrurzsr

In the partlcular case p = 1 this theorem was first proven by Newman [N]. It
is possible to get from the proof more precise information on the relation between
¢, & and «. In particular, it is possible to extract from it that local minima are
located precisely at the original patterns if M < ch—fv—N. and they are located a
distance o(N) from the patterns if M = o(N). The first statement was known
from earlier work of McEliece et al. [MPRV] and the second agrees with the zero-
temperature version of Theorem 1. It should be noticed that the a. in Theorem
4 is much larger than that of Theorem 3, and that they are not supposed (even
ideally) to coincide.

Newman also showed that these minima are not the only ones, but that there
exist many others, associated to ‘mixtures’ of the original patterns, in accordance
with prior non-rigorous results of Amit et al. [AGS2]. On the other hand, an
exhaustive enumeration of alllocal minimais still missing, as is a complete analysis
of the depth of all those minima. Both information are needed to analyse the
finite temperature properties of the model. Also, for a more detailed analysis of
the dynamics and the various time-scales that could appear, such information is
required.

Let us remark finally that so far nobody has been able to prove a converse of
Newman's Theorem, that is to show that of & exceeds a critical value, then (3.5)
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is false. Numerical results appear to imply this with . = 0.14, and it would be
interesting to get a better idea for what is happening at this threshold.

The proof of Theorem 4 is based on quite standard large deviation estimates
and actually rather straightforward. at least in the case p = 1. For general p < |,
it requires some further, non-trivial probabilistic bounds on the largest cigenvalues
of all submatrices E; defined as

¢Gj ifi€eland jel”
(Er);;j =9 ¢; i€l and jel (3.6)
() otherwise

uniformly for all subsets I of cardinality |/| = 6N, namely that with large prob-
ability, maxy [|Ey|| € ¢6(1 — &)pN. In [BG1] this was shown to hold under the

condition p > w"l\i but is is not clear that this is the optimal condition. Note

in comparison that Theorem 2 requires only that pN | !
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