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The two phase transitions for the contact process on trees 1 

Rinaldo B. Schinazi 

Abstract: The contact process is a spatial stochastic 
process which has been used to model biological phenomena. 
Each particle can give birth to a new particle on a neighboring 
empty site with rate A or die with rate 1. We consider a 
contact process on a homogeneous tree where each site has 
d ~ 3 neighbors. Let Al (respectively, A2) be the infimum of 
A such that the process starting with one particle has positive 
probability of surviving forever (respectively, of having a fixed 
site occupied at arbitrarily large times). It is known that for 
d > 4, Al < A2. The exact critical values Al and A2 are 
not known. But we show that it is possible to characterize Al 
in a way that allows the analysis of the contact process at AI. 
We also discuss the characterizations of Al and A2 in terms 
of the invariant distributions of the contact process. 

Key words: contact process, homogeneous tree, phase 
transition. 

1. Starting the contact process with a single particle on the tree 

Let T be a homogeneous tree in which d branches emanate from each vertex 
of T. Thus T is an infinite connected graph without cycles in which each vertex 
(also called site) has d neighbors for some integer d ~ 3. 

We consider the contact process on T whose state at time t is denoted by 
ryt and which evolves according to the following rules. The contact process is a 
Markov process such that if there is a particle at site x E T then this particle 
gives birth to a new particle on a neighboring site at rate A, where A > 0 is a 
parameter, for each of its d neighboring sites. A particle dies at rate 1. If there 
is a birth in an already occupied site then t he two particles coalesce to one. So 
there is at most one particle per site. 

For standard facts about the contact process on Zd see Liggett (1985) or 
Durrett (1988) . 

Let 0 be a distinguished vertex of the tree that we call the root. Let ryf be 
the contact process with only one particle at time 0 located at site x E T . Let 
ryf(y) be the number of particles at site y and let Iryfl = LYET ryf(y) be the total 
number of particles. We define the following critical values 

Al = inf{A : P>.(lryPI ~ 1, 'It> 0) > O} 

A2 = inf{A : P>.(lim sup ry p(O ) = 1) > O} . 
t-oo 
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In words, Al is the critical value corresponding to the global survival of the contact 
process and A2 corresponds to the local survival. Note that Al is always smaller 
than or equal to A2. 

On Zd, the two critical values coincide: Al = A2 (see Bezuidenhout and 
Grimmett (1990)). What makes the tree interesting is the following result due to 
Pemantle (1992). 

Theorem 1. If d ~ 4 then Al < A2. 

Proof: We give a proof which is different and much more elementary than 
Pemantle's proof but which works for d ~ 7 only. Observe that d = 3 is still open 
(the conjecture is that AI< A2 in this case too). 

To prove Theorem 1 we will find an upper bound for Al and a lower bound 
for A2. 

To get a lower bound for A2, consider a process with the same birth and death 
rates than for the contact pr~cess but for which we have no bound on the number 
of particles per site (if there is a birth in an already oCCl,lpied site the particles do 
not coalesce for this process). Such a process is called a branching random walk 
and exact computations of the critical values can be performed . The total number 
of particles on the tree is a Galton-Watson process for the branching random walk 
and it is easy to see that the first critical value is 1/ d. The second critical value 
gives more work but can be computed and is equal to ),. (see Madras and 

2v d-1 
Schin-azi (1992) and Schinazi (1993)). It is easy to see that the contact process 
and the branching random walk can be constructed in the same probability space 
in such a way that the branching random walk has more particles than the contact 
process on each site of the tree, therefore 

A > 1 
2...,. 2Vcl=l' (1) 

To get an upper bound for AI, consider a process with the following rules . 
Start the process with a single particle at the root, pick d - 1 sites among the d 
nearest neighbors. The particle at the root gives birth to a new particle at rate A 
on each of the d - 1 sites previously picked. Each new particle can give birth on 
neighboring sites but not on the site of the parent. Once a site has been occupied 
by a particle and this particle dies, the site remains empty forever. The death 
rate for each particle is 1 and there is at most one particle per site . Since a tree 
has no cycles the total number of particles for this process is a Galton-Watson 
process and it is supercritical if 

A 
(d-1)-- > l. 

A+1 

This implies that the first critical value for this process is d~2 and since the contact 
process has more particles than this process we get 

(2) 
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The bounds in (1) and (2) separate Al from A2 when d ~ 7. This concludes the 
proof of Theorem l. 

Observe that as a byproduct of the preceding proof we get the following 
bounds 

To get bounds for Al on Zd is far more difficult, to prove that Al < 00 requires 
already a non trivial renormalization construction (see Durrett (1992». 

But even on the tree there is no hope to find the exact values of Al and A2. 
So to study the phase transitions one has to find new characterizations of Al and 
A2 which are more amenable to analysis. The first step in characterizing Al was 
made by Madras and Schinazi (1992): 

Theorem 2. There exist constants c>. and C( d) such that 

Moreover c>. is a continuous function of A. 

We now use c>. to characterize AI: 

Theorem 3. We have C>" = 0 and so ;It the critical value Al we have 

where C(d) is a constant depending on d only. 

Theorem 3 is proved in Morrow, Schinazi and Zhang (1994). While the lower 
bound is well known and easy to prove directly on any graph, the upper bound 
may be more surprising. Many people working in particle systems seem to believe 
that . there are graphs for which the expected number of particles of the critical 
contact process is not bounded above. Theorem 3 is the first analysis of the 
expected number of particles of the critical contact process. There are no other 
graphs for which the behavior of E(I7JPI) is known at the critical value. 

Once Theorem 3 is known it is easy to analyse the first phase transition: 

Theorem 4. The survival probability 

is continuous at AI, i.e., the critical contact process dies out. 

Pemantle (1992) proved Theorem 4 for d ~ 4. The following proof works for 
d ~ 3. 

Proof. One of the keys to our analysis is the following well known fact about 
Markov chains with absorbing states. See for instance Durrett (1991) p .226 exer
cise 5.6. 
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Lemma 1. On noo = {177PI ;::: 1, "It> O} we have almost surely that 

First observe that 

(3) 

But P>.(I77?1 ;::: 1, "Is ~ t) is a continuous function 'of A (it depends on a finite 
time only) and therefore the r.h.s . of (3) is upper semicontinuous. Using this fact 
together with the fact that p>.(noo ) is an increasing function Of A gives the right 
continuity of this function. ' . 

Now to get the left continuity at Al we observe that if at Al we had P>'l (noo) > 
o then by Lemma 1 we would have that E>'l(I77PI) is unbounded. But this contra
dicts Theorem 3. Therefore P>'l (noo) = 0 and the survival probability is continu
ous at AI. This finishes the proof of Theorem 4. 

The proof that the survival probability is continuous on Zd is much more 
involved (see Bezuidenhout and Grimmett (1990)). Here we are able to take 
advantage of the nice structure (no cycles) of the tree. 

Madras and Schinazi (1992) have proved that the second phase transition is 
discontinuous in the following sense: 

Theorem 5. If Al < A2 then the function 

A -+ P>.(limsuP77P(O) = 1) 
t ..... oo 

is not continuous at A2. 

So the second phase transition is discontinuous for all d ;::: 4 and the behavior 
for d = 3 depends on the number of phase transitions we have there. 

2. The stationary distributions of the contact process 

We will now investigate the stationary distributions for the contact process 
on a tree. First, note that 60 , the measure concentrating on the configuration 
with no particles, is always a stationary distribution. It is also known that if we 
start the contact process with one particle on each site of T then the law of the 
contact process converges weakly to a stationary distribution, v, which is called 
the upper invariant measure since it is the largest stationary distribution in the 
natural partial ordering. 

Using the self-duality of the contact process it is easy to see that 

V(77 : 77(0) = 1) = P(I77PI ;::: 1 for all t ;::: 0) 
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so V ::/= 60 for A > Al and v = 60 for A < AI . Using the continuity of the survival 
probability of the contact process (Theorem 4) we also get v = 60 for A = AI. 

The results above easily imply that the stationary distribution is unique for 
A ~ AI . Our next result implies that for A > Al the only translation invariant 
stationary distributions are 60 and v 

Theorem 6. If the initial configuration is translation invariant and assigns 0 
probability to the empty configuration then the distribution of the contact process 
on the tree converges weakly to the upper invariant measure vast -+ 00. 

Theorem 6 is essentially due to Harris (1976) since his argument for Zd, as 
explained for instance in Durrett (1993), extends with minor modifications to 
trees . 

Bezuidenhout and Grimmett (1990) have proved that 60 and v are the only 
stationary distributions for the contact process on Zd. Durrett and Schinazi (1994) 
have shown that the situation is quite different on the tree: 

Theorem 7. For A E (AI, A2) there are infinitely many extremal nontrans
lation invariant stationary distributions for the contact process on the tree. 

Theorem 7 is reminiscent of resu)ts of Grimmett and Newman (1990) for per
colation on the product of a tree with the integers where there is an intermediate 
phase with infinitely many infinite clusters. 

The reader should observe that the graph and the flip rates are translation 
invariant and that it is rather surprising to get nontranslation inva.iant stationary 
distributions in this context (but there are other examples of interacting particle 
systems with the same behavior, see Liggett (1985» . Rather than reproduce the 
proof of Theorem 7 which is in Durrett and Schinazi (1994) we will try to explain 
why for A E (AI, A2) nontranslation invariant stationary measures appear. 

Define for x ::/= 0, the cone generated by x , f( x), to be the set of all y 

for which the self-avoiding path from 0 to y contains x. If we let 77;(") denote 
the contact process with 1 's on r( x) and let t -+ 00 then one can prove that 
this process converges in distribution to a measure f.1." which is stationary for the 
contact process. We now show that f.1." is nontranslation invariant. To do so we 
introduce the contact process restricted to the cone r(x), a, i.e. no births from 
outside rex) into rex) are allowed; ~f starts with a single particle located at x. 
Morrow, Schinazi and Zhang (1994) have proved that if the contact process on 
the whole tree survives so does the contact process on a cone i.e. if A > Al there 
is an a > 0 such that 

P(I~fl ~ 1, for all t) = a > O. 

By self duality, monotonicity, and translation invarianc~ if y E f( x) then we have 

P(77;(")(y) = 1) = P(77i{Z) = 1, for a z E rex»~ 
~ P(77i{Z) = 1, for a z E r(y» ~ p(l~rl ~ 1, for all t) = a > 0 

(4) 
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if A > A1. We let t - 00 in (4) to get the following inequality uniformly in 
Y E r(x) 

JJ'II(7] : 7](Y) = 1) ~ 0:. (5) 

On the other hand using self duality again, we have that if Y ¢ r(x) 

P(7];(X)(y) = 1) = P(7]f(z) = 1, for a z E r(x)) $ P(7]Hx) = 1 for some s). (6) 

But if A < A2 it is easy to see that the r.h.s. (6) goes to zero as the distance 
between x and y increases to infinity (see Lemma 6.4 in Pemantle (1992)). So 
from (6) we get that 

(7) 

where Iy - xl is the distance between y and x. From (5) and (7) we see that /-Ix 
is not tranlation invariant for A E (A1, A2). Durrett and Schinazi (1994) go on 
and prove that the JJx are all distinct and extremal. The question that remains 
open is: are there other extremal stationary distributions distinct from the ones 
we have just constructed? 

It was conjectured by Pemantle (1992) that for A > A2 the following complete 
convergence theorem should hold: for any initial configuration 7]0, the contact pro
cess 7]1 converges in distribution to a convex combination of v (the upper invariant 
measure) and 60 . Zhang (1994) has recently announced a proof of this conjecture. 
Observe that in particular it implies that the only stationary distributions for the 
contact process when A > A2 are v and 60 , 
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