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Coupled Oscillators on a Circle 

Jack K. Hale * 

Abstract: We consider a continuum of diffusively cou­
pled oscillators on a circle. When each oscillator is of Lien­
ard type, very little is known about the corresponding hyper­
bolic POE. When each oscillator is represented by a lossless 
transmission line, we obtain a partial neutral delay differential 
equation and give the beginnings of a qualitative theory for 
the dynamics. In particular, we discuss the properties of the 
solution map, the existence of the global attractor, behavior 
near an equilibrium point including the Hopf bifurcation, and 
some elementary properties near a periodic orbit. 

Key words: transmission lines, oscillators, partial dif­
ferential equations, delay differential equations, at tractors , ~ 
riodic orbits. 

1. Introduction. Motivated by problems in physics, physiology and biology, 
there have been many studies in recent years devoted to the dynamics induced 
from the ordinary differential equations obtained by coupling large numbers of 
oscillators on periodic lattices. One important problem is concerned with self ex­
cited periodic motions for which each particle oscillates in the same way except for 
a phase shift (synchronization) (the locking in phenomenon). When the oscillators 
are subjected to external excitation, it is often the case that patterns involving 
spatial and temporal chaos are the primary concern. 

In general, the qualitative properties of the dynamics depends upon the num­
ber of oscillators. On the other hand, it is to be expected that there will be a 
certain type of stabilization in the dynamics if the number of oscillators is larger 
than some number No (we refer to this as spatial stabilization). One major prob­
lem is to show that spatial stabilization occurs; that is, No exists, and to determine 
value of No. Of course, this is a difficult problem and frequently is resolved by 
numerical techniques. 

Assuming that the coupling between the oscillators is of diffusive type, an­
other possible approach and the one that we will advocate here is to replace the 
lattice by a continuum which has the effect of replacing the large system of or­
dinary differential equations by a partial differential equation (PDE) . The first 
objective would be to study the dynamical properties of the PDE that are mo­
tivated by the original discrete problem. If it is possible to prove that these 
properties are insensitive to perturbations of a sufficiently general type, then we 
obtain important information about the original discrete system. Success in such 
a program at least will show the existence of the number No which characterizes 
spatial stabilization. 

Of course, the type of PDE that is obtained by taking the continuum limit 
will depend upon the types of oscillators that are considered as well as the struc-
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ture of the coupling between the oscUlators. We indicate some of these types to 
bring out the fact that there are some interesting new difficult problems in PDE. 
Unfortunately, at this time, we are able to make only a small contribution to one 
of these classes and leave the others as topics for future research. 

In the modeling of the synchronization problem, the basic oscillators used 
at each point very often are taken to be described by an ordinary differential 
equation of the van der Pol type or Lienard type; that is, the differential equation 
has a unique equilibrium point and a periodic orbit which attracts all other orbits. 
Assuming that the oscillators are on a uniform periodic lattice on the real line and 
that each oscillator interacts only with its nearest neighbor, we arrive at a system 
of ordinary differential equations 

where K. > 0 is a constant and Ot denotes the derivative with respect to t . 
We describe briefly an approach taken to discuss system (1.1) following the 

papers of Koppel and Ermentrout (1982),(1986) (see also the references therein). 
For K. = 0 system (1.1) has an invariant torus Tt' corresponding to the N-product 
of the periodic orbit 'Yo of the scalar equation 

(1.2) O;V + f(v)otv + g(v) = O. 

Since 'Yo is hyperbolically stable, the N-torus Tt' also will be hyperbolic and ex­
ponentially stable. For K. > 0 and small, system (1.1) will have an invariant torus 
T!, which is hyperbolic and exponentially stable . The flow on T!, is described 
by a system of differential equations involving N -angles OJ, j = 1,2, .. '.' N . Syn­
chonization occurs when OJ(t) - Ok(t) ---> a constant as t ---> 00 . 

Koppel and Ermentrout (1986) proved the existence of a synchronized solu­
tion in a very interesting way by making use of a continuum limit. The limit was 
taken on the ordinary differential equations describing the differences of the angles 
to obtain a parabolic equation with a dispersive term. Thus, using the continuum 
limit to obtain information about a discrete problem is not unprecedented . 

Let us now consider a continuous system of 'such oscillators on a circle by 
taking the parameter K. in (1.1) as K/h2, where h is the spacing between the 
oscillators and K > 0 is a constant independent of Nwhich represents the diffusive 
interaction with neighboring oscillators. If we assume that K. has this form, then 
the limit as h ---> 0 in (1.1) leads to the hyperbolic PDE on the circle 51: 

(1.3) O;U - Ko;,u + f(u)Otu + g(u) = 0, 

where Oz; denotes the derivative with respect to x and the solution of (1.3) is to 
be considered in Hl(51 ) x U(51 ) . 

Equation (1.3) has the spatially homogeneous periodic orbit 'Yo = {p(t) , t E 
IR}, where p(t) is a nontrivial periodic solution of the ODE (1.2) . This solu­
tion is stable hyperbolic when we consider perturbations in the space of spa­
tially homogeneous functions . If this orbit were known to be stable hyperbolic 
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in Hl(SI) x L2(SI) and if we could show that this periodic orbit persists under 
spatial discretization in space, then we will obtain synchronized periodic orbits 
due to the symmetry in the discretization. This approach would show that spatial 
stabilization does occur. At the present time, we have no idea how to prove or 
disprove any of these remarks. 

In the derivation of (1.3), the quantity K = K/h2 approaches 00 as h -+ o. 
Therefore, the model (1.3) must be considered as completely different from the 
one of Koppel and Ermentrout. 

Endo and Mori (1978) have considered systems of coupled van der Pol os­
cillators on a circle which (after scalings of the variables) is equivalent to the 
system 

(1.4) 
oluk - (1- UnOfUk + Uk + K(U"+1 - 2Uk + Uk-I) = 0, 

k= 1,2, ... ,N, 

where ( is a parameter that depends only upon the characteristics of the van der 
Pol circuit and K = L/ Lo, where L is the inductance in the van der Pol circuit and 
Lo is the mutual inductive interaction between the oscillators. Using ( as a small 
perturbation parameter, Endo and Mori (1978) have considered the stability and 
instability of various types of periodic solutions. If we assume that K = K / h2 and 
take the continuum limit, we obtain the equation 

(1.5) 

For ( = 0, we obtain the undamped linear wave equation on SI for which the 
corresponding group has the radius of the essential spectrum equal to one . To 
give rigorous results about such a perturbed problem would be very interesting 
but, at the same time, seems to be extremely difficult. 

Kurzweil (1963) (1967) and Hall (1968) have given some very interesting 
results about the limits of periodic solutions of (1.7) as ( -+ o. On the other hand, 
there seems to be no information about the global dynamics of (1.7) . 

Wu and Xia (1993) considered another type of oscillator on a linear periodic 
lattice. At each point, the dynamics of the oscillator was described by the tele­
graph equations of a lossless transmission line with a tunnel diode between the 
lines. As is well known (see, for example, Abolina and Mishkis (1960), Nagumor 
and Shimura (1961), Brayton (1966), Cooke and Krumme (1968», such a system 
is equivalent to a scalar neurtal differential delay equation. Assuming that the 
oscillators react through resistive coupling, it is shown by Wu and Xia (1993) that 
the resulting system is given by 

(1.6) OfDuk,f - K(Duk+l,t - 2Duk,t + DUk-l,d = !(Uk,t), k = 1, . . . , N, 

where Uk,t(O) = Uk(t + 0), -r ~ 0 ~ 0, r > 0 is a positive constant, DUk,t 
Uk(t) - qUk(t - r), and q is a physical parameter, 0 ~ q < 1. The fact that Iql < 1 
implies that the solutions of the difference equation 

DWf == w(t) - qw(t - 1) = 0 
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has zero as a solution which is exponentially stable. The operator D may be 
more complicated depending upon the circuity across the transmission line. For 
example, it could involve many delays which are not necessarily rationally inde­
pendent. However, the corresponding difference equation is exponentially stable 
under reasonable physical assumptions. 

With K. = K/h2 as above, the continuous version of this system is the partial 
neutral functional differential system (PNFDE) on Sl: 

(1.7) 

where Ut(x,O) = Ut(x, t + 0), -r ~ 0 ~ 0, and DUt = u(x, t) - qu(x, t - r), 0 ~ 
q < 1, x E Sl. The space of initial data is chosen to be X == C([-r, 0], H1(Sl)). 

If K = 0 in (1.7), we have a neutral delay differential equation which carries 
the hyperbolic structure from the transmission line describing the original oscil­
lators. On the other hand, this hyperbolic structure is controlled by the fact that 
the group defined by the difference equation has essential spectral radius < 1 for 
each t > O. It is to be expected that the diffusive term (K ::j; 0) will not have 
too much impact on the essential spectral radius. Therefore, a reasonable theory 
of dynamics should exist for (1.7), and, in the next sections, we will present the 
beginnings of such a theory. More specifically, in Section 2, we define the class 
of equations to be considered, indicate proofs of existence, uniqueness, etc., and 
give conditions which imply that the solution operator is an a-contraction in the 
sense of Kuratowski. We present also a result on the existence of a global at­
tractor as well as a regularity result on el~ments of the attractor. This regularity 
result should be useful in discussing spatial discretizations, but the details have 
not been supplied at this time. A type of result that might be expected is the 
following. Suppose that (1.7) has a hyperbolic periodic orbit (this concept is de­
fined in Section 4) that is stable. Then under spatial discretization, there should 
be a periodic orbit of (1.6). If the spacing is uniform, then the symmetry under 
certain rotations should imply that the orbits are synchronized. For a specific 
type of nonlinearity in (1.6) and certain values of the parameters, it was proved 
by Wu and Xia (1993) that there is a periodic orbit that is synchronized. Thus, 
the mentioned expectation is reasonable. In Section 3, we give a generic Hopf 
bifurcation theorem for large diffusions K. In Section 4, we begin a theory for 
the behavior of solutions near periodic orbits and the preservation of these orbits 
under perturbations. It is only a beginning and much remains to be done. We 
remark that some of the above results were announced in Hale (1993). 

In the applications, it is important to consider more general lattices that 
linear ones; for example, periodic lattices in the plane (or three space) which 
correspond to the two dimensional (or three dimensional) torus in the continuous 
case. Many of the remarks made below for (1.7) should hold in this more general 
setting with 0; replaced by the Laplacian. 

It should be noted also that the interactive forces between the particles as 
well as basic circuitry on the transmission line that induces the oscillation for each 
particle may depend upon the position of the particle. In such a case, the PDE 
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depends explicitly upon the spatial variable. For example, (1.7) would be replaced 
by the PNFDE 

(1.8) 

Similar remarks hold for the other models. 
We end this introduction with a few remarks about a different type of prob­

lem. If we consider a periodic lattice of pendulum type equations with linear 
damping and periodic forcing, with diffusive coupling, and take the continuum 
limit, then we obtain the following hyperbolic equation on SI : 

(1.9) t/fu + {30tU - Ko;u + feu) = Ap(wt) , 

where pet) represents a periodic external forcing and {3 > 0, A,W are real param­
eters. Under either a dissipative condition on the function f or the case where 
f is periodic and bounded, it is possible to show that the Poincare map has a 
global attractor (see, for example , Babin and Vishik (1989), Hale (1988) , Temam 
(1988)) . A basic problem is to determine properties of the flow on the attractor. 
For the case in which feu) = sin u (the linearly damped and periodically forced 
Sine-Gordon equation), considerable research has been devoted to possible flows 
on the attractor from both the theoretical and numerical point of view (see , for 
example, see Birnir and Grauer (1994) and the references therein) . The Sine­
Gordon equation also is a basic model for describing the phase difference between 
two super conducting layers in a Josephson junction (see Pedersen (1982». For {3 
and A of order 10-2 or less, Birnir and Grauer (1994) have given a very detailed 
description of the global attractor and the different bifurcations that occur by 
varying {3 and '\. There can be both regular and chaotic dynamics in this range . 

To merely indicate some of the types of problems involved and why compli­
cated dynamics is to be expected, let us be a little more specific . Suppose that 
the ODE 

(1.10) o'fu + feu) = 0 

has the origin as a saddle point with eigenvalues ±J.lo, J.lo > 0, and an orbit r = 
{pet), t E It} homo clinic to the origin; that is, pet) ~ 0 as t - ±oo. Also, suppose 
that f'(O) + n2 K > 0, n = 1,2, .. . , so that the eigenvalues of the the equation 

(1.11) o'fu - K o;u + !' (O)u = 0 

are ±J.lo and ±i(f'(O) + n2 K)I/2, n = 1,2, . ... Thus, the origin is a solution of 
the equation 

(1.12) o'fu - Ko;u + feu) = 0 

with one positive eigenvalue, one negative eigenvalue and the remaining ones lying 
on the imaginary axis. Equation (1.12) also has a spatially homogeneous orbit 
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r X Sl which is homo clinic to the origin. For f3 > 0 small, the origin is a saddle 
point of 

(1.13) (f;u + f30tU - Ko;u + f(u) = 0 

with index one . In fact, for the linearized equation, ±I'o are eigenvalues and all of 
the other eigenvalues have real parts equal to -f3/2. There is no orbit homo clinic 
to the origin for (1.13). For A > 0, f3 > 0, and small, we can choose w so that 
there is a periodic solution q>.p of (1.9) with qoo = O. This periodic solution 
will be hyperbolic and the fixed point P>.p == q>.p(O) of the Poincare map having 
unstable manifold of dimension 1. For the ordinary differential equation (K = 0 
in (1.9», it is a well known fact that there is a AODE(f3) with the property that, for 
A = AODE(f3), there is a homoclinic tangency of the stable and unstable manifolds 
of P>.p and, for A > AODE(f3), these manifolds intersect travsversally. This implies 
temporal chaos in (1.9). 

On the other hand, something more exciting may have happened before A 
reached the value AODE(f3). For f3, A small, the stable manifold of the fixed point 
P>.p is very close to the stable manifold ofthe origin of (1.13) . If we choose f3 < 21'0, 
then the strongly stable manifold of the origin of (1.13) is infinite dimensional and 
is close to the span of the eigenvectors corresponding to the eigenvalues with real 
parts equal to -f3/2 of the linearization of (1.13) about zero. In such a situation , 
we expect that the first intersection of the stable and unstable manifolds of P>.p 
to occur along the strongly stable manifold . This infinite dimensional manifold is 
linearly independent of the span of the eigenvector corresponding to the eigenvalue 
-1'0 and involves very general spatial dependence. If these remarks can be made 
precise, then we should obtain spatial temporal chaos and the information should 
serve as a complement to the work of Birnir and Grauer (1994) . It is feasible 
that one could attack the problem by extending the methods of of Holmes and 
Marsden (1981), Rodrigues and Silveira (1987) that were used to disucss a similar 
situation for the beam equation. 

2. The solution operator and existence of global attractor. Let X == 
C([-r, 0], H1(Sl». If '{) E X, we write it as ,{)«,O),( E Sl,O E [-r ,O] . For 
any function j E Ck+1(C([-r, 0], JR); JR), k ~ 1, we let f E Ck+1(X, L2(Sl» be 
defined by f('{)«) = j('{)«, .), ( E Sl. Let D E C(C([-r, 0], JR) ; JR) be defined by 

Dt/J = t/J(O) - g(t/J), 

g(t/J) = 1: [de 7](0)]t/J(0) , 

where 7] is of bounded variation and non-atomic at 0; that is, there is a continuous 
nondecreasing function 6 : [0, r] -+ [0,00) such that 6(0) = 0 

11: [de7](O)]t/J(O)1 ~ 6(s)IIt/JIL s E [0, r] . 
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We define D E C(X, HI(SI» as 

If u(-, t) E HI(SI) on an interval [-r, 6),6> 0, and u( ·, t) is continuous in t, then 
we let Ut EX, t E [0,6) be defined by Ut«(, 8) = u«(, t + 8) for ( E 51, 8 E [-r, 0]. 
If K is a positive constant, we consider the partial neutral functional differential 
equation (PNFDE) 

where K is a positive constant. The initial data for (2.1)j is chosen in the space 
X. 

If we let A = -K ~ with domain H2(SI), then e-At is an analytic semigroup 
on HI(SI) and L2(SI) and the solution of (2.1) j with initial value cp E X at t = 0 
is defined to be the solution of the integral equation 

(2.2)j 

and Uo = cpo 
We will need the following result for the existence and regularity of the solu­

tions of (2.2)j . 

Lemma 2.1. There are positive constants a, b, c such that, 
for any hE C(R; Hl(SI», the solution of the equation 

(2.3) DUt = h(t) 

satisfies the inequality 

Proof. The idea of the proof comes from Hale and Meyer (1967). Since Hl(SI) C 
C(SI) with continuous embedding, we can use the same techniques as in NFDE 
on R (see, for example, Hale (1977), Hale and Verduyn-Lunel (1993», to show 
the existence of a solution of (2.3) in C([-r, 0], C(51». We now estimate this 
solution. 

Let K > 1 be such that ly(tJt) I ~ KlltJtll and choose A E [0, r] such that 
1- 6(A) > O. Let a = K/[l- 6(A»), b = 1/[1- 6(A»), and choose c > 0 such that 
ae-cA ~ 1. For any t E [0, A] and fixed x E 51, let vet) = u(x, t), h(t) = hex, t). 
We have 

vet) = I~A [dl/7J(8)]v(t + 8) + lOA [dl/7J(8)]v(t + 8) + h(t) . 



448 

Therefore, 

Jack K . Hale 

Iv(t)1 ~ Kllvoll + 8(A)IIVtll + Ih(t)1 

~ Kllvoll + 8(A)IIVtll + sup Ih(s)1 
0~'9 

for 0 ~ t ~ A. Since K > 1, the right hand side is a bound for IIvtll- Inverting the 
resulting inequality, we have 

(2.5) IIv,lI ~ allvoll + b sup Ih(s)l, t E [0, A]. 
o~.~t 

Inequality (2.5) and the fact that c > 0 implies that we have 

(2.6) 

satisfied on the interval [0, A]. Let us assume that (2.6) is satisfied on [0, kA] for 
some interger k and deduce by induction that (2.6) is satisfied for all t ~ O. For 
t E [kA, (k + I)A], we have from (2.5) that 

IIv,lI ~ allVt-AIi + b sup Ih(s)l· 
'-A~'9 

l.From our induction hypothesis and the fact that ae-cA ~ 1 and c > 0, we deduce 
from this last inequality that 

IIVtll ~. all[allvoll + b sup Ih(s)llec(t-A) + b sup Ih(s)1 
0~'9 t-A~.~t 

~ all[allvoll + b sup Ih(s)llec(t-A) + b sup Ih(s)lec(t-A), 
0~'9 t-A~.~t 

which gives inequality (2.6) for tEO, (k + I)A] . 
Since u(x, t) satisfies inequality (2.6) for all t ~ 0 and all x E SI, we obtain 

the estimate (2.4) with X replaced by C([-r,O];C(SI)) . 
The previous estimate used only the fact that the initial data tp(x, t) and the 

function hex, t) were continuous. If we now use tp E X and h E C(JR; HI(SI )), 
then we can use arguments similar to the above and Holder's inequality to obtain 
the conclusion in the lemma. 

Using Lemma 2.1, the theory of analytic semigroups and the same techniques 
as in Hale (1977), Hale and Verduyn-Lunel (1993) for the existence theory of 
ordinary NFDE, it is possible to prove the following result . 

Theorem 2.1. For any tp EX, there exists a 8 > 0 such that (2.2) I has a unique 
solution u(·, t : tp) on [0,8), which is continuous in (t, tp) and has k continuous 
derivatives with respect to tp. 

Furthermore, if all solutions are defined on [0,00) and if we define T(t)tp = 
Ut(';tp), then T(t),t ~ 0, is a Ck-semigroup on X. 

For the development of a general qualitative theory of (2 .1) I' we impose some 

additional conditions on the operator D. Let C = C([-r, 0]; JR), Co = {tP E C : 
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D"p = OJ. We say that D is stable if there exist positive constants /3, a such that 
the solution of the homogeneous functional equation 

(2.7) DVt = 0, t ~ 0, 

with Vo = "p E Co, satisfies the inequality 

(2.8) 

We remark that the operator DUt = U(-, t) - qu(·, t - r) with 0 :::; q < 1 is stable. 
It is not stable if q ~ 1. 

If Xo = {If' EX: D(If')«() = D(If'«(, .)) = 0, ( E SI} and S(t) : Xo -+ Xo is 
the semigroup defined by the equation DWt = 0 and D is stable, then the estimate 
(2.8) implies immediately that 

IIS(t)If'IIC([-r.O];C(Sl» :::; /3e- at IlIf'IIC([_r,O];C(Sl», t ~ 0, If' EX. 

The same type of estimate probably is true in X, but it is not proved at this time. 
Such an estimate is easily proved for the case where D("p) = "p(0) - Ef=1 aj"p( -rj), 
rj > O,j = 1,2, ... ,N, Ef=llajl < 1. This case is interesting, but it does not 
include all of the applications. In any case, we are going to assume that there are 
positive constants 13, a such that 

(2.9) IIS(t)lIc(Xo.xo) :::; Pe- at , t ~ O. 

We need also some. estimates on the solutions of nonhomogeneous difference 
equations with the difference operator being stable. The following result is a 
special case of Lemma 3.4 in Cruz and Hale (1970). 

Lemma 2.2. If D is stable, then there are positive constants a, b, c, d such that, 
for any h E C([O, 00), JR), the solution v of the equation 

DVt = h(t), 

for t E [0,00), satisfies the inequality 

IIVtll :::; e-at[bllvoll + c sup Ih(s)1] + sup Ih(s)l. 
O~'9 [max(O.t-r)I~.~t 

The estimate in Lemma 2.2 is particularly interesting because, if Ih(s)1 is 
bounded on [0,00)1, then the ultimate bound on Vt as t -+ 00 is determined by 
the bound on Ih(s)1 for s in the delay interval [t - r, t] as t -+ 00. For instance, 
this implies that, if h(t) -+ 0 as t -+ 00, then so does Vt. 

We must also consider the nonhomogeneous equation 

(2.10) DWt = h(t), 
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We can obtain the corresponding estimate in Lemma 2.2 in C([-r,O];C(Sl)) fol­
lowing the same reasoning as above for the homogeneous equation. For special 
cases, we can obtain this in X, but, at this time, do not have the estimate in 
the general case. Therefore, we assume that the solution of (2 .10) satisfies, for 
tE[O,oo), 

(2.11) 

IIWtllx ~e-at[bllwollx + c sup IIh(s)IIH1(sl)] 
0~.:St 

+ d sup IIh(s)IIH1(sl) . 
[max(O,t-")l~·:St 

We know that there are positive constants 6, .:y such that 

(2.12) 

With these remarks, we can obtain the following respresentation for the semi­
group defined by (2.1)1. 

Theorem 2.2. If the solutions of(2.1h are defined for allt ~ 0, T(t) is a bounded 
map and (2.9), (2.11) are satisfied, then T(t) is an a-contraction in the sense that 

(2.13) T(t) = S(t) + U(t), 

where U(t) is a compact operator for t > 0, S(t) : X -+ X, t ~ 0 is the solution 
. of the equation 

(2.14) Wo = <p 

and there are positive constants /3, i' such that 

(2.15) t ~ O. 

Proof. If S(t)<p is defined as the solution of (2.14), then (2 .11) and (2 .12) imply 
that 

IIS(t)<pllx ~ [e-at(b + cL6) + e-Ki max(o,t-")]II<pllx, 

where L is a positive constant such that IID<pIIH'(s') ~ LII<pllx for all <p E X. 
The expression in brackets approaches zero exponentially and so there must exist 
positive constants /3,i' such that (2.15) is satisfied. 

If we let U(t)<p == Wt = Ut - S(t)<p, then 

(2.16) DWt = h(t, <p) == 10t e-A(t:.....) f(u.)ds, Wo = o. 

l,From the regularity theory of parabolic equations, the function h : [0 ,00) x X --+ 

Hl(Sl) is completely continuous. Let B be a bounded set in X and let {<pdf=1 
be a sequence in B . For any T > 0, there is a subsequence which we label the same 
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such that the· sequence {h(t, t,Ok)}f=1 converges in Hl(SI) as k _ 00 uniformly 
on [0, T] to sOJ?1e functio~ h(t) E Hl(SI). Let wf be the solution of (2.16) with 
t,O = t,Ok· If w:J = wf - U4 for integers k, j, then 

Relation (2.11) and the fact that w~i = 0 imply that there is a positive constant 
C such that 

This implies that the sequence {Wf}f=1 is a Cauchy sequence, which proves that 
U(t) is a completely continuous operator and concludes the proof of the theorem. 

If D satisfies (2.9), (2.11), it follows from the representation (2.13) in Theorem 
2.2 that the semigroup T(t) has the property that the radius reO'(T(1» of the 
essential spectrum of T(1) is less than one. As a consequence, this makes it 
possible to use classical techniques (see, for example, Hale and Verduyn-Lunel 
(1993» to develop, near equilibrium points, the theory of strongly stable, strongly 
unstable, center-stable, center-unstable and center manifolds. Therefore, we can 
use the center manifold theorem to prove the Hopf-bifurcation theorem for the 
situation where there is only one pair of eigenvalues crossing the imaginary axis 
as a parameter is varied. This method also yields the stability properties of the 
periodic orbits near the equilibrium point. 

We recall that A is a global attractor for (2 .1) j if it is compact, invariant and 
the w-limit set of any bounded set is A. It follows from Hale (1988) and Theorem 
2.2 that the following result is true. 

Theorem 2.3. If D satisfies (2.9), (2.11), the equation (2.1Jj is point dissipative 
and orbits of bounded sets are bounded, then there exists the global attractor A 
for (2.1)r 

The elements in the attractor A should have more regularity properties with 
respect to x. In fact, if Ut E A for t E JR, then, for any 0' E JR, we have 

Since U q is bounded for 0' E JR, it follows from (2.12) that 

(2.17) DUt = {too e-A(t-.) f(u.)ds. 

The function on the right is in H2(SI) and, thus, we expect that Ut is in H2(Sl) 
and, in fact, the attractor A should be in a bounded set in H2(SI) . We do not 
have a proof of this in the general case , but possible to give the following special 
case. 
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Theorem 2.4. Suppose that 

where rj > O,j = 1,2, .. . , N, E.f=llajl < 1. If (2.1h is point dissipative and 
orbits of bounded sets are bounded, then there exists the global attractor A for 
(2.1h and A belongs to a bounded set of the space C([-r, 0]; H2(Sl» . 

Proof. We first consider the nonhomogeneous equation DVt = h(t), where h(t) is 
a continuous function of t . The varaiation of constants formula implies that , for 
any u E nt, t ~ u, 

(2 .18) Vt = V l7 + 1t [d.I«t - s)]h(s), 

where K(t) is a function defined for t ~ -r, of bounded variation on any compact 
set and K(t) = 0 for -r ~ t < 0, K(O) = 1 (see Hale and Verduyn-Lunel (1993» . 
Furthermore, since iJ is assumed to be stable, there are positive constants a, b 
such that 

(2.19) Id.K(t)1 ~ ae- bt , t ~ -r. 

As a consequence of (2.19) and (2 .18), if it is known that Vt exists and is 
bounded on nt, then 

(2.20) Vt = [too [d.K(t - s)]h(s), tErn.. 

If a solution u of (2.1) i is such that Ut belongs to the attractor A for tEnt, then 
Ut satisfies (2.17). Therefore, for any ( E Sl, tEnt, it follows from (2 .20) that 

If we now use Holder's Inequality, (2.19) and the fact that foo e-A(.-r) f(u r )dr 
belongs to H2(Sl), we arrive at the conclusion in the theorem. 

3. Local Hopf bifurcation and large diffusion. In this section, we consider 
the situation in which the function f in (2.1) depends upon a real parameter II, 
j(t/J) = i(t/J, II), j(0, II) = 0 for all II, and the ordinary NFDE 

(3.1) 

undergoes a Hopf bifurcation at II = O. If -y is a periodic orbit of (3.1), then it 
also is a periodic orbit of (2.1). We want to prove the following result. 
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,!,heorem 3.1. Suppose that b is stable, II is a real parameter, j(t/J) = j(t/J, II) , 
1(0, II) = 0 for all II, and the linear variational equation of (3.1) about zero has 
eigenvalues II ± iW(II), w(O) > 0, and all the other eigenvalues have negative real 
parts. Also, suppose that (3.1) undergoes a generic supercritical Hopf bifurcation 
atll= 0 to aperiodic orbit '"'I" = {v,,(t),t E [O,p,,)} ofperiodp" . If (2. 9), (2.11) are 
satisfied, then then there exist positive constants 110, I<o such that, for 0 < II ~ 110 , 

I< ~ I<o, the periodic orbit '"'I" as a solution of (2.1h is asymptotically orbitally 
stable with asymptotic phase. 

In the proof of this result, we will obtain more information about the char­
acteristic equation for the linearization about 0 in (2 .1)j as a function of I< and 
also about the dependence of center manifolds on I< . 

The linearization about 0 in (2 .1)j is 

(3.2)" 

where L,,(tp) is the derivative of 1(11', II) with respect to II' evaluated at II' = O. 
The eigenvalues of (3.2)" are those values of A for which there is a nontrivial 

solution of the form eAtt/J(x). This is equivalent to saying that A is a solution of 
the characteristic equation 

If we expand t/J in terms of the eigenfunctions tpn on 51 corresponding to the 
eigenvalues _n2 , n = 0,1, ... of {P/ox 2 (we are taking 51 as the homeormorphic 
image of [0, 211"» and equate coefficients, we obtain the equations 

(3 .3)n 

The solutions of (3.3)0 are the eigenvalues of the linearization of (3.1) about zero. 
We use the following result to understand some of the structure of the solutions 
of (3.3)n for n > O. 

Lemma 3.1. If .£l(A, II, '"'I) is defined as in (3.3)n, then 

limsupsup{ReA: .£l(A, II, '"'I) = O} = sup{ReA: D(eAo) = O} . 
'Y ..... OO 

The proof is not too difficult and is omitted. 
Now let us suppose that the hypotheses of Theorem 3.1 are satisfied . For 

(3 .1), there is a positive constant 110 such that , for 1111 ~ 110 , we can construct a 
center manifold eM" for (3.1). The center manifold eM" is exponential attracting 
orbits near it as long as the solutions stay in a neighborhood of zero. The flow on 
e M", as II passes through zero will change from having a stable equilibrium point 
to a periodic orbit '"'I" which is hyperbolic and stable as a solution of (3.1) . The 
set eM" also is a locally invariant set for the partial NFDE (2.1)/ for any ~< > O. 
From Lemma 3.1, there is a positive constant I<o such that, for I< ~ I<o, there is 
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a 6 > 0 such that the solutions of (3.3)n for n > 1 have real parts ~ -6 < 0 since 
the operator iJ is stable. Therefore, the set CM" is an exponentially attracting 
center manifold for (3.2)". This implies the result stated in Theorem 3.I. 

An example of a lossless transmission line for which there are self-excited 
oscillations corresponds to the NFDE (see Hale (1977), p.7) 

(3.4) 8t [w(t) - qw(t - r)] = .B[w(t) - qw(t - r)] + 2w(t) - g(w(t) - qw(t - r)), 

where 0 < q < 1 and .B > 0 are constants. The function 9 is a given nonlinear 
function which vanishes together with its first derivative at O. As an example, 
take g(x) = x3 . It was shown in Brayton (1966), Hale and Meyer (1967), that 
there is a qo E (0,1) such that there is a generic supercritical Hopf bifurcation at 
q = qo for the ordinary NFDE. Under some additional conditions on g, the global 
continuation of this periodic orbit with respect to parameters has been considered 
by Krawcewicz, Wu and Xia (1993). 

l.From Theorem 3.1, we know that the stable periodic orbit of (3.1) that 
arose from the Hopf bifurcation at q = qo is also a stable periodic orbit for (2.1) 
if K > Ko. 

It would be interesting to see if the dynamics changes as we let the param­
eter K approach zero. Can the Hopf orbit be destabilized in this way? For 
retarded functional differential equations, this is possible (see Yoshida (1982), 
Morita (1984), Memory (1989) for a detailed discussion). The same probably also 
is true for the above PNFDE. 

4. Local behavior near a periodic orbit. The next step in the theory is to 
develop the local theory near periodic orbits of (2.1) j . In ordinary differential 
equations, the most natural way to do this is to take a transversal section to the 
periodic orbit and use the corresponding Poincare map, which is as smooth as 
the vector field. It is natural to try the same thing here . For a given transversal 
N to the periodic orbit, the Poincare map TrN is given by TrN(tp) = T(r(tp»tp for 
some continuous function r(tp). Since T(t)tp is not necessarily differentiable with 
respect to t, the map TrN may not be differentiable. The principal difficulty here 
is that it is not known if there exists a transversal N to the periodic orbit with 
the property that the Poincare map TrN is continuously differentiable . Therefore, 
it is not obvious a priori how to define the Floquet multipliers. We can follow the 
procedure for ordinary NFDE in Hale and Verduyn-Lunel (1993, Section 10.3) to 
prove that each periodic solution of (2.1)j is a CH1-function of t and, thus, any 

periodic orbit is a CH1-manifold. If we assume in addition that fin (2.1)j is 
analytic, then we can use the ideas in Hale and Scheurle (1985) to show that each 
periodic solution of (2.1)j is an analytic function of t and, as a consequence, each 
periodic orbit is an analytic manifold. With this observation, we can define the 
linear variational equation about any constant periodic solution p(t) of (2.1) j and 
define the Poincare map as the value at the period of the solution operator of 
the linear variational equation. The Floquet multipliers are the elements of the 
spectrum of the corresponding Poincare map, excluding, of course, the obvious 
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multiplier 1 that comes from the fact that dp(t)/dt is a solution of the linear 
variational equation. We say that 'Y is hyperbolic if no Floquet multiplier of'Y has 
modulus one and stable hyperbolic if each multiplier has modulus less than one. 

If 'Y is a hyperbolic periodic orbit, then we can follow the same procedure 
as in Hale and Verduyn-Lunel (1993, Chapter 10) to prove that the synchronized 
stable and unstable sets of'Y are smooth manifolds. It should be possible to use 
the ideas in Henry (1981) to introduce a good coordinate system about 'Y and use 
exponential dichotomies to prove that these synchonized sets are actually the sta­
ble and unstable sets of 'Y. However, at this time, this has not been done in detail. 
If this procedure is valid, then we can discuss the effects of perturbations of (2.1) I 
by a smooth function 9 which may even depend upon time. The results should 
be of the same nature as the ones that are well known for ordinary differential 
equations. 

Even without a coordinate system about 'Y, we can follow the methods of Hale 
and Verduyn-Lunel (1993, Section 10.3), making use of the synchronized stable 
and unstable manifolds, to prove the following theorem. 

Theorem 4.1. If (2.9) and (2.11) are satisfied and 'Y is a periodic orbit of (2.1); 
for which there is a Floquet multiplier with modulus larger than 1, then 'Y IS 

unstable. If 'Y is stable hyperbolic, then'Y is asymptotically stable with asymptotic 
phase. In this latter case, there is a transversal to the periodic orbit for which the 
Poincar'e map is Ck. 

We also can prove the following result. 

Theorem 4.2. If (2.9), (2.11) are satisfied and 'YI is a periodic orbit of (2.1h 

which is stable hyperbolic, then there is a neighborhood V of j in 
C2(C([-r, 0], JR); JR) and a neighborhood U of'Yl such that, for any 9 E V, there 
is a unique periodic orbit 'Yg of (2.1)g in U, 'Yg is stable hyperbolic, 'Yg -+ 'Y I and 

the periods converge as 9 -+ j. 

Proof. We only give an outline of the proof. Take any transversal N to the 
periodic orbit 'Y I and let 7r I : V( 7r I) -+ N be the corresponding Poincare map. 

Then there exists a neighborhood V of j in C2(C([-r, 0], JR); JR) such that, for 
any if E V, we can define a Poincare map 7rg : V( 7rg) C N -+ N. This map is 
continuous in g. If PI E N is the point on 'YI' let B(h, PI) be the ball with center 

PI and radius h and choose h > ° sufficiently small and the neighborhood V of j 
so that N n B(h, PI) C D(7rg for every 9 E V . The set N n B(h,PI) is bounded 
open and convex. Since 7r I is an a-contraction and 'YI is stable hyperbolic, the 
w-limit set w I(B) is PI; that is, PI is a local attractor for 7r I relative to the set 
N n B(h, PI). Furthermore, we can use the continuous dependence of 7rg on g and 

choose V so that wg(B) is a compact set which approaches PI as 9 -+ j; that is, 
the local attractor for 7rg relative to the set N n B( 8, PI) is upper semicontinuous 

at j. Using Hale (1977, Chapter 4, Lemmas 4.2,4.3) (or Hale and Verduyn-Lunel 
(1993)), we conclude that 7rg has a fixed point in B. This fixed point corresponds 
to a periodic orbit 'Yg of (2 .1)g. The orbit 'Yg is a C 2-manifold and we can define the 
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linear variational equation relative to the solution of (2.1)09 describing 109' For 109, 
we can choose a synchronized stable manifold Wo (/09) as a transversal section to 
109 (since 109 is hyperbolic and stable). If the period of 109 is W g, this means that the 
Poincare map -n-g relative to the transversal W&(,g) is given by -n-g(<p) = Tg(wg)<p, 
where Tg(t) is the semigroup for (2.1)g. Since the map -n-g is obtained from the 
evaluation of the semi group at a point Wg which is independent of the point <p, it 
follows that -n-g is C2 and has the stable hyperbolic fixed point Pg. Therefore, there 
is a neighborhood Ug of Pg in which the only invariant set of -n-g is Pg. The size of 
the neighborhood Ug is determined by the exponential decay rate of the iterates 
of the derivative of -n-g evaluated at Pg and the second derivatives of g. Since 9 
is C2-close to jj, this means that all of the neighborhoods Ug can be chosen to 
be balls with diameter p independent of 9 E V. This implies that the original 
Poincare map lrg on N n B(6,Pj) has a unique fixed point. This fixed point is a 

local attractor and the upper semicontinuity of the local attractors at j implies 
the continuity properties stated in the theorem. 

In Appreciation. This paper is dedicated to Waldyr Oliva whose fri endship 
and scientific insights are invaluable to me. 
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