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Applying the Bootstrap: An Example
A. C. Davison and D. V. Hinkley

Abstract We illustrate bootstrap methods in a simple
example. Among ideas discussed are: basic distributional ap-
proximations; confidence limit methods; improved calculation;
tests; bootstrap sensitivity analysis; regression; and nonpara-
metric likelihood inference.
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1 Introduction

Bootstrap methods are simulation procedures for assessing the variability of es-
timators and for performing relatively model-free tests. They have developed
greatly from their introduction by Efron (1979) to the recent books by Hall (1992)
and Efron and Tibshirani (1993). The purpose of this paper is to illustrate some
of these methods in a simple example.

Table 1 gives n = 32 observations on the number of faults, y, in lengths of
cloth, z. The data, displayed in I'igure 1, show an increase in faults with length.
In this paper we [ocus on the mean number of faults per unit length, 8. One central
conern is how to form confidence intervals for 0 based on the ratio estimator, but
we also address questions such as whether the ratio is a good choice for these
data, and whether a model in which E(y) = 0z is appropriate, or whether a
nonparametric curve would be more suitable.

Section 2 describes the use of simulation in analysis of these data, and discusses
how the basic sampling plan may be adapted to more complex situations. The
choice of estimator from the data is discussed in §3, and §4 describes how the
simulation may be made more efficient. Confidence limits and tests are discussed
in §§5 and 6. Sensitivity analysis for our methods is described in §7, and in §8 we
briefly outline how nonparametric likelihoods can play a role in data analysis.

2 Some Basic Ideas

2.1 Simulation

In practical problems many estimators are assumed to be approximately normally
distributed. If so, inference for the parameter of interest, #, could be based on this
distribution, with estimated mean and variance. For example, if an estimator T
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Figure 1: Numbers of faults in 32 lengths of cloth (from Bissell, 1972). The dolted
line is for a fitled Poisson model, and the solid line for a generalized additive

model.

is normally distributed with mean 0 4+ B and variance V, we can base confidence
intervals for # on the approximate standard normal distribution of

_T—(0+ B)
Z= Vvi/2
giving approximate (1 — 2a) x 100% confidence interval
(B=B= V2 _, b= B=V,), (2.1)

where t is the observed value of T and z, is the a quantile of the standard
normal distribution. However (2.1) involves the unknown bias and variance of T
and cannot be used as it is, and furthermore the normal approximation for Z may
be poor.

One approach to estimation of B and V is to use the data themselves as a
working model, estimating I by the empirical distribution function F, where F
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puts mass n~! on each observed pair (zj,y;). The true parameter and the bias
and variance of T,

o= JyiF(@.y)

= Tedf(e,yy C=ETIO)=0 Vi=va(T|F),

would then be estimated by

yd (2,1 — 1 - ; . . y
¢ = J¥iFEY) _ "_IZ"”‘ B=ET|F)—-t, V=va(T|F).
[zdF(z,y) 7'z

The estimates B and V would be obtained analytically if possible, and otherwise
by simulation.

The jackknife can provide simple analytic estimates of bias and variance for
T, using the influence function or infinitesimal jackknife values for the statistic.
These are . A
. H-aF H;} —-t(F
i M0 PR,
e

Lj =

where Hj represents the distribution function putting unit mass on (z;,y;). Once
the L; have been obtained, by numerical differentiation if need be, simple bias
and variance formulae are available: B, = 0, and V;, = n~? S L;‘v'.

In order to approximate I3 and V by simulation, we generate R replicate
synthetic samples, by sampling uniformly at random with replacement from the
data and calculating the corresponding values of T', labelled T*. Since our model is
that the data are a random sample of pairs, an observation from the working model
is a pair (y,z;) = (yj-,x;+), where j° is randomly selected from {1,....,n}, and
the rth replicate sample and simulated value of T* are (z},,¥;,), ..., (2}, u;5,)
and t; = Zj Yjr/ 2_; %;r- Monte Carlo approximations to B and V based on
t],..., 1l are

R
B =R'Y ti—t=0—t. V' =(R-1)""D (17 -1) (2.2)

r=1 r=1

Table 2 shows the calculations for a very small simulation with R = 9. Each
row gives the frequencies with which the original pairs occur in a simulated sample.
Here B* = —0.002 and V* = 0.0268, so the estimated 95% confidence interval from

supposed normality of Z* = {T" — (t + B)}/f"lﬁ is obtained by replacing B and
V with estimates B* and V=, to give

(t—B" —1.96V*"/% 1 — B* +1.96V*"/?) = (1.19,1.83).

The accuracy of B* and V= as approximations to B and V depends on R, and in
practice we would of course choose 2 > 9.
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4.17 4.41
2 8
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6.42 6.45
10 6
29 30
8.68 8.95
8 28

9 10
458 491
4 7
20 21
6.51 6.57
4 9
31 32
9.06 9.52
23 9
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4

22
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14

Table 1: The numbers of faults (y) in lengths (z) (metres x102) of cloth. From
Bissell (1972).
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Table 2: R = 9 replicate samples for the cloth data.

1

W= —_—o0oc oo oo

29 30 31 32
8.68 895 9.05 9.52
8 28 23 9
1 1 1 1
0 2 0 1
1 0 1 3
0 0 0 0
3 1 0 2
1 2 1 3
2 2 0 0
0 3 4 1
1 0 0 3
2 2 2 1

Statistic
t=1.510
iy =1.372
i3 = 1.394
ty = 1.449
ls = 1.460
lg = 1.521
t: = 1.812
ts = 1.456
loa = 1.752
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If we were unhappy with the normal approximation to T, the empirical quan-
tiles of the ¢ can be used to estimate the true quantiles of 7', as described in
§5.

An advantage of this approach over purely analytical calculations is that we
can inspect the simulation output to diagnose difficulties with an analysis, and to
suggest alternatives. For example, the top left panel of Figure 2 shows a histogram
of 1000 simulated ratios, overlaid with a density for £* obtained by a saddlepoint
approximation: the distribution seems very close to normal. This is confirmed
by the rankit plot in the middle left. panel, which overlies the null line except in
the extreme tails. The top right panel shows the simulated ¢t* plotted against
the corresponding simulated averages %, while the vertical dotted line shows the
value of z for the data. The other panels are discussed below.

2.2 General comments

Among questions arising from the approach to data analysis used in §2.1 are:
(a) what statistic 7" should be used to estimate 67
(b) which estimate F of F should be used?
(c) how do we calculate properties of T given [?

In choosing T, we should consider its bias and efficiency under plausible models,
its robustness to departures from those models, its resistance to small changes in
the data, ease of calculation, and its pivotality under plausible model(s), where
a pivot is a function @(7';#) whose distribution does not depend (much) on F'.
Some of these can be checked from the replicate samples themselves.

The commonest possibility for (b) is a parametric model, often with parameters
estimated by maximum likelihood. Another possibility is a nonparametric model
like the one in Section 2.1, based on the empirical distribution function F'. However
other estimates such as smoothed versions of I might be considered for certain
problems (Silverman and Young, 1987; De Angelis and Young, 1992).

Once an estimator T and estimate of I/ have been chosen, the final choice to
be made is how to calculate the properties of interest. We have already mentioned
simulation from I, known as the nonparameltric bootstrap, but we could also sim-
ulate from a fitted parametric model, a procedure sometimes called a parametric
bootstrap. If the statistic is sufliciently simple, analytic calculation of some of its
properties may be feasible, but this is rare, and usually simulation must be used.

2.3 Extensions

The general idea of bootstrapping is to approximate the required property of ¢ by
the empirical property of t™'s calculated from simulated data sets. Ilere “property
of t” can mean things such as bias, variance or cumulative probabilities, and hence
percentiles, all of which can be expressed in terms of averages of a function h of
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Figure 2: Bootstrap results for cloth data. The top lefl panel shows a histogram
of 1000 simulated ratios, t*, overlaid with a saddlepoint approrimation to their
density. The middle lefl panel 1s a rankil plot of the resampled ratios t*. The bot-
tom right panel is a histogram of resampled ordinary lcast squares estimates. The
right panels show resampled ratios t* plotied against * for the original sampling
scheme and two in which the pairs are stratified by the values of x;.
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T — 0. For bias and variance we have (2.1), and for the cumulative probability
pr(T — @ < ¢) we take h to be the indicator of the event T'— 6 < e.
The general approach that underlies the simulation described in §2.1 is :

1. identify the underlying distribution(s) F for data;

2. define the quantity of interest as a function of F', 8 = {(F);
3. define an ¢stimate F' for F' based on data D;

4. choose t = {(}F') as an estimate of 8 = {( F');

5. identify ¢ as the value of 0 for F, the simulation model;

6. define 7™ as the estimator under sampling from F';

7. identify 17 — t as an approximation to 7' — #;

8. repeat I timnes:

e generate a sample D* by sampling with replacement from F;

e calculate the value of ¢* by applying the t-algorithm to D*;

9. approximat. L{h(1' = 8)} by R=' M h(1z —t).

r=1

Fabellishimenis on this procedure deal with non-iid structure of data, as with
scveral samples, regression or time series; correction for error in Step 7 (by boot-
strapping the boorstrapping): replacement of actual simulation of samples (by
small-sample asyriptoties); more efficient versions of Steps 8 and 9 (using Montc
(‘arlo tricks); and refinements for special objectives, such as confidence sets and
significance tests

To illustrate how the algorithm might be ehanged, suppose that it was desirable
to construct resamyples with roughly the same value of #* as the original data. This
would be sensible il it was thought necessary to condition the analysis on the
values. One procedure for generating simulations in which % was less variable
would be to divide the data into strata depending on the values of the x;, and to
resample within the strata. The bottom right panels of Figure 2 show the effect
of this for two and four strata.

One model for the data is that var(y;) = ogﬁ.cj. that is, a model with a linear
variance function but response overdispersed r lative to the Poisson distribution
if ¥ > 1, as the data seem to indicate. If tlis model was judged sensible on the
basis of residual plots, it would be better to accomodate the changing variance of
y;j and the conditioning by using a different resampling plan. In the regression
formulation

y =0z + 001”21;!25;?

where the ¢; are ind-pendent errors with mean zero and unit variance, F' would

represent the empirical distribution function of the residuals ¢; = (y; —tz; )/.1:}"’2.
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This would be bootstrapped by resampling &3, ..., ¢ at random from ey, ...,
en, forming new responses y; = {x; + J.‘.:-!?E;, and constructing the weighted least
squares estimate b* = 3"y /) ;. Notice that the statistic is still the ratio,
which is the appropriate weighted least squares estimate under this model, but
the resampling scheme is different. Possible refinements include making a leverage
adjustment to the residuals, and rounding the y* to the nearest non-negative

integer, because the y; are counts.

3 Choice of estimator from the data

In any practical situation there may be uncertainty about which estimator to
use, especially if the analysis is to be robust or model-free. To take a simple
example, if a robust alternative the average is to be used, then one might want
to use a trimmed mean but not know what percentage of the data to trim. In
such problems a bootstrap analysis can be very effective, by providing estimates ol
variation for each o the possible estimators — this is illustrated for the trimmed
mean by Efron (1992).

In the regression rontext, we can use bootstrap methods to help choose among
a variety of estimates. For example, with the cloth data we can easily compare an
ordinary least squarcs estimate of slope b = Y z;5:/ Y. x? with the ratio cstimate
discussed earlier. The same simulated data sets used to estimate variation of
the ratio can be used to estimate variation of b: we just add computation of
bootstrap sample cstimate b* to the previous simulation algorithin. The bottom
left panel of Figure 2 shows the histogram from 1000 such simulations, when
random sampling of data pairs was used. Evidently the ratio is less variable. The
respective bootstrap standard errors for ¢ and b are 0.136 and 0.161.

In the context of robust estimation, i.e. estimation which is resistant to out-
liers, the influence of individual cases on any particular estimator can be studied
by the “jackknife-after-bootstrap” method outlined in §7. In this way choice of
estimator can be combined with data-screening.

Sometimes the choice of estimator is based on some form of test, as with
regression curves. Here again, as we illustrate in §6, one can use bootstrap methods
to advantage when more traditional methods are either unsafe or unavailable.

A danger with data-driven selection of estimator is that a bias is induced in the
estimated variation of the chosen estimator: the minimum of several estimated
standard errors is biased downward. The danger is usually not serious. For
discussion see Leger and Romano (1990) and Efron (1992).

4 Improved calculation

Numerous methods have been suggested to improve the efficiency of the nonpara-
metric simulation scheme outlined in §2.1. Unfortunately the easiest to implement
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also usually give the siallest gains in efficiency, and the more powerful general-
purpose methods must be used with care lest they make matters worse.

A powerful approach for statistics that can be written as smooth functions
of averages or solutions to estimating equations rests on saddlepoint techniques
(Reid, 1988). These remove all Monte Carlo error and can give highly accurate
approximations to densities and probabilities (Davison and Hinkley, 1988; Daniels
and Young, 1991; DiCiccio, Martin and Young, 1992). The saddlepoint approxi-
mation to the density of ¥ when Y, ..., ¥, is a random sample from a distribution
function F' with cumulant generating function A (u) = log E(e*Y) is

n

1/2
foly) = {m} exp [n{N(u) — uy}],

where u solves the saddlepoint equation A'(u) = y. There is a related expression,
F(y), for the curmulative distribution function of Y. The key to using this in
nonparametric simulation is to note that if ¥" ... Y7 is a random sample from
the empirical distribution function F, the cumulant generating function of Y7 is

n

K(u)=log | n~' Z Bt

ji=i

to which we may apply the formulae for fi(y) and Fi(y). The top left panel of
Figure 2 shows the saddlepoint approximation to the density of 7™ for the cloth
data, which is obtained by noting that 7* < t if and only if )~ (y;+ —txj-) <0, and
then applying the ideas above to this sum (Daniels, 1983). These methods can
be lactors of 50100 times faster than simulation in certain problems (DiCliccio,
Martin, and Young, 1992; Hinkley and Shi, 1989), hut they can be complicated
to implement.,

A number of methods are based on linear approximations to the statistic of
interest. Suppose that 1™ admits an expansion

'I"':t+u"2fj'!1j+...‘ (4.1)
i=1

where fj-' is the frequency with which the jth observation appears in a simulated
sample. The linear approximation to 7™, Ty, is the first two terms on the right
of (4.1). Control variate methods rest on the correlation between T and 77,
aiming to use T} as a proxy for 7™ in such a way that only the difference between
the two statistics needs to be estimated by simulation. If 7* and T} are highly
correlated, the result can be highly accurate ecstimates of moments and quantiles
of T (Davison, Hinkley and Schechtman, 1986; Efron, 1990: Do and Hall, 1992).
For our problem the correlation between the ratio and its linear approximation is
0.99, so we would expect these methods to work very well.
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Other approaches to efficient simulation can be based on importance sampling
(Johns, 1988; Booth, Hall and Wood, 1993; Do and Hall, 1991), balanced resam-
pling (Davison et al., 1986; Graham, Hinkley, John and Shi, 1990; Gleason, 1988)
or antithetic resampling (Hall, 1989). Appendix II of Hall (1992) contains a the-
oretical comparison of efficient simulation methods, which are also discussed in
Efron and Tibshirani (1993, Chapter 23).

5 Confidence limits

As bootstrap methodology has developed, a variety of confidence limit techniques
has surfaced. Here we review the main techniques, and apply them to our ratio
estimation problem.

5.1 Basic confidence limit method

The simplest method is essentially to put an interval or region around the point
estimate. So for a scalar parameter @, estimated by T, define a, to be the p
quantile for T'— 6: pr(T' — 0 < a,) = p. Then the exact upper confidence limit
with coefficient 1 — e is t — a,, which is based on the formula

pr(T — 0> a,) =1—a.

The corresponding equi-tailed 1 — 2« interval is ({ — @) o, —a,) Usually the exact
ap’s are unknown and must be estimated. While often a normal approximation
can be used to do this, the bootstrap offers a more accurate approximation.

A bootstrap estimate for the 1 — 2« interval is obtained from the resampling
distribution of T* — t. If the R t* values have already been ordered, then top—t
estimates a,. So the bootstrap confidence interval is

i— (ta—a)ﬂ —t) =2t — tFl—a}H' t—(top —1t) =2t — L, p,

with approximate error rates « at each end.

This interval will not have exact coverage 1 — 2a, because the distributions of
T —0 and T™* —t are not exactly the same. There are four ways to correct the basic
formula for greater accuracy: use of transformation (i.e. calculation of limits on
a transformed scale known to produce correct coverage, followed by untransfor-
mation); use of Edgeworth series, explicit or implicit; use of studentization; and
bootstrap estimate of coverage bias.

In our ratio example, with R = 1000 simulations, the following ordered values
of the bootstrap ratio were obtained:

I 25 50 950 975 995
tr 1178 1.2562 1.285 1.736 1.779 1.893
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The sample ratio was 1.510. So, for example, the 95% bootstrap interval for
the population ratio has limits 2x 1.510—1.779 = .24 and 2x 1.510—1.252 = 1.77.

5.2 Bootstrap {

If we follow the analogy with Student’s t-statistic, then a more stable quantity
should be the studentized version of ¢ — 0, i.e.

Z=(T-=0)/SE(T)

where SE(T') is the estimated standard error of 7', i.e. calculated assuming that
the CDF is F. One simple standard error formula is the nfinilesimal jackknife
formula SE* = n~* 2=l L%, with Lj the empirical influence function for case j.
The o gquantile for 7 is estimated by the aRth ordered value of z* = (t* —)/SE*
in the same I simulations producing the {*’s. Then, assuming the z* values are

already ordered, the 1 — 2 confidence interval has limits
t— 2 \_ap XSE, -z 5 xSE;

these are analogous to the Student-t limits for the Normal mean in classical statis-
tics.

If the infinitesimal jackknife is used, we can approxunate the bootstrapped
version SE*? by n=2 3" Li..

Although in principle the bootstrap £ method is more accurate than the basic
method, the denominator may be somewhat unstable: variance estimates often
are. For further theoretical discussion see Hall (1992).

For our data, the bootstrap distribution of £ from R = 1000 samples is quite
skewed. Figure 3 shows a normal quantile plot of the z* values, and a scatter plot
of 1* versus SL™, the latter suggesting possible instability of the method.

The following ordered values of z* were obtained:

& 5 25 50 950 975H 995
= 3669 2715 -2.157 1429 1.719  2.364

r

The infinitesimal jackknife standard error for the ratio is SE = 0.1398. So, for
example, the 95% confidence interval has limits 1.510 — 0.1398 x 1.719 = 1.13 and
1.510—0.1398 x (—2.715) = 1.75. These differ considerably from those computed
with the basic method.

5.3 Percentile method

In some cases, a transformation of the estimate 7" may be nearly or exactly sym-
metric in distribution, perhaps even Normal with constant variance. Then the
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Figure 3: Normal quantile plot of studentized ratio estimates and scatter plot of
ratio versus estimated standard error from R=1000 bootstrap samples.
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percentile method is applicable, even if the transformation itself is unknown. For
if the transformation g(7') of 7" has symmetric distribution, then on the trans-
formed scale a, = —aj_o. Therefore the upper | — a limit for € in the basic
method can be re-expressed as

g~ Ho(t) —an} = g7 {g(t) + a1-a}.

which is estimated by

g ! {.’J’(U +9(t_ k) —y[l}} =9 i ain) = Vs

which does not depend upon ¢(.) at all. This upper limit is called the percentile
-

. r A . . |t—d,Jf?J'
The percentile method is slightly simpler than the basic method, and in a

limited number of cases will work better. But the assumed symmetry ignores bias.
And as with the basic method its accuracy requires that 7% — 1 and T' — 0 have
the same distribution, in particular the same variance. So in general practice the
percentile method is not good. However a reliable corrected version of the method
is available, as described next.

For the ratio data, some relevant ordered values were given above. From these
we calculate, for example, that the 95% interval has limits 1.25 and 1.78. These

upper limit. The corresponding 1 -2 confidence interval has limits (17 5,

are very similar to the limits calculated from the basic method.

5.4 Adjusted percentile method

The basis for the corrected method is a refined Normal approximation which incor-
porates bias and nonconstant variance. The derivation is described by Efron and
Tibshirani (1993, Chapter 22). Here we outline the method for the nonparametric
case.

Two constants are used for the adjustment, defined as

n 3
1 ZJ =1 L,i

a=z =

5 (Z;_'= l L;:’) 3/2

and b = ®~1{G(1)}, where G is the empirical distribution of bootstrap statistic
values 1" and @ is the standard normal integral. These constants correspond to
heteroscedasticity and bias adjustment factors. The upper o percentile limit ¢, 5
is then replaced as follows: calculate z = ®~'(a), next

(b+ =)

g = bt T

and then a.4 = ®(24q). The adjusted upper o limit is loesi R
For the ratio data, we calculate @ = 0.0326 and b = $~1(0.532) = 0.080, the
latter since 532 of the 1000 {* values are Lelow § = 1.51. So for the 95% interval,
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which combines the 2.5% and 97.5% limits, we first calculate the adjusted values
@qqi =0.0454 and 0.9883. Then the adjusted confidence limits are 135, = 1.28 and
t3ss = 1.82. These are similar to earlier limits, but adjusted slightly to the right,
which seems unnecessary.

A recent theoretical development has been the approximation of the adjusted
percentle limits using numerical differencing in place of resampling. The resulting
method, called the ABC method, is fully discussed by Efron and Tibshirani (1993,
Chapter 22).

5.5 Comments

There is often little difference among the various confidence limits, and as yet
there is no definitive method of choice, despite the theoretically higher accuracy
of the bootstrap ¢ and adjusted percentile methods.

Iterated resampling is another device for improving on accuracy, essentially
using bootstrapping a bootstrap confidence limit algorithm to estimate and correct
for bias in coverage.

When 0 is a vector, confidence regions require a shape. One possibility is to
work with a quadratic from, such as Q = (T — 0)TV~Y(T — 0) where V is an
estimated variance matrix. Using quantiles of the bootstrap distribution of @,
one would then obtain as an elliptical confidence region the set of 0 satisfying
Q < q(.l—o}R assuming the ¢°’s were ordered. Methods such as this might be
capable of giving good coverage, meaning close to nominal level 1 — a, but the
ellipsoidal shape could be very misleading -— as the corresponding regions often
are in nonlinear regression problems. One possible improvement would be to find
a transformation which normalizes the distribution of T*, and use it with the
preceding method, followed by untransformation — assuming this can be done.
Ideally one would wish to have something like a likelihood-based confidence region.
This is to some extent possible using one of the nonparametric likelihood methods
mentioned in §8. Further research is needed in this important area.

6 Tests

One tool in the statistician’s toolkit is the permutation or randomization test,
which gives a model-free assessment of significance for a test statistic. Bootstrap
tests have a similar but wider domain. For example they can be applied to fairly
standard problems, such testing equality of means, lack of correlation and zero
regression effects. Or they can be applied to test unimodality of a density, equality
of curves, and so forth where no explicit model is available.

In most applications we choose a test statistic T, observe its value { and then
want to calculate the significance probability P = pr(T >t | Hg) where Hg is the
null hypothesis of interest. (We assume that T' is carefully chosen so as to give
large values under likely alternative hypotheses.) Ideally P is uniquely specified
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by Hg but this is not always possible. So we must choose a null-hypothesis data
distribution Fy which satisfies Hg, and calculate

P =rpr(T >t | Fp).

In parametric analysis Fy would be a maximum likelihood estimate, and T would
be chosen so that its null hypothesis distribution depends as little as possible
on the exact values of unspecified parameters, e.g. by conditioning. Our inter-
est, however, is in nonparametric or semiparametric models where the stochastic
element (e.g. error distribution) is unknown.

6.1 Permutation tests

Permutation tests, and related randomization tests, are well-known and widely
used. For recent accounts see the book by Manly (1991), and the article by
Romano (1989).

As an example, suppose we wish to test the null hypothesis of independence
of X and Y using the sample correlation R(x,y) whose observed value is r. Then
the permutation test significance is

P = pr[R{x, perm(y)} > 7]

which can be approximated by Monte Carlo — for example gencrating 1000
random permutations of y and counting the proportion of them which lead to
R{x,perm(y)} > r.
The permutation distribution, which is justified by a conditioning argument, i~
very similar to that obtained under a null hypothesis estimate of data distribution.
Note that adaptive permutation testing, is possible with data-based selection
of statistic, as described by Donegani (1991).

6.2 Nonparametric bootstrap test

We define the null hypothesis sampling model by bending the EDF F' to Fy which
satisfies Hy. The calculation of P will usually be by bootstrap sampling from Fj
to obtain R simulated samples and their test statistic values ¢, and then

1 ) .
Pr= R ( number of times ™ > 1).

For example, in the problem of testing a correlation we can take Fy = G H,
the product of the marginal EDF’s of 2 and y. The resulting test is very similar
to the permutation test. -

One general approach is to choose Fy to minimize some appropriate distance
dist(F, Fy) subject to Hy. This may lead to such things as empirical exponential
families (Efron and Tibshirani, Chapter 21), or may be infasible. Often it is
simpler to impose conditions slightly stronger than Hy, but this should be done
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with care. So, for example, to compare two sample means we could assume that
under Hy the corresponding two distributions are identical, in which case Iy is a
common distribution equal to the pooled EDF.

The general recommendation for R when calculating probabilities is to use
R = 1000 or bigger if possible, but this applies to estimating the whole distribution
of T. In fact we could determine R sequentially: if R = 20 and P > 0.5 then stop
and if R = 100 and P < 0.01 then stop, etc. For discussion see Besag and ClifTord
(1991).

For our ratio data, one model we have referred to is E(Y | ) = fz. Suppose
that we had fitted a model-free curve to the (2, y) data by one of the new computer-
intensive exploratory methods. To compare such a curve to the fitted linear model
is one way to test for linearity. Figure 1 shows an example, the solid curve being
a generalized additive model fit.

Thinking of the linear model as a generalized linear model, we do not know
the error distribution: it is too dispersed to be Poisson. So how can we do a test?
The first step is to choose a test statistic S, such as sum of squared differences
between the line and the curve. Next we must choose the null hypothesis model
to generate bootstrap samples. One way to do this is as follows: First obtain the
weighted least squares fit y = {2, where t is the ratio estimate if we use Poisson
weights. Then simulate data according to the null hypothesis model

yi = tai + Vb, 6 ~U(d1,... 6n)

with SJ- = round(y; — tz;)*/,/Z;. For each sample generated in this way, refit the
line by weighted least squares and refit the nonparametric curve, then calculate
the measure of difference S*. Such an analysis for these data was carried out by
Firth, Glosup and Hinkley (1991) who found a nonsignificant result (P > 0.05)
as one would expect a priori. This contrasted with an analysis assuming Poisson
error distribution, which misleadingly found a very significant result.

It seems very likely that bootstrapping will occupy a key place in the assess-
ment of nonparametric curve fitting.

7 Sensitivity Analysis

In order to understand the implications of a statistical calculation, it is impor-
tant to assess its sensitivity to changes in the data. If a parametric model has
been fitted, there is wide range of diagnostics for detecting outliers and influential
cases, particularly in regression analysis, and careful scrutiny of these is part of a
bootstrap analysis, just it is part of any other analysis. But if a nonparametric
bootstrap has been used, then the empirical distribution function F in effect is
the model, and there is no baseline against which to test for outliers. Sensitivity
analysis will then concern the effect of individual observations on bootstrap calcu-
lations, to answer questions such as “would the confidence interval differ greatly if
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this point was removed?”, and “what happens to the significance level when this
observation is deleted?”

A direct answer to these questions is possible from the array of bootstrap fre-
quencies, simply by restricting attention to those replicates in which observations
do not appear. That is, for each observation, we examine the distribution of the ¢;
for samples where it did not appear. This is called the jackknife-after-bootstrap,
because it involves seeing the effect of deleting each observation in turn on a
bootstrap calculation. See Efron (1992). Figure 4 shows the quantiles of these
jackknifed distributions plotted against the infinitesimal jackknife values for the
observations. If observation 30, which has the largest L;, was deleted, the dis-
tribution would become slightly more concentrated, with the largest change at
its upper end, and its quantiles would decrease by about 0.05. Deletion of each
of the other observations seems not to change the concentration of the simulated
distribution, though the quantiles move in the way one would expect.

8 Empirical Likelihoods

Likelihood methods are widely used in parametric inference because they allow
formal use of prior information via Bayes' theorem, they allow amalgamation
of information from different samples, they are often transformation-invariant,
and they can lead to confidence sets for multivariate parameters. There i1s a
growing literature on nonparametric analogues of the likelihood function. the most
prominent of which is Owen’s (1988, 1990, 1991) empirical likelihood.

Suppose that given a random sample yi, .. ., yn, we restrict interest to distribu-
tions supported on the data, that is, we focus on multinomial distributions that put
probabilities p; on the observations y;. A parameter 6 determined nonparametri-
cally by t(F) = 0 will be a function of the p;, so we can write {(F) = t(p1,...,pn)-
The observed value of 0 is tg = t(n~',...,n~'). Owen proposed that inference
about 0 be based on the profile likelihood

L@ = sup  []p

pitlpy,...pn =0 j=1

which he called the empirical likelihood for #. In a situation like ours, where @
is determined by the estimating equation [ u(8;y)dF(y) = 0, a straightforward
application of Lagrange multipliers shows that

1

where the Lagrange multiplier 7, is the root of the equation

Z u(0:y;) ~0
= 1+ neu(: y;) '
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Figure 4: Jackknife after bootstrap plot for cloth data. The solid lines show the
effect on the 0.05, 0.1, 0.16, 0.5, 0.84, 0.9, and 0.95 quantiles of dropping each
observation in turn, plotled against the infinitesimal jackknife value for the ratio.
The dotled lines are the quantiles based on the entire datasel. The observation
number is shown at the fool of the plot.
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Figure 5: Log empirical likelihood for cloth data.
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For the ratio, u(0;y;) = y; — 0z;, and given a value of 8, 7y is easily obtained
numerically. The log empirical likelihood for the cloth data, log Lg(0), is shown
in Figure 4.

Remarkably, standard chi-squared approximations apply to the empirical like-
lihood ratio statistic, and a 95% confidence interval for the true ratio can be read
off as the set of 6 such that 2{log Lg(to) —log Le(0)} < x3(0.95). The interval is
(1.26, 1.82), which compares well with the more sophisticated bootstrap intervals
in §5.

The detailed properties of Lg have been described by DiCiccio, Hall, and
Romano (1991), Hall and La Scala (1990), and in unpublished work by Corcoran
and Spady. Other nonparametric likelihood analogues have been investigated by
Davison, Hinkley, and Worton (1992), Ilall (1987) and Efron (1993). See Efron
and Tibshirani (1993, Chapter 24) for more discussion.
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