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Bifurcations in Discretized Reaction-Diffusion Equations 1 

Carlos Rocha 

Abstract: It w~ recently shown by Fiedler and Rocha 
that the global attractor of the dissipative semi flow generated 
by a reaction-diffusion equation of the fonn Ut = u.,., + 
/(x, U, U.,), 0 < X < 1, with Neumann boundary conditions 
is characterized by a pennutation defined on the set of its equi
libria. This pennutation is defined by the braid of the equilib
ria in the space of (x, U, U.,) and determines the attractor up 
to connection equivalence. The space discretization of these 
equations leads to nonlinear 0 D E systems in R n, U = / ( U ), 

which under appropriate conditions are Morse-Smale. We ex
tend to these systems the first steps in the characterization of 
the global attractors obtained for reaction-diffusion equations. 

Key words: Reaction-Diffusion Equations, Attractors, 
Morse-Smale Systems, Discretization, Transverse Heteroclinic 
Points. 

1. Introduction 

By far the best understood infinite dimensional dynamical systems are the ones 
generated by scalar semilinear parabolic equations Ut = u.,., + f( x, u, U.,) defined 
on an interval with linear separated boundary conditions. When the nonlinear
ity satisfies adequate growth and dissipative conditions the equation generates a 
global semigroup with a gradient like structure and a compact attractor in an ap
propriate Sobolev space (see for example Hale [10]). Moreover, generically the flow 
has the Morse-Smale property and the attractor decomposes into a set of equi
libria and a set of heteroclinic orbits connecting them (Henr;5' [12] and Angenent 
[1]) . 

Many authors have worked on the characterization of this attractor, and by 
now it is almost complete. In particular, for Neumann boundary conditions, 
Fiedler and Rocha [7] have recently proved that a special algebraic object in
troduced by Fusco and Rocha [9] with the purpose of characterizing the attractor, 
completely determines its structure of heteroclinic connections. In fact, this ob
ject , a permutation defined on the set of the equilibria, even allows one to attempt 
the first steps in the classification of attractors for one-dimensional parabolic equa
tions (see Fiedler [6]) . 

By discretizing in space these scalar parabolic equations we obtain ODE's 
defining dynamical systems that under certain conditions belong to a class of 
Morse-Smale systems in R,". This class was studied by Fusco and Oliva [8] and 
consists of smooth nonlinear systems x = f(x) such that the derivative f'(x) of 
the vector field has a matrix representation of positive Jacobi type. The main 
objective of this paper is to present the first steps in the characterization of the 
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global attractors for this class of finite dimensional Morse-Smale systems. 
The characterization of all heteroclinic . connections in this case also involves 

the introduction of a permutation defined on the set of equilibria for the ODE and 
is completely analogous to the characterization obtained for the case of a reaction 
diffusion equation. Here we only consider the characterization of the equilibria 
and discuss its bifurcation diagrams, leaving the heteroclinic connections to be 
considered separately. 

As in the case of reaction diffusion equations, the characterization of the equi
libria is obtained through the use of a shooting method to obtain the stationary 
solutions satisfying both boundary conditions. However, the equilibria for the dis
cretized problem are obtained as solutions of a set of nonlinear equations instead 
of a second order differential equation as before. Hence, the shooting process used 
here involves the use of an iterated map of R? that plays the role of a numeri
cal integration algorithm for the differential equation (the same process used by 
Domokos and Holmes [5] in the context of a discretization of the Euler buckling 
problem). This algorithm is a symplectic integrator and the map obtained is an 
area preserving diffeomorphism related to the standard family. Therefore, for 
a certain range of the parameters some complicated behavior is expected as the 
number of iterations of this map is increased. In fact, in the last part of this paper 
we consider odd nonlinearities and show that generically the dynamical system 
generated by this map has transverse heteroclinic orbits. As a consequence, the 
bifurcation diagrams for one parameter families has a very complicated behavior 
with many equilibrium solutions appearing through secondary bifurcations. This 
solutions are usually interpreted as numerically irrelevant or spurious. However, 
we show that some of these solutions correspond to stable equilibria of the at
tractor for the discrete problem. Moreover, by discretizing a reaction-diffusion 
equation that cannot have stable nonconstant solutions we show that it is possi
ble to obtain an ODE with a large number of sign changing stable equilibria. 

2. The continuous problem 

In this section we outline some of the earlier results ·in the characterization 
of the equilibria for scalar reaction-diffusion equations (see for example [15]) and 
resume some of the results of Fiedler and Rocha [7] in order to motivate the 
methods that we use and the results that we expect for the discretized problem. 
We consider the scalar reaction-diffusion equation 

(C) 
U xx + f(x, u, ux ) 

o 
0< x < 1, 
x = 0 or 1. 

that from here on we refer to as the continuous probem. The nonlinearity f(x, u, p) 
is assumed twice continuously differentiable, satisfying a dissipative condition of 
the type 

f(x,u,O)· u < 0 
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for lui large enough and a growth condition on p, for example sub quadratic, to 
ensure global existence of solutions of (G) . Then, (G) defines a global dissipative 
semiflow in a Sobolev space X , for example Hl(O, 1) (see for instance Henry [11]), 
with a gradient like structure provided by the existence of a Liapunov functional 
for each trajectory u(·, t), [17]. By dissipat iveness, this flow has a maximal com
pact invariant set, the global attractor A, consisting of all the globally defined 
bounded orbits. Since the flow on A is gradient like with an associated Morse 
decomposition, we have that A is composed of the set E of equilibria and the set 
ofheteroclinic orbits connecting them (that we denote G(v,w) for v,w E E) 

A=EU U G(v,w). 
lI,wEE 

To determine the set E we have to solve 

(2.1) 
u.,., + I(x, u, U.,) o 

o 
0< x < 1, 
x = 0 or 1. 

This is done using a shooting method, determining the solutions of the initial 
value problem 

(2.2) 
v 
- I(x, u , v) 

u(O) = Uo , v(O) = 0 , 

that also satisfy the end point boundary condition v( x) = 0 at x = 1. Here 
we assume that the solutions of (2.2) exist for 0 :::; x :::; 1 (otherwise, since A is 
compact, we change I outside some large ball) . Let u = u(x, uo), v = vex, uo) 
denote these solutions parametrized by the initial condition, and define 

S ~ { (u(l,uo),v(l,uo) : Uo ElR} cD1? . 

Then, S is a simple curve in the phase plane determined by the solutions of (2.2) 
at x = 1 and parametrized in uo . We let p( uo) = (u(1, uo), v( 1, uo» denote a 
point of S and let H = {(s,O): s ElR} denote the axis {v = OJ. 

Proposition 2.1 : A solution u = u( ·, uo) of (2.2) is an equilibrium solution 
of (G) if and only ifp(uo) E SnH . 

The tangent vector t?(uo) to S at the point p(uo) has components (u, V)lx=l 
obtained from the linear variational equation of (2 .2) around the solution u(·, uo) 

Ux v 
Vx -/u(x,u , ux)u- I v(x,u,ux)v 

u(O) = 1 , v(O ) = 0 , 



406 Carlos Rocha 

and the eigenvalue problem corresponding to the equilibrium u(·, uo) E E is given 
by 

Wu + fv(x, u, U.,)W., + ftJ(x, u, U.,)w = AW 
w., = 0 

0< x < 1, 
x = 0, 1, 

l.From a comparison between these two problems one obtains a characterization 
of hyperbolicity for the equilibria. 

Proposition 2.2: The equilibrium u = u(·,uo) E E is hyperbolic if and only 
if the corresponding intersection is transverse Srflp(tJo)H. 

Let i(e) = dim WtJ(e) denote the Morse index of the equilibrium e E E and 
let 8 = 8( uo) denote the angle formed by d( uo) with the axis {v = o} defined 
continuously for Uo E JR. Then, from a Sturm oscillation theorem we obtain 

Proposition 2.3: The Morse index of the equilibrium u(-, uo) E E is given 
by 

i(u(-, uo» = 1 + [8(uo)j7l"J 

where [.J denotes the integer part. 

Let z( u(-, t» denote the number of zeros of the solution u = u(-, t) for t > O. 
This zero number is used in the study of the nodal properties of the solutions of 
(C) and is essential in establishing its dynamic properties providing for a second 
(discrete) Liapunov function (see for example [2]). Then, the curve S determines 
the equilibria, their Morse indices and also the intersection number z( v - w) for 
each pair of equilibria v, wEE. Finally, ordering the set of equilibria first along S 
and then along H, one defines a permutation 71" on the set E that determines the 
heteroclinic connections between equilibria. In fact, the set of equilibria defines a 
braid in the space (x, u, v) with 0 :::; x :::; 1 and leads to the permutation 71". This 
permutation corresponds to the ordering of the equilibria by their values at x = 0 
and at x = 1. To compare the flows on the at tractors for two different problems 
one uses the following notion of equivalence. 

Definition 2.4: Two attractors Ao and Ai are connection equivalent if there 
exists a bijection u : Eo -+ El such that: 

(i) i(u(v» = i(v), for each v E Eo; 
(ii) v ~ w if and only if u(v) ~ u(w), for each pair v, wE Eo; 

where ~ denotes the relation connects to. 

The permutation 71" determines all the connections between the equilibria and 
using the above notion of equivalence one obtains the following characterization 
of the attractor. Given two problems with permutations 71"0 and 71"1 we have 

-
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Theorem 2.5: ([7], Corollary 6.1) 
11"0 = 11"1 => Ao and A1 are connection equivalent. 

3. The discrete problem 

In this section we consider the space discretization of the continuous problem, 
where the sampling is taken at the points Xj = j-~/2, j = 1, . . . ,n. To simplify 
the notation we consider the case 1= I(x, u) and make some remarks about the 
dependence on U x where needed. 

Let Uj(t) = u(Xj, t), and qefine Ijc-) = I(xj, -). Applying to (C) a semi
implicit Euler discretization and rescaling time by a factor l/n2 we obtain the set 
of ODE's: 

uj = Uj-1 - 2uj + Uj+1 + ~/j(Uj), j = 1, .. . ,n 
n 

where the Neumann boundary conditions are replaced by 

Defining U == (U1, ... , un) we write this as 

(D) 

where 

[

-1 

I n = : 

1 
-2 1 

1 

U' = JnU + ~F(U) 
n 

-2 
1 

and F(U) = (f1(ud,· · ·, In (Un)) . 

l.From here on we refer to this ODE in 1R.n as the discrete system. The derivative 
of the vector field at any point U E JRn has a tridiagonal matrix representation 
with positive subdiagonal elements (i.e. a positive Jacobi matrix). Therefore, (D) 
belongs to the class of systems studied in [8] for which the stable and unstable 
manifolds of hyperbolic equilibria always intersect transversally. Furthermore, 
(D) is a gradient flow (see [8] for an explicit Liapunov function) with a compact 
attractor 

A=EU U C(v,w) 
v,wEE 

that, as before, has a Morse decomposition . The main objective of this section is 
to characterize the set · E of equilibria of (D) . 

Remark 3.1: To include the U x dependence on I preserving the Morse-Smale 
property of the flow (D) we assume an upper bound on ¥V, say Iv (x, U, v) ::; M 
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for all (x, U, V) E R3. Then it is sufficient to consider step sizes satisfying the 
condition n > M. This ensures that the derivative of the vector field is a positive 
Jacobi matrix. 

The equilibria U E E of (D) are the vector solutions of the set of nonlinear 
equations 

(3.1) 
1 

JnU + 2F(U) = 0 . 
n 

Introducing the auxiliary variables Vj = Uj - Uj-l, (3.1) can be written as 

j = 1, . . . ,n 

and the boundary conditions become 

VI = Vn+l = 0 . 

To obtain the solutions of (3 .1) we again use a shooting method . We let VI = 0, 
UI = Uo with Uo E 1R taken as a parameter and let 

(3.2) 

j times 
_---"A--__. 

where ~,J = 4>n,J 0 . . . 0 ~n ,;. Then, after n iterations of the mapping ~n,J we 
define 

S ~f { (Un+l (uo), Vn+l (uo» : Uo E 1R } C 1R2 . 

One easily verifies that ~n,J is a one to one area preserving diffeomorphism . Hence, 
S is a smooth simple curve in the plane and , as in the continuous case, provides all 
the necessary information on the attractor. If we let p( uo) = (un+!( uo), vn+!( uo» 
denote a point of S and let H denote the axis {v = O}, one easily establishes the 
following correspondence between equilibria of (D) and intersection points of S 
and H : 

Proposition 3.2: A solution U( uo) = (UI; ... , un) obtained from (3 .2) is an 
equilibrium solution of (D) if and only if p(uo) E S n H. 

Remark 3.3: If we consider again the u'" dependence on I, the nonlinear 
term in ~n,J becomes ~ Ii (Uj, nVj). Then , ~n,J is no longer area preserving but 
the condition n > M still ensures that it is one to one and S is a simple curve. 

To consider the question ofhyperbolicity of equilibria we take again the tangent 
vector t?( uo) to S at the point p( uo) with components (Pn+l, qn+!) . Th~se are 
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b . d f h d·· 8u . 8" . o tame rom t e envatlves Pj = ~, qj = ~ that satisfy 

j = 1, .. . ,n 

with initial conditions PI = 1, ql = O. On the other hand, the eigenvalue problem 
corresponding to the equilibrium U(uo) = (Ul, .. . ,un) E E is given by 

wj_1-2wj+Wj+l+,&fj(uj)Wj=AWj , j=l, ... ,n 
(3.3) 

WI = Wo , Wn = Wn+l . 

A comparison between these two problems when A = 0 is an eigenvalue of the 
linearization around U (uo) E E establishes the following 

Proposition 3.4: The equilibrium U( uo) = (Ul, ... , un) E E of (D) is hyper
bolic if and only if the corresponding intersection is transverse SrfJp(uo)H. 

Finally, we also obtain an expression for the Morse indices of the equilibria of 
(D). Let again 0 = O(uo) denote the angle formed by t9(uo) with the axis {v = O} 
defined continuously for Uo E JR. 

Proposition 3.5: The Morse index of the equilibrium U(uo) E E is given by 

i(U(uo)) = 1 + [O(uo)j7r] 

where again [.] denotes the integer part. 

Proof: The eigenvalue problem (3.3) is written in matrix form as 

[In + :2F'(U) - u] w = 0 

where W = (Wl, ... ,Wn) and F'(U) = diag(ff(ud, ... ,J~(un)). Then, the 
matrix [In + '&F'(U)] is positive Jacobi and has a real simple spectrum given by 
{Ill> ... > lin}. Introducing the variables Pi = Wi and tfi = Wj - Wi -1 we write 
the initial value problem corresponding to (3.3) as the iterative linear map 

{ ~j+l 
qi+1 

Pj + 7fj+l 

j = 1, .. . ,n 
7jj ,&fj(uj)pj + APj 

with initial conditions PI = 1, 7fl = o. Using A as a parameter in addition 
to uo, we obtain a solution of (3.3) whenever the condition 7fn+l(UO, A) = 0 is 
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satisfied. Introducing polar coordinates, we let Pj = rj cos OJ, qj = -rj sin OJ 
where OJ = OJ(uo,,x) and rj = rj(uo,,x) are defined continuously in lR? Then, 
the condition qn+l(UO,,x) = ° becomes On+l(UO,,x) = ° mod 1r. We have that 
01 (uo,,x) = ° for all (uo,,x) E lR? and by a straightforward computation we obtain 
that OJ satisfy the following recursive relations 

[ 1 ]-1 
cotOj+l = -1 + n 2fj (Uj) -.\ + tan OJ j = 1, .. . ,n. 

One easily verifies that for Uo fixed and .\ sufficiently large On+l(UO,'\) becomes 
negative, and that On+l(UO,'\) - -i as .\ - +00. Moreover, for .\ = ° we obtain 
On+1(Uo,O) = O(uo) and adapting Proposition 3.4 we have that On+l(UO,'\) = ° mod 7r if and only if ,x = III; for some 1 ~ k ~ n. 

Finally, differentiating OJ with respect to .\ we obtain 

cos2 OJ 0~;1 = 2 cos2 (OJ+ 1 - 7r/4) [~~ - cos2 0j ] , if cosOj-::f0 

OOj+l _ ~ oOj if cos OJ = ° 
o,x 2 0.\ ' 

and we conclude that 0;1' (uo,.\) ~ 0, for j = 1, ... , n. Hence, as ,x decreases 
from +00 across the values Ilk, the function On+l increases from -~ across the 
values (k - 1)7r and a simple counting procedure completes the proof. 

Remark 3.6: The above characterization of the equilibria of (D) also holds 
when f depends on U x under the condition n > M . 

4. The bifurcation problem 

In this section we consider bifurcation diagrams for families of problems of the 
form (D) and use the characterization obtained for the equilibria to discuss some 
features that are specific of these discrete problems. 

l,From the convergence of the Euler discretization method applied to the initial 
value problem (2.2) on the fixed interval x E [0,1] we conclude that the S curve 
for the discrete problem is C 1-close to the S curve of the continuous problem 
for n sufficiently large. Therefore, we expect the corresponding attractors to be 
connection equivalent when the step size is adequate. However, this convergence 
cannot be achieved uniformly for the families of problems we want to consider, 
and since the curve S is obtained by iterating an area preserving diffeomorphism, 
we expect to obtain complicated bifurcation diagrams very different from the ones 
obtained for continuous problems. 

The simplest continuous bifurcation problem is the Chafee-Infante problem [3] 

(4.1 ) 
Ux 

uxx + flf(u) 

° 
° < x < 1, 
x = ° or 1 
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where f( u) = u-u3 and J-l > O. Its bifurcation di~gram in terms of the parameter J-l 
is well known . All the equilibria ~te hyperbolic i,f,, ' ¥ k.2 7r2 with k E IN. Moreover, 
it contains exactly three constant equilibrium solutions, uO == 0 and u± == ±l. 
The equilibria u± are stable for all J-l > 0 (these are the only stable equilibria) . 
The equilibrium UO is unstable and, if (k -I )27r2 < J-l < k2 7r 2 is satisfied, its Morse 
index is given by i(uO) = k. Finally, at the values J-l = k27r2 the trivial equilibrium 
uO undergoes supercritical pitchfork bifurcations, with two non constant equilibria 
uk ,± arising from uO and becoming hyperbolic for all J-l > k 2 7r2 with Morse indices 
given by i(uk ,±) = k. This completes ,the description of the bifurcation diagram 
of (4.1) in what concerns the set of equilibria. 

The corresponding discrete Chafee-Infante problem in JR,n is given by 

(4 .2) U'= JnU + :2 F(U) 

with F(U) = (f(ut), . .. ,f(un». One easily shows that UO ' = (0, . .. ,0) and 
U± = (±I, .. . , ±I) belong to the set E of equilibria for this problem. Moreover , 
denoting by {IIi> 112 > ... > II;:} the spectrum of J n we have that 

n 4· 2U-I)7r . 1 IIi = - sin , J = , . .. , n . 
2n 

Then, since IIi = 0, we conclude that U± are stable and hyperbolic for all J-l > 0 
and that UO is unstable. Furthermore, UO is hyperbolic if J-l f:. _n2l1j with Morse 
index i(UO) = j if _n2l1j < J-l < _n2I1j+I' and i(UO) = n if J-l > _n211;:. Also, it 
can be shown that UO undergoes supercritical pitchfork bifurcations at J-l = _n2I1j, 
j = 2, . . . ,n. 

This is in complete agreement with what happens in the continuous problem up 
to the limitation in the dimension of the phase space lRn. However, the similarities 
stop here and the bifurcation diagrams for both problems are very different . In 
particular, the bifurcation diagram for the discrete problem shows an incredibly 
large number of secondary bifurcations as J-l increases. In Figures 1-5 we illustrate 
the appearance of these secondary bifurcations. The figures were obtained using 
Mathematica and represent the curve S for the discrete Chafee-Infante problem 
with n = 4 and different values of J-l. 

The secondary bifurcations are related to the properties of the area preserving 
map ~n,/JJ that determines the curve S: 
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Figure 1: S curve for the discrete problem with n = 4 and J1. = 7. 

1 

Figure 2: S curve for the discrete problem with n = 4 and J1. = 14. 
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1 

Figure 3: S curve for the discrete problem with n = 4 and J1. = 21. 

Figure 4: S curve for the discrete problem with n = 4 and J1. = 29. 
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1.5 

-1. 5 

Figure 5: S curve for the discrete problem with n = 4 and J-l = 40. 

We remark that for the nonlinearity f given by f(u) = sinu if lui ~ 11" , this 
map is known in the literature as the standar~ map [4] . The bifurcation diagram 
for this map is studied in [5] where it appears in the context of a discrete model 
for the Euler buckling rod . In thif? reference the . complexity of the bifurcation 
diagram for the standard map is very well illustrated . Moreover, some particular 
results on the secondary, bifurcations are also presented. ' .. 

The standard map and the mapping ~n.J.lJ for the cubic nonlinearity are qual
itatively similar, sharing some important ptopeI;ties. For example, both maps 
exhibit a pair of hyperbolic saddles with heteroclinic points. As it is well known, 
the behavior of a discrete dynamical system generated by a diffeomorphism is very 
complicated in the presence of transversal heteroclinic points. However, there are 
very few results in the literature on the existence 0f transversal heteroclinic points 
for specific maps ([13] contains a partially-analytical proof for the standard map). 
Therefore, we are going to look for generic results in the class of planar diffeomor
ph isms of the form ~n.J.lJ with cubic like f's. 

Let :F denote the space of C 2 odd functions with ,the strong C 2-topology. Let 
f E :F have exactly three simple zeros and satisfy 1'(0) > 0, and let ~ J E Diff2(IR?) 
denote the following associated C 2 area preserving diffeomorphism: 

~J(u, v) = (u + v - f(u), v - f(u)) . 

Let also NJ C :F denote a neighborhood of f containing only functions with the 
same qualitative behavior, that is , having exactly three simple zeros and positive 
derivative. at the origin. Then, we have 
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Theorem 4.1: The subset 1t C:F of functions g such that <I>g has transversal 
heteroclinic points is residual in lV, . 

Proof: Let 0 and ±r denote the three simple zeros of f. Then, 0 = (0,0) and 
R± = (±r, 0) are the only fixed points of the diffeomorphism <I>" and the condition 
f'(±r) < 0 implies that R± are hyperbolic saddles. In order to study their stable 
and unstable manifolds we explore the symmetries of the system. Let p : IR? -1R? 
denote the transformation p( u, v) = (-u, -v) . Since f is odd, we have that 
W:,(R+) = pW:, (R-) and W~,(R+) = pW~,(R-). Hence, if P is a heteroclinic 
point of <I>, satisfying P E W:,(R+) n W~,(R-), then pP also is and satisfies 

pP E W:/R-) n W~,(R+). We conclude that heteroclinic points arise in pairs. 
To determine a convenient heteroclinic point we look for a relation between the 
stable and unstable manifolds of the fixed points R±. Here it is more convenient to 
introduce a change of coordinates and study the diffeomorphism <I>, in a different 
form. Under the transformation E(u, v) = (u + v, 2v) the diffeomorphism <I>, IS 

conjugated to 'iJl, = E- I 0 <I>, 0 E given by 

'iJl,(u,v) = (U+2V-~f(u+v),V-~f(U+V») 

We remark that E(R±) = R± and we let W4, (R±) = E-1(W.t,(R±», W:,(R±) = 
E-1(W: (R±» denote the stable and unstable manifolds of the fixed points R± 
for the d{ffeomorphism 'iJl,. Due to the oddness of f, it turns out that the reflection 
r( u, v) = (-u, v) conjugates 'iJl, to its inverse 

This provides the required relation between the stable and unstable manifolds of 
'iJl,. In fact, we conclude that 

(4.3) 

Therefore, a point of intersection of W:,(R±) with the axis {u = O} belongs 

to W:, (R±) n W4, (R'f) and corresponds to a point of intersection of W:, (R±) 
with W.t,(R'f). From the linearization of 'iJl, around R- we have that in a small 
neighborhood of R- there is a point Q E W~,(R-) with coordinates Q = (0:,{3) 
such that r- < 0: < 0 and (3 > o. Then , one easily verifies that wj (Q) enters the 
quadrant {u > 0, v > O} for some finite k E IN. We conclude that, in fact, there is 
a point of intersection BE W:, (R-) n W4 , (R+) on the axis {u = OJ. 

In the following we prove that 1t is dense in lV, . Assume that the heteroclinic 
point B E W: (R-) n W4 (R+) is not transverse. Then, B has coordinates . , , 
B = (O,b) with b> 0 and the tangent space TBW:,(R-) at B is spanned by a 
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vector (b,O). Let A = 'ilI,I(B) denote the inverse image of B, with coordinates 
A = (aI, a2), and let (aI, (2) be a vector spanning TA W:, (R-). Then , 

where 

This implies that 

( 4.4) 

and al + a2 :f. 0 since otherwise we have a2 = 0 from (4.4) and as a consequence 
(al,a2) = (0,0) contrary to the hypothesis that it spans TAW:,(R-) . Moreover, 

from the expression of 'ilI,1 we also have that al + a2 = -b < O. The rest of 
the argument is similar to an argument in [14], Chapter 4.4 . Let 9 E :F denote 
a small C2 odd perturbation of f such that g(b) = f(b), g'(b) = f'(b) + £ and 
9 = f outside small neighborhoods of the points ±b E JR. Then, the diffeomor
phism 'ill 9 still has R± as hyperbolic fixed points and the unstable manifold of 
R- (denoted W: (R-)) still contains the points A and B . Also, we still have , 
(al,a2) E TAW: (R-) and a simple computation yields , 

This shows that for £ :f. 0 the heteroclinic point B of 'ill 9 is transverse. Likewise, 
E( B) is a transversal heteroclinic point for ~ 9 proving denseness of 11. in N, . 
Finally, due to the continuity of the maps 9 ....,.. W: (R±) we have that 11. is open 
in N, completing the proof of this theorem. 9 

Remark 4.2: Using the symmetry in the orbit structure of the diffeomorphism 
'ill 9 given by the relation (4.3), the perturbation argument used in this Theorem 
can be extended to make W: (R±) and W~ (R'F) transversal at all points. , . 

A similar problem has been considered by Ushiki [16] for an area preserving 
diffeomorphism of the plane derived from a numerical integration scheme for the 
logistic differential equation . In this reference the analyticity of the map is used to 
establish the existence of chaotic orbits without assuming transversal intersections 
for invariant curves. 

Consider again the ordinary differential equation 

(P) 



Bifurcations in Discretized Reaction-Diffusion Equations 417 

with F(U) = (f(ut) , ... , I(un » and I E:F a cubic like nonlinearity as above. We 
are now able to prove that generically in I the bifurcation diagram of this discrete 
problem contains stable sign changing equilibria. Moreover, the number of these 
equilibria is very large if the discretization step size ~ is taken sufficiently small. 

As before, let I E :F have exactly three simple zeros and satisfy 1'(0) > O. In 
addition, let ~ 1 have the stable and unstable manifolds of its saddle fixed points 
transversal at every point. 

Theorem 4.3: Under the above assumptions for I, given N E IN there is a 
positive integer n = n(N) such that the bifurcation diagram of (P) at J-l = n 2 

contains at least 2N stable sign changing equilibria. 

Proof: This result follows from an application of the Inclination Lemma, [14]. 
Let R± denote again the saddle fixed points of ~/' and let W'(R±), WU(R±), 
denote the corresponding stable and unstable manifolds. Then, we take J-l = n 2 

and remark that ~n,/JI = ~ I. As seen in the previous section, the characterization 
of the equilibria of (P) is obtained from the curve S. This curve is given by 
S = ~J(H) where H is the axis {v = O} . Moreover, we have that Hrl1W'(R±) 
at the points R±. Hence, by the Inclination Lemma, if V( R-) denotes a small 
neighborhood of R-, the image of H n V(R-) under ~J becomes C1-close to 
WU(R-) as n -+ +00. By our assumption the manifolds WU(R-) and W'(R+) 
are transversal. If P denotes the point P = E( B) E wu (R-) n W' (R+) defined 
in the proof of the previous Theorem, there is a sequence of points Pj = ~~(P) 
converging to R+ such that WU(R-)rl1 p W'(R+). In a small neighborhood V(R+) 

J 

of R+ we have that the arcs of WU(R-)nV(R+) containing the points Pj in V(R+) 
are C1-close to WU(R+). This implies the existence of a sequence of points Qj 
of transverse intersection of WU(R-) with H in V(R+). Since the arc of S given 
by ~J(H n V(R-» as n increases becomes C1-close to the manifold WU(R-) , 
for n sufficiently large we can find N points in V(R+) of transverse intersection 
of S with H. By Proposition 3.2 these points correspond to equi libria of (P), 
and by Proposition 3.4 they are hyperbolic. Furthermore, we can choose these N 
points in such way that the corresponding angles Ok, k = 1, .. . , N, formed by the 
tangent vectors l'h to S with H are negative. Proposition 3.5 then implies the 
stability of the corresponding equilib ria . Each of these equilibria have negative 
first component Ul and positive last component Un (close to the corresponding 
zeros ±r of f), hence they are sign changing equilibria. Finally, the invariance 
of S under the transformation p implies that each of these N equilibria has a 
corresponding pair with the same properties, concluding this proof. 

As a final remark we point out that Figures 4 and 5 illustrate well the ap
pearance of a pair of such stable sign changing equilibria in the case of the cubic 
nonlinearity. 
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