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Statistical Mechanics Of Disordered Models 1 

Henrique von Dreifus 

Abstract: We review some rigourous results concerning 
the properties of the Gibbs measure of Disordered Models. In 
particular we discuss the region of high temperature in which 
the models can display a non-analytical behavior ( Griffiths' 
Singularities ) and some. properties of the critical exponents 
when the model exihibits phase transitions. 
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1 Introduction 

The study of the Statistical Mechanics properties of Disodered Models has been 
one of the main subjects in the investigation efforts of several authors and as a 
result, in the recent years, various rigourous results were obtained . In this article 
we review some results and open problems in the field, in particular those that in 
some extent reflect our own interest in the subject. 

Although some of the results that we present here can be extended for a more 
general class of models, in this article we consider a class whose typical represen
tative is an Ising model in Zd whose Hamiltonian in a finite volume A C Zd is 
defined as 

H A =- L JXyUxUy+BLhxux+hLux (1) 
xyEA· xEA xEA 

where A* = {xy; x, yEA}. The couplings J = {Jxy, xy E Zd·} and the external 
fields h = {h x , x E Zd} are independent families of independent identically dis
tributed(within each family) random variables. If B = 0, the model may be used 
to describe a spin glass or a random ferromagnet; if the Jxy = J > 0, we have the 
random field Ising model. 

When we consider models with disorder, i.e. with random parameters, the 
first question that arrises is that if the statistiscal mechanics properties . differs 
from the pure system. In this direction, in 1969 Griffiths [1] considered the sta
tistical properties of a random ferromagnetic Ising model, with a Hamiltonian 
given as above and pointed out that for the site diluted model, i.e., Jxy = J~x~y , 

where the independent random variables ~x are 1 or 0 with probability p or 1 - P 
respectively. In this article Griffiths showed that the quenched magnetization, 
considered as a function of z = e{Jh, displayed a non-analytical behavior at z = 1 
for values of the inverse temperature {J at which the system has neither long-range 
order nor spontenous magnetization . His argument should apply to a large class 
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of ferromagnetic models; in particular, if the couplings ley> 0 are independent 
identically distributed random variables, which may assume with non zero prob
ability arbitrarily large values, these singularities should occur for every value of 
the temperature . This phenomenon is now recognized to be a regular feature in 
the statistical mechanics of disordered models and constitutes in a concrete ex
ample of the relevance of the disorder for the statistical mechanics properties of 
disordered systems. Later in 1986, J. T . Chayes, L. Chayes, D. S. Fisher and T . 
Spencer [2] discussed the critical exponents of disordered models and argued that 
the critical exponent v, associated to the correlation length of the Diluted Ferro
magnetic Ising Model satisfies the bound v ~ ~. In those situations the Harris 
criterion [3] leads one to expect that disorder is relevant for the critical behavior of 
the system i.e . the fixed point of the renormalization group transformation differs 
from the fixed point of the pure system. 

This article is organized as follows . In section 2 we discuss some general 
properties of the pure Ising model. In section 3 we review some of the important 
results concerning Disordered Models. In section 4 we present a brief discussion of 
the results obtained in collaboration with A. Klein and J. F. Perez [4] on the high 
temperature/strong field regime of Disordered Models. In section 5, we discuss 
our results concerning bounds on the critical exponents of diluted ferromagnetic 
models [5]. Some open problems are mentioned in section 6. 

2 Properties of the Pure Ising Models 

We start with notation and definitions. 
For each point x E Zd we consider a random variable a(x) which takes va

lues in {-1,+1} . Given, for each x Ene Zd, a choice of a(x), we denote 
by U = {a( x)} xE Zd a configuration of the system and denote by DA the set of 
configurations U. On DA we define a energy function HA (Hamiltonian), which 
takes values in R, as 

HA(U) = - L Jrya(x)a(y) + L h(x)a(x) (2) 
Ix-yl= 1 . rEA 

where Jxy E R; h(x) E R. This definition corresponds to the case in which we are 
considering Dirichlet (free) boundary conditions. Other boundary conditions can 
be considered restricting the values of U when x E f)A, with f)A defined as follows 

f)A = {x E AI3y ~ A, Ix - yl = I} (3) 

For example we can consider the "+" boundary condition which consists to the 
restriction of the set of configurations to u's such the a(x) = +1 for all x E f)A. 

Given the Hamiltonian we can define the Canonical Gibbs measure in DA as 
follows 

(4) 



where 
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ZI\. = L e-{1H,,(o) 
o 
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(5) 

For a function F defined on nl\., the expectation of F, denoted (F) is given 
by 

(F) I\. = ZA 1 J F(o-)e-{3H,,(o) II dJ-l(O'(x» 
xEI\. 

(6) 

where dJ-l(O'(x)) = 6(0'2(x) -'- 1)dO'(x) for the Ising model. The free energy of the 
model in a finite volume A is defined as 

1 
h((3, J, h) = - (3IAlln ZI\. (7) 

and its thermodynamic limit is defined as 

f((3, J, h) = lim h((3, J, h) 
11_ Zd (8) 

In a finite volume A, the free energy is an analytic function of the parameters 
(3, J, and h. However in the thermodynamic limit this is not necessarily true 
and in fact the free energy has a non-anlalytical behavior for some values of 
the parameters. This feature is in general refered as Phase Transition. Some 
derivatives of the free energy are of special interest in the study of the properties 
of the Ising model. Those are 

- Magnetization 

m((3, J, h) = - ~~ ((3, J, h) (9) 

- Internal Energy 

of 
U((3, J, h) = oj ((3, J, h) (10) 

- Magnetic Susceptibility 

o2f 
X((3, J, h) = o2h ((3, J, h) (11) 

- Specific Heat 

(12) 

When the external magnetic field {h(x)}XEZd is uniform, i.e. h(x) = h, and 
Jxy 2: 0, a general theorem by Lee and Yang [6] states that if ~(h) # 0 then 
the free energy is an analytic function of h for all values of (3 and J . In the case 
when h = 0 and d 2: 2, it is well known that exists a critical value (3c(J) such 
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that if f3 > f3c(J) then the magnetization as a function of h has a discontinuity 
at h = 0 and that the susceptibility X diverges for f3 = f3c(J). For f3 < f3c(J) the 
correlation length defined as 

_ 1 
~ 1(f3) = -~ In((u(O)u(x))) (13) 

is finite for f3 < f3c and diverges as f3 / f3c . 
All this are related to the fact that for a fixed J exists a value f3c such that the 

free energy f(f3, h) = f(f3 , J, h) has a singularity at (f3c, 0). Some of the properties 
of this phase transition are characterized by the divergences of the derivatives of 
the free energy when f3 / f3c . This leads to the definition of the so called "critical 
exponents" [7] . Examples of those exponents are 

- Exponent 1 

x(f3, 0) ~ (f3c - f3F (14) 

as f3 / f3c 
- Exponent a 

(15) 

as f3 / f3c 
- Exponent 1I 

~( f3) ~ (f3c - f3t (16) 

as P / Pc 
- Exponent 7J 

(17) 

Those exponents are not expected to be independent and relations between 
them, called scaling relations, can be obtained from a Renormalization Group 
analysis. One example is the following relation : 

I/d = 2 - a (18) 

For the Ising model in dimension d = 2 the values of the exponents can be obtained 
exactly and the values of a, 1 and 1/ are : 

a=O 

1=* 
1/ = 1 

For the Ising model in dimension d = 3 the values of the exponents can be obtained 
numericalyand the values are: 

a = 0.11 ± 0.02 
1 = 1.2417 ± 0.010 
1I = 0.630 ± 0.010 
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3 Models with Disorder 

A more realistic thermodynamic description of ferromagnetism should consider 
the presence of impurities which can be modeled by considering the the parame
ters {JXY}XYEZdO and {h(x)}xEZd as quenched random variables i.e. for a given 
function F : OZd -- R and a choice of the parameters Jxy and h(x) we consider 
the Gibbs expectation as defined in ( 6). Then the thermodynamical properties of 
the model are obtained by taking the average over the radom ness of the param
eters J and h. Therefore if we denote by EJ,d} the expectation (average) with 
respect to J and h the thermodynamic properties are obtained from the quenched 
expectations defined as 

(19) 

As examples of disodered models that are often present in the literature we 
have the Diluted ferromagnetic models for which h(x) = 0; !cry = 0 if Ix - yl =I 1 
and when Ix - yl = 1, Jxy are i.i .d. random variables whose distribution does 
not have support on the negative real axis. The Ferromagnetic Random Field 
Ising Model for which Jxy = J > 0 and h(x) are i.i.d . random varibles with 
mean zero. The Ferromagnetic Diluted Field Model for which Jxy = J > 0 and 
h(x) are i.i.d. random varibles whose distribution does not have support on the 
negative real axis . The Spin Glass Models in which the Jxy are i.i.d . random 
variables with mean zero. Among the important contributions in the direction of 
proving rigourous results for disordered models we find the work by Griffiths in 
1969 [1] . Later in 1975 Imry and Ma [8] wrote a paper in which they conjecture 
that for dimension d > 2 the Random Field Ising Model (RFIM) exhibit a Phase 
Transition in the same fashion as the pure model. Although this work by Imry 
and Ma can not be .considered rigourous in the mathematical point of view, the 
ideas presented there became one of the guide lines of a paper published in 1988 
by Bricmont and Kupiainen [9] in which they present a rigourous proof that the 
RFIM exhibit Spontaneous Magnetization for d > 2 when the covariance of the 
distribution of the magnetic field is small and f3 is large enough . For d = 2 the 
work of Bricmont and Kupianien were not conclusive and it was only in 1989 
that Aizenman and Wehr [10] proved that for d = 2 the RFIM does not exhibit 
a Spontaneous Magnetization. In the small f3 region the difficult in applying 
the methods developed in the context of the pure system is due to the existence 
of the Griffiths'singularities . In 1984 Frohlich and Imbre [1l] developed a high 
temperature expansion suitable to study this region . Also, as mentioned in the 
introduction, there are results concerning the behavior or disordered systems near 
the critical points as for example [2]. 

In the next sections we give the statements and make comments on some of 
our contibutions to the field . 
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4 High Temperature Phase of Disordered 
Models 

As mentioned in the previous section, Frohlich and Imbre [11] developed a high 
temperature expansion for Disordered Models . Their work have two basic in
gridients: a Mayer like expansion and a multi-scale approach for the probalistic 
estimates . In this direction we developed in collaboration with A. Klein and J .F. 
Perez [4] an alternative high temperature/strong field expansion. Our approach 
not only is simpler but also allowed us to obtain stronger results concerning the 
diffirentiability of the quenched free energy. Next we give the statement of our 
main result. 

Consider the Ising Model with a Hamiltonian given as in (1) with Jxy = 0 
if Ix - yl :f 1. For a given subset S C R, P{S} denotes the probability of 
Jxy E S. We will use p~(d) to denote the critical probability for bond percolation 
and Poo = P{Jxy = oo}. For a givelliocal observable A we set IIAII = sUPullA(iT)II· 
If A and B are local observables, we write d(A, B) for the distance between the 
supports of A and B. 

THEOREM (High Temperature Regime) If Poo < pbc(d) there exists 
fJI = fJI (d) > 0, such that: 

(i) For all 0 < fJ < fJI we can find C = C(fJ) < 00 and m = m(fJ) > 0, such that 
for any two local observables A and B and any finite A C Zd containing their 
supports, we have 

EJ(I(A; Bhl) ~ ClsuppAliIAIIIIBile-md(A .B), 

for all B E R, {hX}Zd E RZd, hER and any boundary conditions on A. 

(ii) There exists a set :J of realizations of the random couplings Jxy with 

(20) 

P{J E :J} = 1, and for each 0 < fJ < fJI we can choose J1. = J1.(fJ) > 0 with 
limp_o) J1.(fJ) = 00, such that if J E :T and 0 < fJ < fJI, then for all B E R, 

{hX}Zd E Rzd and hER: 

(a) For any two local observables A and B, any finite A containing their supports, 
and any boundary condition on A, we have 

(I(A;B)AI) ~ DAIIAIIIIBlle-l'd(A.B), 

for some DA = D(suppA, J, fJ) < 00. 
(b) For every local observable A, the thermodynamieallimit 

(A) == lim (A) A 
A_Z4 

(21) 

(22) 

exists and is independent of the boundary conditions used in each finite volume 
A. In particular, there is a unique Gibbs state . 
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(iii) For all 0 < 13 < 131, B E R, h E R z4 and hER, the quenched expectation of 
a local observable A is an infinitely differentiable function of the uniform external 
field h. In particular, for each n = 1,2, .. . there exists a constant en < 00, 

depending only on e, m and n, such that 

for all local observables A and Xl , ... , Xn E Zd and 

::nE«(A) = (-f3t (24) 
Xl, .. ,xn EZd 

REMARK Our results require no assumptions on the probability distributions 
except for the obvious requirement of no percolation of Jxy = 00 . A similar 
theorem for the case with a random field h( x) and a large value of the non random 
parameter B as in the equation ( 1) is also proved in [4] . The basic ingredient of 
our proof is a bound for truncated expectations given by a sum of self avoiding 
random walks. After we obtain this bound the result follows either from a theorem 
by Kesten [12] or a simple multi scale probabilistic estimate. For the statement 
and the proof for the strong field case we refer the reader to [4] . 

5 Bounds on Critical Exponents of Diluted Fer
romagnetic Models 

In this section we mention our results concerning the critical behavior of Diluted 
Ferromagnetic Models. In [5] we give a proof of the bound 1/ ~ ~ first discussed 
by J. T . Chayes, L. Chayes, D. S. Fisher and T . Spencer in [2]. Our result is state 
in the following theorem: 

THEOREM Let £.«(3) be defined as 

C 1(f3) = - lim In (O"(O)O"(x») 
lxi-co Ixl 

(25) 

and f3c defined as 

(3c = sup{f3l(O"(O)O"(x») ~ e- Ixl /{ as lxi- 00, for some £. > O} 

(26) 

then 

£.(13) In £.(13) ~ e(f3c - (3)-2/d (27) 
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Our proof of this result combines ideas developed in [2] with a generalization 
of a technique, due to E. Lieb and B . Simon [13] and [14], developed to obtain 
estimates of correlation length in the context of non random models. 

A important consequence of this result concerns to cases in which the critical 
exponent l/ of the corresponding non random model satisfies a bound of the form 
l/ < ~, as it happens with the Ising Model in dimension 3. In those cases either 
the phase transition exhibited by the diluted model occurs without a diverging 
specific heat or the scale relation ( 18) does not apply, in contrast with the non 
random model for which the scale relation is belived to be true and the specific 
heat is known to be divergent. 

6 Open Problems 

Some problems in the field that we have been interested are: 
To obtain an alternative proof for the Bricmont and Kupianien [9] result . 

Their proof, as it happens in the work of Frohlich and Imbre [11], makes use of a 
Mayer like expansion coupled to probability estimates which in the case of [9] are 
obtained from a sofisticated mechanism based on Renormalization Group ideas. 
We belive that a considerable simplification may be obtained if one produces an 
alternative for the use of Mayer like expansions. 

Another question refers to the relevance of the Griffiths Singularities for the 
critical phenomena. Our result in [4] states that in the region of the Griffiths 
singularities the Free Energy is a Coo function although non analytic. The ques
tion is if there exists any trace of this non analiticity in some relevant Statistical 
Mechanics quantity. Our conjecture is that such trace might be found in a careful 
analysis of the behaviour of the correlation length when the temperature of system 
approachs the value for which the Griffiths Singularities start to occur. 

Other problems are the Sharpeness of the Phase Transition, the Statistical 
Mechanics of Spin Glass in the low temperature regime and questions related to 
Sthocastic Dynamics associated to Disordered Models. 
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