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Applying the Bootstrap: An Example 

A, C, Davison and D, V, Hinkley 

Abstract We illustrate bootstrap methods in a simple 
example, Among ideas discussed are: basic distributional ap­
proximations; confidence limit methods; improved calculation; 
tests; bootstrap sensit.ivity analysis; regression; and nonpara­
metric likelihood inference. 

Key words: ABC met.hod; Balanced resampling; Boot­
strap; Bootstrap hypot.hesis t.est; Bootsl.rap t; Empirical like­
lihood; Infinitesimal jackknife; Influence function; Jackknife­
after-bootstrap; Linear approximation; Pel'centile method; 
Permutation test. ; Ratio; Regression; Saddlepoint approxima­
tion; Textile data. 

1 Introduction 

Bootstrap methods are simulat.ion procedures for assessing the variability of es­
timators and for performing relatively model-free tests. They have develop cd 
greatly from their introduction by Efron (1979) to the recent books by Hall (1992) 
and Efron and Tibshirani (1003). The purpose of t.his paper is to illustrat.e somc 
of these methods in a simple example. 

Table 1 gives 11 = 32 observat.ions on the number of faults, y , in lengths of 
cloth, x . The data , displayed in Figure 1, show an increase in faults with length. 
In this paper we focus on the mean number of faults per unit length , O. One central 
con ern is how to form confidence intervals for 0 based on the ratio estimator, but 
we also address questions such as whether the ratio is a good choice for these 
data, and whether a model in which E(y) = Ox is appropriate, or whether a 
non parametric curve would be more suitable. 

Section 2 describes the use of simulation in analysis of these data, and discusses 
how the basic sampling plan may be adapted to more complex situations. The 
choice of estimator from the data is discussed in §3, and §4 describes how the 
simulation may be made more efficient. Confidence limits and tests are discussed 
in §§5 and 6. Sensitivity analysis for our methods is described in §7, and in §8 we 
briefly outline how nonparametric likelihoods can playa role in data analysis. 

2 Some Basic Ideas 

2.1 Simulation 

In practical problems many estimators are assumed to be approximately normally 
distributed . If so, inference for the parameter of interest, 0, could be based on t.his 
distribution, with est.imat.ed mean and variance. For example, if an est ima.tor T 
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Figure 1: Numbers of faults in 32 lengths of cloth (from Bissell, 1972) . The dotted 
line is for a fitted Poisson model, and tile solid line for a generalized additive 
model. 

is normally distributed with mean 0 + B and variance V, we can base confidence 
intervals for () on the approximate standard normal distribution of 

z= T-(O+B) 
V 1/ 2 ' 

giving approximate (1 - 20') x 100% confidence interval 

(t - B - V 1/ 2 Z1_ a ,t - B - V 1/ 2 za ), (2 .1) 

where t is the observed value of T and zais the 0' quantile of the standard 
normal distribution. However (2.1) involves the unknown bias and variance of T 
and cannot be used as it is , and furthermore the normal approximation for Z may 
be poor . 

One approach to estimation of B and V is to use the data themselves as a 
working model, estimating F by the empirical distribution function t, where t 
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puts mass n- 1 on each observed pair (Xj, Yj). The true parameter and the bias 
and variance of T, 

0- f ydF(x, y) 
- fxdF(x,y)' 

B = E(T I F) - 0, v = var(T I F), 

would then be estimated by 

f ydF(x, y) n- I '£!lj 
t= . =-..,.....::~~ 

jxdF(x,y) n-I,£xj 
iJ = E(T I F) - t, V = var(T I F). 

The estimates iJ and V would be obtained analytically if possible, and otherwise 
by simulation . 

The jackknife can provide simple analytic estimates of bias and variance for 
T, using the influence funct.ion or infinitesimal jackknife values for the statistic. 
These are 

where Hj represents t.he dist.ribllt.ion funct.ion put.t.ing unit mass on (Xj, Yj). Once 
the Lj have been obtained, by numerical differentiation if need be, simple bias 
and variance formulae are available: ih = 0, and VI. = 71- 2 ,£ L}. 

In order to approximat.e Jj and \1 by simulation, we generate R replicate 
synthetic samples, by sampling uniformly at random with replacement from the 
data and calculating the corresponding values of T, labelled T·. Since our model is 
that the data are a random sample of pairs, an observation from the working model 
is a pair (Yj, xj) = (Yj·, Xj.), where j* is randomly selected from {I, .. .. , n}, and 
the rth replicate sample and simulated value of T" are (xir,Y;r)' .. . , (x:lr ' Y~r) 
and t; = '£j yjr/ Lj xjr· Mont.e Carlo approximat.ions to B and V based on 
ti, ·· . ,tn are 

11 n 
B· = R- I 2: I; - t = t· - t. V· = (R - 1)-1 2:(t; - [.)2 . (2 .2) 

r=1 r=1 

Table 2 shows the calculations for a very small simulation with R = 9. Each 
row gives the frequencies with which the original pairs occur in a simulated sample. 
Here B" = -0.002 and V· = 0.0268, so the estimated 95% confidence interval from 

supposed normality of Z" = {T" - (t + E)} /V1/2 is obtained by replacing iJ and 
V with estimates B" and V·, to give 

(t - B" - 1.96V"I/2,t - B" + 1.96V"1/2) = (1.19, 1.83). 

The accuracy of B· and V· as approximat.ions t.o B and V depends on R, and in 
practice we would of course choose R » 9. 
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j 1 2 3 4 5 6 7 8 9 10 11 
X 1.22 1.70 2.71 3.71 3.72 3.75 4.17 4.41 4.58 4.91 4 .92 

Y 1 4 5 14 7 9 2 8 4 7 4 

j 12 13 14 15 16 17 18 19 20 21 22 
X 4.95 5.22 5.42 5.4:3 5.51 6.30 6.42 6.45 6.51 6.57 7.15 

Y 7 6 9 8 6 7 10 6 4 9 14 

j 23 24 25 26 27 28 29 30 31 32 
X 7.16 7.35 7.38 7.49 8.32 8.42 8.68 8.95 9.05 9.52 

Y 3 17 9 10 17 9 8 28 23 9 

Table 1: The numbers of faults (y) in lengt.hs (x) (metres x 102) of cloth. From 
Bissell (1972) . 

J 1 2 3 4 29 30 31 32 
X 1.22 1.70 2.71 3.71 8.68 8.95 9.05 9.52 

Y 1 4 5 14 8 28 23 9 

Numbers of times each pair sampled Sta tistic 
1 1 1 1 i = 1.510 

Replicate I' 

1 1 2 1 0 0 2 0 1 il = 1.358 
2 3 0 2 0 1 0 1 3 t2 = 1.372 
3 1 0 I 0 0 0 0 0 t3 = 1.394 
4 0 1 2 0 3 1 0 2 t4 = 1.449 
5 2 1 1 0 1 2 1 3 t5 = 1.460 
6 1 1 1 0 2 2 0 0 t6 = 1.521 
7 1 1 1 1 0 3 4 1 t7 = 1.812 
8 1 3 1 1 1 0 0 3 ts = 1.456 
9 0 0 2 3 2 2 2 t 9 = 1.752 

Table 2: R = 9 replicate samples for the cloth data. 
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If we were unhappy with the normal approximation to T*, the empirical quan­
tiles of the t* can be used to estimat.e the true quantiles of T, as described in 
§5. 

An advantage of this approach over purely analytical calculations is that we 
can inspect the simulation out.put to diagnose difficulties with an analysis, and to 
suggest alternatives. For example, the t.op left panel of Figure 2 shows a histogram 
of 1000 simulated ratios, overlaid with a density for t* obtained by a saddlepoint 
approximation: the distribution seems very close to normal. This is confirmed 
by the rankit plot in the middle left. panel, which overlies the null line except. in 
the extreme tails . The top right. panel shows the simulated t* plotted against 
the corresponding simulated averages x* , while the vertical dotted line shows the 
value of x for t.he data. The ot.her panels are discussed below. 

2.2 General comments 

Among questions arising from the approach t.o data analysis used in §2.1 are: 

(a) what statistic T should be used to estimate O? 

(b) which estimate F of F should be used? 

(c) how do we calculate propert.ies of T' givell F? 

In choosing T, we should consider its bias and efliciency under plausible HIodels , 
its robust.ness to departures from t.hose models, it.s resist.ance to small changes in 
the data, ease of calculation, alld its pivotality under plausible model(s), where 
a pivot is a function Q(T; 0) whose distribution does not depend (much) on F . 
Some of these can be checked from the replicate samples themselves. 

The commonest possibility for (b) is a parametric model, often with parameters 
estimated by maximum likelihood. Another possibility is a nonparametric model 
like the one in Section 2.1, based on the empirical distribution function F. However 
other estimates such as smoot.hed versions of F might be considered for certain 
problems (Silverman and Young, 1987; De Angelis and Young, 1992). 

Once an estimator T and est.illlat,e of F have been chosen, the final choice 1.0 

be made is how t~ calculat.e t.he properties of interest, We have already ment.ioned 
simulation from F, known as t.he nOll.]lammciric bootstrap, but we could also sim­
ulate from a fitted par-amet.ric model, a procedure sometimes called a parametric 
bootstrap. If the statistic is sufficiently simple, analytic calculation of some of its 
properties may be feasible; but. this is rare, and usually simulation must be used . 

2.3 Extensions 

The general idea of bootst.rapping is to approximate the required propert.y of t by 
the empirical property oft' 's calculat.ed from simulat.ed data sets . Here "propert.y 
oft" can mean things such as bias , variance or cUlllulat.ive probabilit.ies , and hence 
percentiles , all of which can be expressed ill t.erllls of averages of a fUll ction II of 
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Figure 2: Bootstrap results for cloth data. Th e toP . left panel show~ a histogram 
of 1000 simulated ratios, t*, overlaid with a saddlepoint approximation to their 
density. Th e middle left panel is a rankit plot of the resampled rat ios t*. Th e bot­
tom right panel is a histogram of resampled ordinary lcast squares estimates . Th e 
right panels show resampled ratios t* plotted again st i;* for the original sampling 
schem e and two in which the pairs are stratified by the values of X j. 
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l' - e. For bias and varian ce we have (2 .1), and for the cumulative probability 
pr(1' - e :s c) we take h to be the indicator of the event l' - e :s c. 

The general approach that underlies the simulation described in §2.1 is : 

1. identify the underlying distribution(s) F for data; 

2. define the quantity of interest as a function of F , 0 == t(F); 

:~. define an o;timate F' for F based 011 data V; 

4. choose t == I{F) as an estimate of 0 == t(F); 

5. ident ify t 'IS the value of 0 for F', the simulation model; 

6. define T* 'IS the estimat.or under sampling from F; 

7. ident.i fy j" - t as an approximation t.o T - 0; 

8. repeat, H 11111<'S: 

• geller ;,t.f' a salllplf' V' by sampling with replacement frolll F; 

• caiculat.e t Iw value of t* by applying the i-algorithm to V'; 

9. a pproxill131. I {he/' - O)} by R- 1 L~=l hU; - t) . 

Embellislllileli15 ()Il this procedure deal with non-iid structure of data , as with 
,;, ' \,eral santl'l,'s, 1 (gr('ssion or time series; correction for error in Step 7 (by boot­
,, ' rap ping tIl(' boo ,I st ra pping) ; replacem ent of actual simulation of samples (by 
sm a ll-sample aSYll,>totics); more effici ent versions of Steps 8 and 9 (using Monic 
('arlo tricks); and refil\l'ments for special objectives, such as confidence sets and 
significance tes t.s 

To illustrat.e hOI\ t.he algorithm might be changed , suppose that it. was desirable 
to const ruct resamt' I (~s with roughly the same value of x* as the original data . This 
would be sensihle if' it was thought necessary t.o condition the analysis on the x 
values. One procf'dllre for generating simulations in which x* was less vari ab le 
would be to divide the data into strata depending on the values of the Xj, and to 
resample within t.he strata. The bottom right. panels of Figure 2 show t.he effect 
of this for t.wo and four strat.a. 

One model for the data is that var(Yj) = (J' 20Xj , that is. a model with a linear 
variance function but. response overdispersed :- ·. lat.ive to the Poisson distribut.ion 
if (J''2 > 1, as the data seem to indicat.e . If tlli,,; model was judged sensible on t.he 
basis of residual plots, it. would be bett.er to accomodate the changing variance of 
Yj and t.he conditioning by using a different resarnpling plan. In the regression 
formulation 

'y. - Ox' + (J'Ol/'2 x 1 / 2c • J - . Jj J ' 

where the Ej are ind"pendent errors with mean zero and unit. variance, F would 

represent. t.he empirical distribution fUlICt.ioll of tlw residua ls e j = (Yj - tx j)/ xy2. 
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This would b e bootstrapped by resampling c:i , . .. , E~ at random from el , ... , 

en, forming new responses yj = t;z:j + xY 2Ej , and constructing the weighted least 
squares estimate b* = L yj / L X j . Notice that the statistic is still the ratio , 
which is the appropriate weighted least squares estimate under this model, but 
the resampling scheme is different. Possible refinements include making a leverage 
adjustment to the residuals, and rounding the y* to the nearest non-negative 
integer , because the Yj are counts. 

3 Choice of estimator from the data 

In any practical situa.tion there may be uncert.ainty about whi ch estimator to 
use, especially if t.he analysis is to be robust or model-free. To take a simple' 
example, if a rohust ;dt ernative the average is to be used, then one might want 
to use a trimmed fY], ';tn hut not know what percentage of the data to trim . III 
such problems a boOI ~t.rap analysis can be very effective, by providing estimates of 
variation for each 0 · 111<" possible estimators - this is illustra ted for the trimmed 
mean by Efron (1 n9:!). 

In the regressi() n '·ont('xt. , we can use bootstrap methods to help choose among 
a variety of estimat.('s. For example, with the cloth data we can easily compare a ll 
ordinary least squa.r,·s estimate of slope b = L xiy;j L xl with the ra tio c:;t.im ate 
discussed earlier . The sam e simulated data sets used to estimate varia tioll or 
the ratio can be u,.;ed t.o estimate variation of b: we just add comput ation of 
bootstrap sample estimate b* to the previous simulation algorithm. The bottom 
left panel of Figure 2 shows the histogra m from 1000 such simulat ions , whell 
random sampling of data pairs was used. Evidently the ra tio is less va riable. The 
respecti ve bootstrap standard errors for t and b are 0.136 and 0.161. 

In the context of robust est imation , i .e . estimation which is resistant to out­
liers , the influence of individual cases on any particular estimator can be studied 
by the "j ackknife-after-bootstrap" method outlined in §7. In thi s way choice of 
estima tor can be combined with data-screening. 

Sometimes the choice of estimator is based on some form of test , as with 
regression curves . Here again, as we illustrate in §6, one can use bootstrap methods 
to advantage when more traditional methods are either unsafe or un available. 

A da nger \'v·ith data-driven selection of estimator is that a bias is induced in th e 
estimated variation of the chosen estimator: the minimum of several estim ated 
standard errors is biased downward. The danger is usually not serious. For 
discussion see Leger and Romano (1990) and Efron (1092). 

4 Improved calculation 

Numerous methods have been suggested to improve the efficiency of the nonpara­
metric simulation scheme outlined in §2.1. Unfortunately the easiest. to implement. 
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also IIsually give th, · sll1;dlc-st. .!!.aills ill elfirif'lIcy, aud t.1lt' 1I10re powerful general­
purpOSt' methods must. he IIs .. d with care If'st. they make matters worse. 

A powerful approach for st.at ist.ics t.hat can b e written as smooth funct.ions 
of averages 01' solut.ions to estimating f'quat.ious rests on saddlepoiut techniqu('s 
(Reid, 1988). These remove all Mont.e Carlo error and can give highly accurate 
approximations t.o densit.ies and probabilities (Davison and Hinkley, 1988; Daniels 
and Young, 1991; DiCiccio, Mart.in and Young, 1902). The saddlepoint. approxi­
mat.ion to t.he density of f when Y1, •• . , Y;, is a ralldom sample from a dist.ribution 
fun ction F' wit.h cUlllulant. generat.illg funct.ion K(u) = 10gE(euY ) is 

1/2 

I,(y) = {. ~I , } exp [n{ /{(li) - liy}] , 
2iTI\"(u) 

where 'it solves till' saddlepoint. pquat.ioll A" (U) = .y. Tlt f' rp is a. rel at.ed ,' xpress ioll , 
Fs(Y), for the curnulative dist.riblltion funct.ion of f. Till' key (.0 using this in 
nonparametric silllul a.t.ion is t.o not.e t.hat. if }/ .. " Y,; is a random sample from 
t.he empirical dist.ribution function F , thf' ('ulllulant. gellel'ating fun ct.ion of lj* IS 

[";(1/) = log (//.- 1 t f UYJ ) , 

)=1 

to which we may apply t.he formulae for j',(y) and Fs(Y) . TI1P top left pan el of 
Figure 2 shows t.he saddle point. approximation t.o t.h e density of T" for t.he c1ot.h 
dat.a, which is ohtained by lIoting that. T* ::; I if ami only if 'L(Yj" -/;!:j') ::; 0, al1d 
thell applying t.he ideas above t.o this surn (Da.n ids , I !J8:l) . These m ethods call 
1)(' fa.dors of ;)0 .. 100 t.iIIlCS fast.er t.han sillntlal.ioll in r l'l'lain problulls (DiCiccio , 
Mart.ill , and YOlJllg. l!) ~IL ; Hinkley and Shi, HIK!J) , hul. l.hey can be complicat.ed 
t.o irnpklllt)nL 

J\ number of IllI'thods are based on lineal' a.pproximations to t.h e st.at.ist.ic of 
int.('rest. Suppose t.hat. T* admits an expansioll 

n 

T* = t + n- 1 L J; L j +"' , (4 ,1) 
j=1 

where Jj" is the frequency with which the jth observation appears in a simulat.ed 
sample . The linear approxilllation to T* , 1,£, is the first two t.erms on t.he right. 
of (4.1). Cont.rol variate m ethods I'f'st. on t.he correlation t.. e tween T" and Ti, 
aiming t.o use Ti as a proxy for r* in such a way t.hat only the difference bet.ween 
the t.wo st.at.istics needs t.o be estimated by simulat.ion. If T* and Ti are highly 
correlated , the result ('an be highly aC(,Ul'at.e cst.illlat.('s of mome nt.s auel qua nt.iles 
ofT* (Davison , Hinkley and Schechtman , l!lK() ; Efro ll , IH90 : Do and Hall , HH)2). 
For our problem the correla.tion bet.ween the ratio alld it.s lineal' approxil1latio n is 
O.!J9 . so we would expect t.hese m ethods t.o wo rk \,I'I'Y well. 
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Other approaches to efficient simulation can be based on importance sampling 
(Johns, 1988; Booth , Hall and Wood, 1993; Do and Hall, 1991) , balanced res am­
piing (Davison et al., 1986; Graham, Hinkley, John and Shi, 1990; Gleason, 1988) 
or antithetic resampling (Hall, 1989). Appendix II of Hall (1992) contains a the­
oretical comparison of efficient simulation methods, which are also discussed in 
Efron and Tibshirani (1993 , Chapter 23). 

5 Confidence limits 

As bootstrap methodology has developed, a variety of confidence limit t.echniques 
has surfaced. Here we review the main techniques, and apply them to our ratio 
estimation problem. 

5.1 Basic confidence limit method 

The simplest method is essentially to put an interval or region around the point 
estimate. So for a scalar parameter 0, estimated by T, define Gp t.o be the p 
quantile for T - 0: pr(T - 0 :S ap ) = p. Then the exact upper confidence limit 
with coefficient 1 - a is t - aCt, which is based on the formula 

pr(T - 0 ~ aCt) = 1 - a. 

The corresponding equi-tailed 1-2a interval is (t - al- Ct , t - aCt) Usually the exact 
ap's are unknown and must be estimated . While often a normal approximation 
can be used to do this , the bootstrap offers a more accurate approximation. 

A bootstrap estimate for the 1 - 2a interval is obtained from t.he resampling 
distribution of T* - t. If the R t* values have already been ordered, then t;R - t 
estimates ap . So the bootstrap confidence interval is 

t - (t(I-a)R - t) = 2t - tCI-Ct)R' t - (t~R - t) = 2t - t~R' 

with approximate error rates a at each end. 
This interval will not have exact coverage 1 - 2a, because the distributions of 

T - 0 and T* - t are not exactly the same. There are four ways to correct the basic 
formula for greater accuracy: use of transformation (i.e. calculation of limits on 
a transformed scale known to produce correct coverage, followed by untransfor­
mation); use of Edgeworth series, explicit or implicit; use of studentization; and 
bootstrap estimate of coverage bias. 

In our ratio example, with R = 1000 simulations, the following ordered values 
of the bootstrap rat.io were obt.ained: 

r 

t; 
5 

1.178 
25 

1.252 
50 

1.285 
950 

1.736 
975 

1.779 
995 

1.893 
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Th e sample ratio was 1.510. So , for example, the 95% bootstrap interval for 
the population rat io has lilnits 2x 1.510-1.779 = 1.24 a nd 2 x 1.510-1.252 = 1.77 . 

5.2 Bootstrap t 

If we follow t.lw analogy with St.udent 's t.-sta tlstl c, then a mo re stable quantity 
should 1)1' t.he student.i",ed version of f - 0, i.e. 

Z = (T - O)/S£(T) 

where SE(T) is t.lw est imat.ed st.andard error of T, i.e. calculated assuming t. hat 
t.he CDF is F. One silllple st.andard (' rt"or formula is t.he infinit esim.al jackknife 
formulaS'£'2 = n-"2L:j'=1 L;, with Lj t.he empirica l infhwnce function for case j . 
The (t quantile for Z is pst.imat.ed by t.he I.r Hth ordered value of z* = (t* - t)/ SE* 
in t.he same R sill1ulal.ions produ cing t.he /* 's . Then, assuming t.he z* values are 
already ordered, t.lw 1 - 2ft confidcllC<' interval has limits 

t.hese an~ analogous t.o the St.udent.-1. limits for tit" Nornl<llnwan in classical statis­
tics. 

If tilt' infinit.esima l j ackknife is used , W P can <l1'I,r(lxilllat.e the bootstrapped 
. c'£* " b - ~ ",n L" versIOn cJ .C· - Y 11 - 0j=1 J • . 
Although in principle the boot.strap t met.hod is more aecurate t.han the bas ic 

method, tlw denominator may Iw somewhat ull stable: variance est.imates often 
are. For furt.her theoretical disc ussion see Ha ll (lU92) . 

For our dat.a, tlw bootst.rap dist,ribut.ion of Z fro1ll R = 1000 samples is quite 
skewed . Figurf' ::\ shows a normal quantile plot. of t.he z' values, and a scatter plot 
of f * versus S'E*, t.he latter suggesting possi bl e inst.ab ilit.y of t.he method. 

The following ordered valm~s of z* w(' re obt.ained : 

- * 
-". 

f) 25 50 
- :3.fH') 9 - 2.715 - 2.157 

U50 
1.429 

975 995 
1. 71 9 2.;364 

The infini tesimal j ackknife standard ('rror for the ratio is SE = 0.13\)8. So, for 
example, t.he \)5% collfidencp int.erval has limit.s J .510 - 0.1398 x l.719 = 1.13 and 
1.510 - O.I:3\)8 x (-2.715) = 1.75 . T hese diffe r rOllsidf'l'ab ly from t.hose comp ut.ed 
with the hasic nwthod . 

5.3 Percentile method 

In SOITW cases, a tral1sfo rmatioll of tit(' est. imat.e 'f' may he nearly or exactly sym­
metric in distribution, pprhaps (' y e ll Norl11al wit.h constant. variance. Then t1H~ 
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Figure 3: Normal quantile plot of studentized ratio estimates and scatter plot of 
ratio versus estimated standard error from R=1000 bootstrap samples. 
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perce ntile method is applicable, even if the t.ransformation itself is unknown. For 
if t.he t.ransformation y(T} of T has symmet.ric distribut.ioll , tlwn on the t.rans­
form ed scale a(\' = -al- (\'. Therefore t.he lIpppr I - I.l' limit for 0 in the basic 
method can be re-expressed as 

which is estimated by 

,q-l {,q(t} + !I(t~l-u)H) - fl(t)} = !I-I {fI(I~I- n) /l} = t~l_n)I?' 

which does not. depend upon ,q( .} at all. This uPlw r lirnil. is called t.he percentile 
upper limit. . The corresponding I-2ft conficknce int.erval has lilllits (t;dl ' f~l_ n)I?) ' 

The percentile method is s light.ly simpler t.han t.he basic met.hod, <wd in a 
limited Ilumber of cases will work bet.ter. But the a.ssumed symlllPtry ignort's bias. 
And as with t.he bas ic met.hod it.s acc \II'acy requires t.hat. T' - t and T - 0 have 
the sallie distribution , in part.icular the same variance. So in general practice t.hl' 
percentile IllPthod is not good . However a rpliable colTecl.l~d version of th e method 
is available, as described IWX/.. 

For t.he ratio dat.a, sOllie rdevalJt. ordered values were given above. FrOlll t.hf'se 
we calculate, for example, t.hat. the !)f)% interval has limits 1.25 and 1.78. These 
are very similar t.o the limit.s calculated fro II I t.he basicmet.hod. 

5.4 Adjusted percentile method 

The basis for t.he corrected lIIet.hod is a refilled Normal approximat.ion which incor­
porates hias and nonconstaut. variance. The derivat.ion is <kscribed by Efron and 
Tibshirani (Hl93, Chapter 22). Here we out.lillf' the method for the Ilonparallletric 
case. 

Two const.ants are used for the adjustment , defined as 

and b = 4>-1 {G(t)} , where C; is the empirical distribution of bootstrap statist.ic 
values t* and 4> is the standard normal integral. These const.ants cOrl'espond to 
het.erosc.edasti(:ity and bias adjustment factors. The upper n percentile limit t~R 
is t.hen replac.ed as follows : calc.lIlat.e z = 4>-1 ((}:) , next 

(b + z) 
z(l(lj = b + , 

1 - 0.( b + z) 

and then O'adj = 4>(zadj). Th e adjust.ed upper (,} limit. is 1~.d;I?' 
For t.he rat.io dat.a, Wt' calculate a = 0.O;~26 and b = <1>-1 (0.532) = 0.080, the 

latter sinCf~ 532 of t.he 1000/' values are Lelow t = 1.51. So for the 95% intNval, 
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which combines the 2.5% and 97.5% limits, we first calculate the adjust.ed values 
Qadi =0.0454 and 0.9883 . Then the adjust.ed confidence limits are t 454 = 1.28 and 
t988 = l.82. These are similar t.o earlier limits, but adjusted slightly to the right. , 
which seems unnecessary. 

A recent theoretical development has been the approximation of the adj ust.ed 
percentle limits using numerical differencing in place of resampling. The resulting 
method, called the ABC met.hod , is fully discussed by Efron and Tibshirani (1993, 
Chapter 22). 

5.5 C0111111ents 

There is often little difference among the various confidence limits, and as yet. 
there is no definitive method of choice, despite the theoretically higher accmacy 
of the bootst.rap t and adjust.ed percentile methods . 

Iterated resampling is anot.her dev ice for improving on accuracy, essentially 
using bootstrapping a bootst.rap confidence limit algorithm to estimate a.nd correct. 
for bias in coverage. 

When 0 is a vector, confidence regions require a shape. One possibility is to 
work with a quadratic from , such as Q = (T - O)TV-l(T - 0) where V is a n 
estimated variance matrix . Using quantiles of the bootstrap distribution of Q, 
one would then obtain as an elliptical confidence region the set of 0 satisfying 
Q ~ q(l-o)R assuming the q. 's were ordered. Methods such as this might. b(~ 

capable of giving good coverage, meaning close t.o nominal level 1 - 0 ' , bllt. ,t. he 
ellipsoidal sha.pe coliid be very misleading -- as t.he corresponding regions oft.ell 
are in nonlinear reg ress io n problems. One possible improvement. wOlild be t.o find 
a transformation which normalizes the distribution of T·, and use it with the 
preceding method, followed by II nt.ransformation - assuming this can be done. 
Ideally one would wish to have something like a likelihood-based confidence region. 
This is to some extent possible using one of the non parametric likelihood methods 
mentioned in §8. Further research is needed in this important area. 

6 Tests 

One tool in t.h e st.at.istician 's t.oo lkit is the permut.ation or randomizat.ion t.est , 
which gives a model-free a.';sessment of significance for a test statist.ic. Bootstrap 
tests have a similar but wider doma.in. For example they can be applied to fairly 
standard problems, such t.est.i ng e<"] ualit.y o f means, lack of correlation and zero 
regression effects. Or they can b(' app li ed t.o t.est IInimodalit.y of a density, equalit.y 
of curves, a nd so forth where no exp li cit model is available . 

In most applications we choose a test statistic T, observe its value t and t.hen 
want to calculate the significance probi.\.bilit.y P = pr(T ~t I Ho) where Ho is the 
null hypothesis of interest. ('<\Ie assume t.hat. T is carefully chosen so as to give 
large values under likely alt.ernative hypotheses.) Idea.lly P is uniquely specified 
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by Ho but this is not always possible. So we must choose a null-hypothesis data 
distribut.ion Fo which satisfies H o, and calculate 

P = pr(T ~ t I Fo). 

In parametric analysis Fo would be a maximum likelihood estimate, and T would 
be chosen so that its null hypothesis distri bution depends as little as possible 
on the exact values of unspecified parameters, e.g. by conditioning. Our inter­
est, however , is in nonparametric or semiparametric models where the stochastic 
element (e.g. error distribution) is unknown . 

6.1 Permutation tests 

Permutation tests, and related randomization tests, are well-known and widely 
used. For recent accounts see the book by Manly (1991), and the article by 
Romano (1989). 

As an example , suppose we wish to test the null hypothesis of independence 
of X and Y using the sample correlation R(x , y) whose observed value is r. Then 
the permutation test significance is 

P = pr[R{x,pel>m(y)} ~ r) 

which can be approximated by Monte Carlo - for example generat.ing 1000 
random permutations of y and counting t he proportion of them which lead to 
R{x,perm(y)} ~ 1". 

T he permutation distribution, which is justified by a conditioning argument, i" 
very similar to that obtained under a null hypothesis estimate of data distribution . 

Note that adaptive permutation testing, is possible with data-based selection 
of statistic, as described by Donegani (1991). 

6.2 Nonparametric bootstrap test 

We define the null hypot.hesis sampling model by bending the EDF F to Fo which 
satisfies Ho. The calculation of P will usually be by bootst.rap sampling from Fo 
to obtain R simulated samples and their test statistic values t*, and t hen 

P = ~ ( number of times t* ~ t). 

For example, in the problem of testing a correlation w(' can take Fo = (lif. 
the product of the marginal EDF 's of x and y . The resulting test is very similar 
to the permutation test. 

One general approach is to choose Fo to minimize some appropriate distance 
dist(F , Fo) subject to Ho . This may lead to such thin p:s as em pirical exponential 
families (Efron and Tibshirani , Chapter 21), or may be inf"lasible. Often it. is 
simpler to impose conditions slight.ly stronger than Hu, but this should be done 
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with care. So, for example, to compare two sample means we could assume that 
under H 0 the corresponding two distributions are identical, in which case Fo is a 
common distribution equal to the pooled EDF. 

The general recommendation for R when calculating probabilities is t.o use 
R = 1000 or bigger ifpossible, but this applies to estimating the whole distribution 
of T . In fact we could determine R sequentially: if R = 20 and P ~ 0.5 then stop 
and if R = 100 and P::; 0.01 then stop, etc. For discussion see Besag and Clifford 
(1991). 

For our ratio data, one model we have referred to is E(Y Ix) = (Jx. Su ppose 
that we had fi tted a model-free curve to the (x, y) data by one of the new compu ter­
intensive exploratory methods. To compare such a curve to the fitted linear model 
is one way to test for linearity. Figure 1 shows an example, the solid curve being 
a generalized additive model fit. 

Thinking of the linear model as a generalized linear model, we do not know 
the error distribution: it is too dispersed to be Poisson. So how can we do a test? 
The first step is to choose a test statistic S, such as sum of squared differences 
between the line and the curve. Next we must choose the null hypothesis model 
to generate bootstrap samples. One way to do this is as follows: First obtain the 
weighted least squares fit if = lx , where l is the rat.io estimate if we use Poisson 
weights. Then simulate dat.a according t.o the null hypothesis model 

with 6j = round(Yj - tXj)+ /,jXj. For each sample generated in this way; refit the 
line by weighted least squares and refit the non parametric curve, then calculate 
the measure of difference S· . Such an analysis for these data was carried out by 
Firth, Glosup and Hinkley (1991) who found a nonsignificant result (P » 0.05) 
as one would expect a priori. This contrasted with an analysis assuming Poisson 
error distribution, which misleadingly found a very significant result . 

It seems very likely that. bootstrapping will occupy a key place in the assess­
ment of non parametric curve fit.ting. 

7 Sensitivity Analysis 

In order to understand the implications of a statistical calculation, it is impor­
tant to assess its sensitivity to changes in the data. If a parametric model has 
been fitted, there is wide range of diagnostics for detecting outliers and influential 
cases, particularly in regression analysis, and careful scrut.iny of these is part of a 
bootstrap analysis, just it is part of any other a nalysis. But if a nonparametric 
bootstrap has been used, then the empirical distribution function F in effect is 
the model, and there is no baseline against which to test for outliers. Sensitivity 
analysis will then concern the effect of individual observations on bootstrap calcu­
lations, to answer questions such as "would the confidence int.erval differ greatly if 
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this point was removed?" , and "what. happens t.o the significance level whell this 
observation is deleted?" 

A direct answer to these quest.ions is possible from the array of boot.strap fre­
quencies , simply by restricting att.ention to t.hose replicates in which observations 
do not appear. That is, for each observation, we examine the distribution of the t; 
for samples where it did not appear. This is called the jackknife-after-bootstrap , 
because it involves seeing the effect. of delet.ing each observation in t.urn on a 
bootstrap calculation. See Efron (1992). Figure 4 shows the quantiles of these 
jackknifed distributions plot.ted against the infinites imal jackknife values for the 
observations. If observation 30, which has the largest L j , was deleted, the dis­
tribution would become slightly more concent.rat.ed , with the largest change at 
its uppe.r end , and its quantiles would decrease by about 0.05. Deletion of each 
of the other observations seems not to change the concentration of the simulated 
distribution, though the quantiles move in t he way one would expect.. 

8 Empirical Likelihoods 

Likelihood methods are widely used in parametric inference because they allow 
formal use of prior information via Bayes ' theorem, t hey allow amalgamation 
of information from different samples, t hey are often transformatiou ·invariant , 
and they can lead to confidence sets for multivariate parameters. There is a 
growing literature on nonparamet.ric analogues of the likelihood function , the most 
prominent of which is Owen 's (1988, 1990 , 1991) empi rical likelihood. 

Suppose that given a random sample Yl, . .. , Yn , we restrict interest. to distribu­
tions supported on the data , that is, we focus on multinomial distributions that. put 
probabilities Pj on the observations Yj. A parameter B determined nonparametri­
cally by t(F) = B will be a function of l.iw Pj, so we can write t(F) == t(PI' ... , Pn). 
The observed value of B is to = t(n- 1 , .•. , n-l). Owen proposed that inference 
about. (j be based on the profile likelihood 

n 

LE(B) = . sup II Pj, 
p :t(Pl '''',Pn)=8 j=1 

which he called the empirical likelihood for (j. In a situation like ours, wheri' B 
is determined by the estimating equation I u(B; y) dF(y) = 0, a straightforward 
application of Lagrange multipliers shows that 

where the Lagrange multiplier 'T/8 is the root of the equat.ion 

~ u(B;Yj) _ 0 
L.. 1 + 'T/8 u (B ; Yj) - . 

J 



3UO 

8! 
" c: 

~ 
I/) 
U> <D o .c 
m-
o 
i 
o 
uS 
o 
uS 
o 
o 
:g-
O 

A. C. Davison an') D. V . Hinkley 

._-_ .... . - . 

: •• · .• -=:-. ... ~·~~~=.: ~;~;::::::t:::~~~,:I~ .. ~ ...... ~.~ .............................. .... . --.. '_. .. .. . ----
.... .... .... .. -: ......... \/\r~,; :1; .,· , :-1 ~-- \=.=-· --~:--· -=. ---..-:=: 

23 

--- '---' - ' 

29 20 17 13 1 15 3 2 
20 7 11 16 26 12 18 8 

32 19 9 25 21 10 '4 5 
22 

6 

27 
2' 

-\---6 -------------1 
Infinitesmal jackknife value 

31 

-----_. 
)() 

Figure 4: Jackknife after bootstrap plot for cloth data. The solid lin es show thf 
effect on the 0.05 , 0.1, 0.16, 0.5, 0.84 , 0.9, and 0.95 quantiles of dropping eltch 
observation in turn, plotted against th e infinitesimal jackknife value for th e Tatio. 
The dotted lines are th e quantiles based on the entire dataset. The obsen'ation 
number is shown at th e foot of th e piot. 
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For the ratio , u(O; Yj) = Yj - OXj , and given a value of 8, 1)9 is easily obtained 
numerically. The log empirical likelihood for the cloth data, log LE(8), is shown 

in Figure 4. 
Remarkably, standard chi-squared approximations apply to the empirical like­

lihood ratio statistic, and a 95% confidence interval for the true ratio can be read 
off as the set of 8 such that 2{log LE(tO) - log LE(O)} ~ Xi(0.95) . The interval is 
(1.26, 1.82), which compares well with the more sophisticated bootstrap intervals 
in §5. 

The detailed properties of LE have been described by DiCiccio, Hall, and 
Romano (1991), Hall and La Scala (1990), and in unpublished work by Corcoran 
and Spady. Other nonparametric likelihood analogues have been investigated by 
Davison, Hinkley, and Worton (1992), lIall (1987) and Efron (1993). Sec Efroll 
and Tibshirani (1993, Chapt.er 24) for more discussion. 

A cknow ledgemen ts 

We thank the organizers of CLAP EM V for the invitation to present a short 
course on bootstrap methods, SERC for supporting this work through grants and 
an Advanced Research Fellowship to ACD, and Professor Antonio Galves for his 
forbearance in waiting for this paper to arrive. 

R.eferences 

Besag , J .E. and Clifford, P. (1991) Sequential Monte Carlo p-values. Biometrika, 
78,301-304 . 

Bissell, A.F . (1972) . A negative binomial model with varying element size . Bio­
metrika , 59 , 435- 41. 

Booth, J .G., Hall, P. and Wood, A.T . (1993) Balanced importance resampling for 
the bootstrap. A nn. Statist ., 21 , 286-298 . 

Daniels, H.E . (1983) . Saddlepoint approximations for estimating equations . Bio­
metrika , 70, 89-96 . 

Daniels, H.E. and Young, G.A . (1991) Saddlepoint approximation for th e Studen­
tized mean , with an applicat ion t.o the boot.strap. Biometrika, 78, 169- 179. 

Davison, A.C. and Hinkl ey, I) .V. (1988) Saddlcpoint. appoximations in resampling 
methods. Biometrika, 75, 417431. 

Davison, A.C ., Hinkley, D.V . and Schechtman , E. (1986) Efficient bootstrap sim­
ulation . Biometrika, 73, 555-566. 

Davison, A.C., Hinkley, DV ., and Worton , B.J. (1992) Bootstrap likelihoods . 
Biometrika, 79 , 113- 130 . 

De Angelis, D. and Young , G .A. (1992) Smoothing the bootstrap. Int . Statist. 
Rev., 60, 45-56. 



:\ pplyillg the Bootst"ap: An Example 303 

DiCiccio, T .J., Hall, P. and Romano, J .P. (1991) Empirical likelihood is Bartlett­
correctable. A nn. Statist., 19, 1053-1061. 

DiCiccio, T.J ., Martin, M.A. and Young, G .A. (1992) Fast and accurate double 
bootstrap confidence intervals. Biometrika, 79, 285-295. 

Do, K.-A. and Hall, P. (1991) On importance resampling for the bootstrap. Bio­
metrika, 78, 161-167. 

Do, K.-A . and Hall, P (1992) Distribution estimation using concomitants of order 
statistics, with application to Monte Carlo simulation for the bootstrap . J. R. 
Statist . Soc. B 54, 595-607. 

Donegani, M. (1991) An adaptive and powerful randomization test. Biometrika, 
78, 930-933 . 

Efron, B. (1979) Bootstrap methods : Another look at the jackknife. Ann. Statist . , 
7, 1-26. 

Efron, B. (1990) More efficient boot.strap comput.at.ions. J. Amer. Statist. Assoc., 
55,79-89. 

Efron, B. (1992) Jackknife-after-bootstrap st.andard errors and influence functions 
(with Discussion). J. R . Statist . Soc . B, 54, 83-127. 

Efron, B. (1993) Bayes and likelihood calculations from confidence intervals. Bio­
metrika, 80, 3-26 . 

Efron , B. and Tibshirani , R .. ) . (1993) An Introduction to the Bootstrap. New 
York : Chapman and Hall . 

Firth , D., GlOSllp, J . and Hinkley. D. V. ( 199 J) Model checking wit.h nonparamet.ric 
curves. Biometrika, 78, 245- 252 . 

Gleason, J .R. (1988) Algorithllls for balanced bootstrap simulations. Amer'ican 
Statistician, 42, 263-266. 

Graham, R .L., Hinkley, D.V., John, P.W .M. and Shi, S. (1990) Balanced design 
of bootstrap simulations . J. R . Statist . Soc. B, 52, 185-202. 

Hall, P. (1987) On the bootstrap and likelihood-based confidence regions . Biome­
trika, 74,481-93. 

Hall , P.G . (1989) Antithetic resampling for the bootstrap. Biometrika, 76, 713-
724 . 

Hall , P. (1992) The Bootst7'aP and Edgeworth Expansion . New York : Springer­
Verlag. 

Hall, P. and La Scala, B. (1990) Methodology and algorithms of empirical likeli­
hood . Int. Statist. Rev., 58, 109-28. 

Hinkley, D.V. and Shi, S. (1989) Importance sampling and the nested bootstrap . 
Biometrika, 76, 435-446 . 

Johns, M.V . (1988) Importance sampling for bootstrap confidence intervals. J. 
Amer. Statist. Soc., 83, 709- 714. 



304 A. C. Davison and D. V. Hinkley 

Leger, C. and Romano, J .P. (1990) Bootstrap adaptive estimation: The trimmed 
mean example. Canad. J. Statist., 18,297-314 . 

Manly, B.F.J. (1991) Randomization and Monte Carlo Methods in Biology. Lon­
don : Chapman and Hall. 

Owen, A.B. (1988) Empirical likelihood ratio confidence intervals for a single 
functional. Biometrika, 75, 237- 249. 

Owen, A.B. (1990) Empirical likelihood ratio confidence regions. Ann. Statist., 
18,90-120. 

Owen, A.B . (1991) Empirical likelihood for linear models. Ann. Statist ., 19, 
1725-1747. 

Reid, N. (1988) Saddlepoint methods and statistical inference (with Discllssion) . 
Statistical Science, 3, 213-238 . 

Romano, J. P. (1989) Bootstrap and random ization tests of some nonpal'<tlllctl'ic 
hypotheses. Ann. Statist ., 17, 141-149 . 

Silverman, B.W. and Young, G.A. (1987) The bootstrap: To smooth or not to 
smooth? Biometrika, 74, 469- 479. 

A.C. Davison and D.V. Hinkley 
Department of Statistics 
University of Oxford 
1 South Parks Road 
Oxford OX 1 3TG 
UK 




