
Rigorous Results on the Hopfield Model of 
Neural Networks 1 

Anton Bovier2 and Veronique Gayrard 

Abstract: Vile review some recent rigorous results in 
the theory of neural networks, and in particular on the ther­
modynamic properties of the Hopfield model. In t.his context , 
the model is t.reated as a Cllrie- Weiss model with random in­
teract,ions and large deviat.ion t,echniqlles are applied, The 
t.raf'tabilit~, of t.he randOll1 interactions depends strongly 011 

how t.h e number, !VI. of stored patterns scales with the siz.." 
N. of t.he system, We present an exact analysis of t.he ther­
modynamic limit. under the sole condition that. 111/ N .I. 0, 
as N I =, i, e. we prove the almost sure convergence of the 
free energy t.o a non-random limit and the a.s. convergence 
of t.he ,neastU'es induced on the overlap parameters. We also 
present results on t.he st.ructure of local minima of the Hop­
field Hamilt.onian. originally derived by Newman. All t.hese 
results are extended to t.h e Hopfield model defined 011 dilute 
random graphs. 

Key wOl'ds: Disordered systems, neural networks , me­
mory capacity, random graphs. 

I. Introduction 
In this lecture Wf' review some results on a disordered mean field spin system 

that has over the last decade attracted, under the name of "Hopfield model", con­
siderable attention in the context of modelling of cognitive phenomena in neural 
networks such as the brain, and in particular has been used as the prototypical 
model for autoassociative memory. Our main point of view here will be, however, 
that of statistical mechanics of disordered systems and we will only comment on 
the interpretation of the thermodynarnical properties of this model in terms of 
memory, For a more detailed exposition of these aspects , see e .g, the hook by 
Amit [AJ. 

Let us first describe t.his model. Let SN = {- L, l}N be the space of functions 
a : {I , ... , N} -;. {-I, I}, Wf' call a a spin configuration on the set {I " ", N} , 
and ai E {-l,+l} the spin at (lleural state of) the vertex (neuron) i. We shall 
write S == {-1, 1}.llV for the space of half infinite sequences equipped wit,h the 
product topology of discrete topology on {-I, 1}. We denot.e by L~N alld B t.he 
corresponding Borel sigma algebras. We will define a random Hamiltonian func­
tion on t.he spaces SN as follows. Let (fl , F , IP) be an abstract. probabilit.y space. 

1 Invited talk prese nt.ed by AB . at t.hE· 5° CLAPEM , Sao P a lliD , 1993 
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Let ( == {(f}i ,I'ELN be a two-paramet.er family of independent. , idpllt.ically dis­
tributed random variables on this space such that. IP((; = I) = LP((; = -I) = ~. 
For a given non-decreasing integer valued funct.ion M : IN ~ IN we el cnol.e I), 
:F N the sub-sigma algebra generated by the random variables {~:'}: ~;,11~/( N). \Vt ' 

will occasionally denote t.his sub-family of random variables by ~~v-:- A vecto l' 
e-' == {(; } i = 1" N is a particular random state of the systenl (neural lIet.wo rk) alld 
often called a 'pattern '. The Hopfield Hamiltonian 011 SN is thell givPII hy 

N M(.II/) 

H N ((1) = - 2~ L L (f'(j'(1j(1j 
i,j =1 1,=1 

(1.1 ) 

The history of this Hamilt.onian is quite int.eresting. Tlw simplest. version 
of it. , where M(N) == L was proposed by Mattis [Ma] as a si1llple rn odpi of a 
disordered magnet, but. it was of course immediately realized that such a lllodel 
is ent.irely t.rivial and differs from a ferromagnet only by a gaugp transformatioll 
(1; -t (1~ = ( ; (1; of the spins. Luttillger [Lu) proposed a less trivial variant with 
M(N) == 2 as a model of a spin glass and finally in 1977, Figot.in and Past.ur 
[FPI) proposed a fairly large class of models , which included the abovc wit.h 
arbitrary, but. fixed tv! , again as soluble model of a spin glass . Their papPI', ami 
two follow-ups [FP2 , FP3] cont.ain a very nice aJld det.ailed a llalysis , in cluding tilt' 
quantum and the Kac version of t.h e mode l. As a spin glass l1lode l, I.h is I'f' llla illt 'd , 
however , somewhat unsatisfact.ory, and t.his lllay be t.he reasoll why these papel's 
remained large ly ignored (in fact. , I only became aware of thenl wheu llweLillg 
Pastur during this very conference in Sao Paulo!!!) . Five years later , Hopfit ' ld 
[Ho] apparelltly unaware of this previous work , proposed t.he above Hamilt.oni an . 
this time, however , as a model for aut.oassociative m emory, a nd not.ably wit.11 
M(N) a possibly non-constant. function of N. His work was inspired by Heb!; "s 
learning rul e [He] and a rose from a dynamics point of view (a rela ted 1ll0(IPI 
had already been propsed by Little [Li] in HJ74) . It. was however t.h e fa('t. that 
the thermodynamic properties of his lIlodel show an immed iate bea.ring on t.l 1<' 
m emory properties of t.lw associa l,ed dynamical model that sparked t.he interest of 
the physics and notably t.h e spin-glass ('ommunit.y in t.his new field . The filldillgs of 
Figotin and Pastur for t.1lf' cas('~ of boullded M were recovP I'C'd in papers by Ami!. , 
Gutfreund and Sompolinski [AGSl] and vall Hemmen [vH] , a11(1 iut.c l'pretpd ill 
the new context as perfect functioning of the memory. Howt 'ver, more int eres tillg 
phenomena were discovered if M was allowed t.o grow with N; a seminal pa pe r hy 
Amit , Gutfreund and Sornpolinsky [AGS2] analysed this case using t.he nwt.hod 
of replicas and the idea of replica symmet.ry breaking, developed hy Parisi et a l. 
[P] in the study of the Sherringtoll-Kirkpat.rick spin glass model. They discovered 
that if M was chosen as M (N) = aN, several phase transit.ions occlIJ'recl Cl...'l I,he 

value of the parameter 0' increased . JIl particular , for 0' > 0'< ~ U.l4 the llIod('1 
would enter into what they int.erpret.eel as a genuine spin glass phase. [n terms of 
memory, this phase was interpreted as a breakdown of m emory and the criti cal 
parameter o'c is called the memory capacity of the system . These f'indillgs were 
also conf'irmed by numerous numerical investigations. 
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The rich stl'Ucture of t.his model thus invites a more rigorous mathematical 
iuvestigat,ioll. Here it may Iw seen as an advantage over. say, the classical spin 
glass rnod els. that. t.he funct.ion /vl ( N ) provicit-s a paramet.!'r that allows t.o tum~ 

the model from an css(>ntially trivial ferromagnetic situation to complex spin glass 
like behaviour. In spite of that, progress Oll thE' lIlat.hemat icall evel has been fairly 
slow and is st.illlagging considerably behind the heuristic understanding provided 
by the 1985 paper of Ami!. et al. [AGS2]. [n this paper we try to summarize part 
of t.he few .rigorously establish ed rcs ul ts. These results are essentially of two types: 
One, originally due to Newm an [N], concerns t.he structure of the local minima of 
the Hamiltonian ouly and t.hus is immediately relevant for the a noiseless gradient 
dynamics . The second concerns the act.ual tlwrrnodYllamics at finite telllperature 
and is relevant for noisy dynamics, which will have to hl' employed if spurious 
' false' minima are to be avoided . This turns out, however , to briug about seriolls 
new difficulti es. The next. two sectiolls will be devot.ed to these two situations, 
respec t.ively. 

M any variants of the classical Hamiltonian (1.1) have been proposf~d over 
the years t.o more appropriately reflect particular rnodel situations. They involve 
the modification of the state space of a single neuron to accommodate more that 
two values (Potts-Hopfield model [Ka,ES,FMP,G], modification of the a-priori 
dist.ribution of t.he patterns to accommodate asymmet ri es (biased model [BM]) 
or correlations, and many ot.hers. A variant that we want to highlight here is 
the so-called dilute model, where not all neurons are interconnected , but where 
this connection is described by a underlying , pattern-independent (dilute) random 
graph. vVhil f' this appears an irnportant point for t.he modelling of actual neural 
networks , it. turns out that. many of the results for fully conne(·t.ed lTlodel carry 
over , suit.ably modified, t.o t.his situation. As we will come back t.o this II100el, we 
give' lwre a precise definition. 

1'11<' Hamiltonian of the dilute Hopfield model is given by 

( 1.2) 

where p = IE( <ij) > O. For given N, t.he fij for i , j E {1 .. .. , N} form a fa mily 
of N'2 indepr-mdent., ident.ically distributed random variablt~s wit.h comlTlon distl'i­
but.ion such that. JP(f ;j = J) = J-IP( cij = 0) = p(N) . The precise dependence 
of these random variables on :V Ca.ll be set up in va rious ways (see e.g. [BG2]) 
but this will not. be all issu e here. vVe just. notice t.hat these vari a bles of course 
describe a ra ndom graph process with edge density p(N). It will be of interest. to 
allow p( 1\1) to decrease with N and in particular to see how fast it may be allowed 
to decrease in order to llIaint.ain cert.ain properties. 

II. Thermodynamics of the Hopfield model 
In t.his chapter we review some of the result.s on the thermodynamics of the 

Hopfield model. To do this , let. us briefly introduce the thermodyna.mic formalism . 
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For 7J E LV, we denote by g'k, {3 ,h the random probability measure (finite 
volume Gibbs measure) on (SN, B(SN») that. assigns to each u E SN the mass 

,-:7) () = __ 1_ - {3 HN(CI)- 13h L. 1\ ~;'CI, 
":1N,j3 ,h U - Z7) e E 

N ,d ,h 

(2 .1 ) 

where Z~,13 , h is a normalizing fact.or usually called partition functio1l. The quan­
tity 

/ " - 1 I Z" 
N, j3. h = - ;3N Il N ,j'l ,h (2.2) 

is called the free energy. Note t.hat. all these quantit.ies arp F N-measurable" random 
variables. The parameter /3 is t.he inverse t.nrl(wrature and h is called a magnflic 
field aligned on the pattern ~7) . The purpose of thermodynamics is t.o ident.ify 
and charact.erize t.he nature of t.hese measures ill the limit. as N t.ends to infinity. 
In particular, one asks the question what happens with t.he limit.illg measmes 
when t.he parameter h is t.aken to zero. In t.he cas(' where t.his procedul'e leads t.o 
measures depending on the index 17 and the sign of II, we speak of 'coexistencp' 
of several infinite volume measures for the zero-field modd , or of a first. order 
phase transition. If these distinct, measures are in OIU'-to-one cofl"t'spondellC<' 
with the original patterns, t.his phenomenon can also be" interpre!.pd ill t1w fwns(' 
of a functioning memory, due to the fact. that. t.he Gibhs st.ates furnish ill fact. 
the invariant measures for the retrieval dynamics of the memory. This sit.uation 
is expected t.o take place at low t.emperature (amI not too larg(' M) . Anot.lwr 
possibility, expected (and in fact essentially proven by Tirozzi and Scaccit.elli [TS]) 
at high temperature is uniqueness, i.e . the h J 0 limit.s of all t.he infinit.e volt"IW 
Gibbs mea..<;ures should coincide. This clearly has the interpret,ation of 110 nlcmory. 
A more interest.ing breakdown of memory is expected even at low t.empnatllre, if 
t.he number of patterns grows too rapidly with N: ill this sit.uation one lIIay st.ill 
expect non-uniqueness bill. no simple correspondence Iwt.we(~ n the set. of ('xt.rerllal 
Gibbs measures and the patterns. 

A remark is in ord er concerning the above definitioll of t.he Gibbs measures , 
and in particular concerning the magnetic fi eld term . In principle, we Illight. jllst. 
set h = 0 for the finite volume measures and consider the limits as NJ ,x,. H titis 
is done in the usual ferromagnetzc Curie-Weiss model, one finds a limit. which 
is, depending whether ;J is larger or smaller than 1, a delta measure con('ent.rat.ed 
at 0 or a symmetric mixture of delta-measures concentrat.ed a t +0( ;3 ) and -1/(,1:1) 
(for some 0(,8) > O. see below) , I'esp. , where t,lw latter two represent the act.ual 
extremal (c1ust.ering) Gibbs measures of the model (which can be oht.ained as 
limits with added posit.ive or negat.ive magnetic fi elds) . In the present. disordered 
situat.ion, such a procedure would encounter addition a l difficulties. Namely, the 
corresponding sequence of measures would 1I0t. be expected to conwrge at. a ll, and 
only suitably chosen random subsequences would converge to specific limit point.s. 
One can t1wn ask the question whether · all extremal measures can be obtained 
as limit points in this way, and for t.he situation we will treat, below, t.here are 
arguments t.hat. make this plausible, although this has not, been proven. Adding 
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the magnetic fields as done above is a very convenient tool to circumvent this 
difficulty, What it does is, in fact, to give infinitely more weight to one specific 
extremal measure and so to favour convergence to this particular limit, no matter 
how small h is, However , it should be noticed that in order for such a scheme to 
work, we need to be able to guess correctly what these extremal measures should 
look like, which, as we will see works for M not growing too fast. If M grows 
faster and the system gets into a spin glass phase , no such information is (yet) 
available, and this makes such a procedure impracticable. 

An important observation is that the value of the measure 9'J., {3, h«(J) does 
depend on 17 only through the quantities 

N 

I' _ 1 "" It mN«(J) = - L ~i (Ji, 
N i=1 

It=l, ... , M (2.3) 

called ove1'lap parameters, since the Hamiltonian may be written in the form 

M 

HN«(J) = -N L (m;.!,r«(J))2 (2.4) 

This suggests to define the random map 

MN : SA ~ lR,lvl 

17 ~ MN«(J) == (m~«(J), . .. , m~ (17)) 
(2.5 ) 

and the m easures Q'J. ,{3,h on (mllJ, B( mlVI)) that. are induced by 9'J., {3, h through 
the map MN, i.e . 

QTI _ 9T1 M-1 
N,{3,h = N,{3,h 0 N (2 .6) 

Since 
aTI (' ) 1 QTI (M ( ')') 
'dN,{3 ,h 17 = IMN1 (MN«(J))I N,{3,h N 17 (2.7) 

these induced measures determine the original measures uniquely. Thus it suffices 
to determine the limiting induced measures. It t.urns out that a complete solution 
to this problem is possible as long as M(N)jN 1 0 as N 1 (x). Namely the 
following theorem ha..<; been proven by Bovier, Gayrard and Picco [BGPj: 

Theorem 1: [BGPj Assume that M i8 non-decT'easing and 8atisfie8 lim MJ:I 
Nloo • 

= O. Let a±{.B) denote the largest (resp. smallest) solution of a = tanh(,Ba). 
Th.en, for all .B ~ 0, 

lim lim Q'j. {3 h = 8~({3)p", a.s. 
h-O± Nloo " 

(2.8 ) 

where the limits are understood in tlte sense of weak convergence oI probability 
distributions; 8~( {3)e " denotes th.e Dirac-measu1Y' concentrated on a±(.B)e" and 1'" 

is th" 11- tit unit vector in mIN . Moreover, 

. '. (y'2 l' ) }lf~fN ,{3 = fg w == ~~~ 2 - ~lncosh(f3Y) , a.s, (2 .9) 
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Under stronger hypo t.h es is 0 11 t.h t' growth of i\I/ , this I.llt'o relll has I.we ll PI"< )Vf' 1l 

before in a slight.ly weakn form (i .e. rather thell cOllsirkl'illg Ihe limiting nll'aSlIr('s 

themselves , genNaIly only t.IH' expect.at.ion values of lIw over lap paramet.(-'I's wI ' r, · 

studied) : For til(> case o f bounded AI. a proof was given first by Figot. in alld l'asILlJ' 

[reP 1, FP2) , and lal(' r r eproduced , wi lil 1110 1'( ' or I<'ss matlwillat i cal rigo lll' , in papn" 
by Amit. d al. [AGS!) , von Hemllwll [vl-l) , etc. Lat.er , K oc h and Piaskr, [1\1'), using 

a Illf't.hod dill' t.o (;rensing and Kiihn [er\) (who , as we 110t.e in passing , wert' a lso 

interested in Illodels for disorderf'd 111 agnets alld apparent.ly at first. quit.e un awa rf' 

of tht' neural network asppc ts o f til<' m odels t hey dis('.uss(~d) obtained a ['("sui t fo r 
. , ~ 

unbounded AI, hO\vever ullrln t.h (' rat.her sl rang hypot ilf's lS I ha t. 111 ( N ) < "'\''2 ' 
This result was ex tendpd t.o tlt(' Po tl,s- llop fi eld m odel and presen ted ill t.iw fOJ'llI () f 

Theorem 1 by Gayrard [G) . In 1!H)2 , t.wo quit.p diH'er t' lll, a.p proaches \-wrc prt's(, lIt,ed 

t.o g('(, results on t he free elll-'rgy Iinder wea ker hypot. hesis on Ai . 011(' , dll<' 1(. 

Shcherbina and' T irozz i [ST) prov('d (2.0) with convergell ce in proba.bili ty. w hile 

anot.her , much simpler o ne rlue 1. 0 I\och [1\) , prov"d ('o ll vergt' llc.e of t.1lt' nl("an , I)u l 

could , as WilS not.ed by B ovil'r and C;ayrard [B(;2). easily be IrIodifipd 1,0 yield! l it' 
almost sure converg(~n ('e. III fact , t. ht' basic id('a IIsl' d ill [1\) fllrnisll ed (.h(' st.artill g 

po int. for til(' proof o f TIII'o relll 1 ill [Be; 1'). 
TIlt' ('ollditions in T I1I'or(' l1ls I an' cert. ailll y o pt.i mal fo r t.he ('onclu sio ll s 10 

ho ld . T IH'Y rppresent. ill a ('crl,aill S(,IIS" all ideal si t. uat.io ll fo r Il1crn o ri zal i0 11. ,\" 

M is a llowcd t.o be proport.iollal (. 0 !V I.his sit.uat.ioll is ('XI)('cI.c>d 1·0 cha ll g(' ill I.hal 
the Gibhs m easures are 11 0 IOllgel' t'X I)( '(, \·I'd t.o bl" CO ll cclI(,ra.I,,,d 0 11 (, o llfi g llr a'i(lll~ 

t.hat. have exact.l y overl ap I (or - 1) w it.h 0 11 (' o f t.l1C original palt (' J'Ils . 1I 0WI ' vI ' I' . 

T heof f'm J sho uld 1)(' siruct.urally st.ahl (,' ill I,IIt' S(' II SI~ t.hal, fo r slI lidl (,lIo llg h (I 

and low ('Ilough t. t' IJlIWl'ature, t.li (' (;ihhs st.a!."s o f IIJ(' IJl o(kl n Ul 1)(' S(,( ' II as SIII " II 

p(~rt.urbations o f th t" prf'vious OIWS. A w("ak v('J'sioll o f sllc h " r('slIlI, was IHOV( ' II III 

[BGP). To stat.e it" w(' (il'st. 11<'('d SO liit' lIo !.al iOll s: 

For {, > n, Wf' (knot t' hy a(h,;3 ) t.lw la rge'S! soilitio ll o f t.11t' (' (lIla t. io ll 

f,a = t.all h Ci3n) (:l.IU) 

II II .) I:V,· I I' M( N ) r ( I L et . he the {'-- lIorm 0 11 [tf . (,Ivell t. 'Ia.t. IITIN 1"-' ~ = (J , Wt' sd., ,orix( '( 

P. 
LJ~" " ') == !;/' III·/, - .... a( 1 - :lV;;. ;J) ( "II < PI (2.11 ) 

Fillally, put 

u (:l . 1 :l) 

(1I •. ,jEL'Vx{- I .+I) 

Th 2 '/ . ( , I h 'j ' I' MIA ) . / eorem : Tlfrf e:r1l;i.suo > )1;'11 ('1, 1(1./1 lnl~=n , 'IIJ"I(\::;(l I" 

the1/.. faT' all /J > 1 +:l.;o. ifp" > C (a(I-2jG, IJ)) :I/'!ol/"'llnIlI J / ."I. JOT' (I./1IIOS/ 

surely, 
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The set. Bp is a union of disjoint. balls as long as f3 > l _c ~'74 (The power 1/4 
is probably not. optimal and due to technical problems in the proofs; we would 
expect this result with a power 1/2). In this ease, one would naturally expect that. 
the extremal Gibbs measures are concentrated on these individual balls, that is 
would really be perturbations of the measures in the a = 0 case. Unfortunately, 
we have so far no rigorous argument to proof this. 

We will not give the proofs of these Theorems here, as they are quite involved, 
but only indicate a broad outline. The first step in the proofs consist of slightly 
smoothening out the induced measures Qiv,f3,h by convoluting them with a normal 
distribution of variance l/(;3N). While this does not change the limiting measures, 
the resulting measures haw a density with respect to M -dimensional Lebesgue 
measure and, moreover , their density can be written in quite explicit form as 

(2.14) 

with 

lIN 
<I>iv ,{:J,h(x) = "2(x - he'/. ;r - heTJ) - ;3N L In cosh (f3(~X)i) 

,, =1 
(2.15 ) 

Thus , we are almost in the standard situation for an application of Laplace's 
method, except that 
(a) t.he fun ction <I> is random and 
(b) the dimension M of the underlying space depends on our large parameter N. 

As a m atter of fact , if M remains bounded , problem (b) does not exist, and 
prob lem (a ) is almost non-existent , as <I> converges to a non-random limit (hy 
the law of la rge numbers). Th ese point.s have been noted and exploited a lready 
in [FPlj. For unbounded M our proof is pushing Laplace's methods beyond 
its immediate domain of app li cability 'hy hand ', but this requires the growth 

' conditions on M( N) . In fact , we show that under the condition of Theorem 1 (i.e. 
if M = a( N), the position and values of the absolute minima of the function <I> 

are asymptotically nOll-random and that problem (b) is harmless. The proof of 
Theorem 2 relies on the fact that even for M = aN with small enough a we can 
localize approximately the absolute minima, but with much less precision. We 
expec t , however , that these estimates can still be improved. 

Let us note that the statements of Theorem 1 can be generalized in particular 
to the dilute Hopfield model with Hamiltonian (1.2) . Namely 
Theorem 3: Th e conclusions of Th eorem 1 hold for th e dilute Hopfield model 
(l .2) if th e dilution rat e p( N) and the number of patt erns M (N) satisfy the con­
ditions 
(i) p(N)N T = as N T = a,nd 

( " ) M(N) 1 0 'V 'r II p(N)N ' as 1 DC' . 
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The condit.ions 011 the dilution ratl' ill Theore111 :3 is presullla.bly tI)(' weakesl, 
possible for the res ldt. ill t.his sharp forlil. The basic result ill [BG2] that allows 1.0 

prove TheoH' 1ll '2 is a boulld that st.a.tes t hal with la.rgt' probability I.Iw Hamiltonia.1I 
(1.2) and its mea II with respt'ct. to tlw ddllli 'Ji I (i.f'. th e (ij which is of course 
nothillg bill. the original Hopfield H ami 11.011 iaJl ( I , I )) aI'(' closp t.o eac h ot. he r ill Ihe 
sense that. t hei I' diffe re ll c(' is of ordn o( N). unifo1'1I1./Y in I.Iw (T E ""·,v, pro\' idl,d 
hypothesis (i) and (ii) hold. For t,lw prcxist' s(.al.erll (' II 1. , SP(' [13(;2], 

Before closing this sectioll, le I. liS 11")(' 111 iOIl 01H' 1Il0 re recc nl, rps lIlI, by Pas l,11 r . 
Shcherbina and Tirozzi [PST], They colls ici e l' lIw so-cal It'd Edwai'ds-Andl'l'"oll 
parameter , 

( '2. I () ) 

'fh eir I'esult. call be paraphrased by saying t.hal, If t,l)(' varialJ('" or liN I "Ilels 10 ZI'J'O 

as N l (Xl, tht'll t.he orcln-parauwt.f'rs of t.hl' nlodel arc·' t.hose gi\'( ' 1l I)y I,h(' silllpk­
minded use of (,Iw "replica-mel,hod " (s(O(' [ACS'2]), This J'( 'tHdt is allalogolls t.o t.llI' 
0111' obt.ained for I.he Sherri11gtoll-I":irkpatrick model by Pasl,ur alld Shclwl'billa 
[PSJ. The prohlC'111 is of ('ollrsf' 1.0 determine wlwl,lJ('r 1,1)(' assuiliplioll Oil (IN is 
verified. Frolll 0111' '· I'II<'Or~~ l1l I , it follows t.hal this is til(' cas(' if II = 0, alld fl' o lll 
[ScT] t.his is kllOWIl t,o he true at. high t.c' rnperature . In general, ai, low t.f'llIpel'at, lIrc ~ , 

one cannot. t'Xlwcl, this 'sd f-avf' l'aginp; ' to ho ld . 

Summarizing , we see thai, t.he 10w- t'("lIlpc rat.IIJ'(-' Prolwl't ies of I,hc Hopfi l' ld 
model for n > U still remain to he allalYZf'd from a lI1atherllali cal point, of vicw: 
Theoft'lll 2 is a first. step int.o this din'ct.ioll. In t.llP lIexl, sectioll we disCliss SOIllI' 

result.s concPl'IIing at lea<;t. the st,l'lI cl,ur(:' of t.he lIamilt,oniall fllnct.i on in this )'<'gi n}(' , 

III. Bounds on the storage capacity 
The result.s on t.h e t.lwrlllodYlIamics in the last, s(-'c t.i o l1 COllc, ' rll 11](-' 1,1'l1l' stahle 

stat.es of t.h e dynall1ics of t.he infinitt' sysI,erli at. rillit,e l,ell1 pcra lllr( ' (lloise·). If 01H' 
is int.erest.f'eI in fun ctioning of the melno ry 011 SOlll(' IOll g. hili II !) I ildillit{, I ilIW­
scalc, I,his Ill ay 1I0t, lI ecessarily he the I'e levant, issLle. alld il ddillit.{ ' ly is lIul, Ihe 
rel{'vanl iSSl1P for a det,f' rminislir gradient, dYllalllics. NeWlllall [~] t II{'r,,forl' ill I !)t(i 

considefl 'd t.h e fo llowing quest.io ll: Fo r which I'all)!;( ' of \,1)(' parrtlll l' l, ' 1' It is I.hl'l' l' ;\ 

correspondence belweC'n the pat,tcl'lIs and tilt' /O('(l.illlinillla or I,hl' Ilalllilt.o niall ill 
t.h e sense that each pat,tern is stIJ'I'ound<'d by all clwrgy barrier of ,'xt."llsi\'(-' Iwight? 
Clearly, for t.he gradient dynamics this cOlldition lIlt'ans t.h a t, st.arlillg 1101 too far 
from a stort'd pat.krn . t.h e system will l'elIl ai II clost~ t.o this paU( ' 1'1l fo r all t.illws: 
and even if noist' is added, t.h is should n ' lIlai II I,rut-' 1'01' a I'alhel' IUllg . I,ho ugh fi II it" 
lime. 

Newman's I'('s liit. has ht'c il genera.li;f,<:'d 1.0 Ih{ ~ Po(l.s-v, ' r"i o ll or IIII' liopfi( ' ld 
model in [/"1'\'1 P] a.1Il1 t.o tl1P diluL(:' modd ill [BC I]. We give a prcris(' f()l'lIl1dal iUIi 
of it ill t.his latt.e/' rOlltt.'xl.. 
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We defin e Oil the space of spill configurations the usual Hamming distance, 

d(u, U') == ~[N - (U, u')], (3 .1) 

that is the number of components of the spins u and u' that disagree. For any u 
and any Humber 15 E [0,1] we deuote by S(u, 15) the sphere of radius 15N centered 
at u , i.e . 

Let. us set, 

S(u, b) == {u'ld(u, u') = [15N]} , 

hN(U, 15) == min HN(U') 
'7'ES('7,h) 

(3 .2) 

(3 .3) 

'vVe will say that there exists an energy barrier of height fN centered at ~" , if for 
some b E (0 , 1/2), 

(3.4) 

Then 
Theorem 4: [BGl] Su.ppose p ~ cJlnt!'. Then there exists (t c ~ 0, such that 

if M ::; (}cpN, then there exists I': > 0 and 0 < b < 1/2 such that 

liminf inf (hN(c.J.L , 15) - HN(e') - I': N) ~ 0 a.s 
Nfoo O~,,~m 

Moreover, a c :::::~ (16(ln(2yi8( 1 + a» In(2»-I , where 

(i) a::::: 0 if ~ r 00 

(ii) a < ~ if c2 >::::: 7, and 
(iii) a = i + ~ otherwise . 

(3.5) 

In the particular case p == 1 this theorem was first proven by Newman [N]. It. 
is possible to get, from the proof more precise information on the relation between 
1':, 8 and a . [n particular, it is possible to extract. from it that local minima are 
located precisely at the original patterns if M < c I::N' and they are located a 
distance o(N) from the pattems if M = o(N) . The first stat.ement was known 
from earlier work of McEliece et al. [MPRV] and t.he second agrees with the zero­
temperat.ure version of Theorem l. It should be noticed that the a c in Theorem 
4 is much larger than that of Theorem 3, and t.hat they are not supposed (even 
ideally) to coincide. 

Newman also showed that these minima are not the only ones, but that t.here 
exist many others, associated to 'mixtures' of the original patterns , ill accordance 
with prior non-rigorous results of Amit et al. [AGS2] . , On t.he other hand , an 
exhaustive enumeration of aI/local minima is still missing, as is a complete analysis 
of t.he depth of all t.hose minima. Bot.h information are needed to analyse the 
finite temperature properties of the model. Also , for a more detailed analysis of 
the dynamics and the various t,ime-scales that could appear, such information is 
required . 

Let us remark finally that so far Hobociy has been able to prove a converse of 
Newman 's Theorem , that is to show that. of Q exceeds a critical value, then (3.5) 
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is false . Numerical results appear to imply this with (l r ~ (J.] '1. and it would he 
interest.ing to get a hpt.ter idea for what is happening at. this t.hreshold . 

The proof of Theorem 4 is based on quite standard large deviat.ion ('s(.illl<l.(.es 
and act.ually rather straightforward. at. least. in the case p = I. For gCIH'ral /1 < I . 
it. requires some furl.her , non-trivial probabilistic bounds on I.he largest. (·ig('lIvalucs 
of all submatrices E/ defined as 

{ 
f" I) 

(E[) .. = ( .. 
I) I) 

o 

if i Eland j E j" 
if i E rand j E J 
otherwise 

(a.o) 

uniformly for all subsets 1 of cardinality 111 = bN, namely that. with large prob­
ability, llIax} liE/II S rh(l - b)]J:\j. In [BG L] this wa.,> shown to hold und er t.h e 

condition ]J ~ JI~~Y, but is is not clear t.hat. this is t.he optirnal condition . Note 

in comparison t.hat. Theorem 2 requiJ'(~s only that. pNI oo! 
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