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Dynamics of Cyclic Feedback Systems 

T. Gedeon and K. Mischaikow 

Abstract: The dynamics of cyclic feedback systems are 
described. The emphasis is both in showing the diversity of 
possible dynamics in these sytems and in showing that there 
is a underlying dynamic structure possessed by all these sys­
tems. In particular. for the special class of monotone cyclic 
feedback systems. the dynamics is fairly simple; the recur­
rent sets can only consist of fixed points or periodic orbits 
and in many cases can be shown to be Morse-Smale. This is 
contrasted with the general cyclic feedback systems for which 
chaotic dynamics can occur. 
The general properties which large subclasses of these systems 
have in common include periodic orbits and a semi-conjugacy 
onto a simple. but non-trivial. model dynamical system. To 
describe all systems simultaneously. a purely topological de­
scription of the invariant sets is introduced. 

Key words: cyclic feedback. Conley index. periodic 01'­

bits. semi-conjugacies. chaotic dynamics. 

1 Introduction 

Cyclic feedback systems (C:FS) are systems of ordinary differential eqllations of 
the form 

Xi = fi(xi, xi-d i = 1, ... , n (xo = xn) (1) 

where for all ( of 0 
6;/i(0, ()( > 0 (2) 

for some 6i = ±l. To simplify the notation we shall sometimes writ.e 

X = f(x) . 

The cyclicity of these syst.ems is obvious from (1). The constraint. (2) is called 
a feedback condit.ion a.nd. in particular, is a positive feedback if [,i = 1 and a 
negative feedback if 8i = -1. We make a simple observation that via a change of 
variables of the form Xi -+ AiXi where Ai = ±1 it is possible to assume withotd 
loss of generality t.hat 

81 1. i=2 . ... . n 
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where ~ = 6162 .. . 6n is expressed in the terms of the original feedback conditions. 
This suggests, and indeed it is the case, that ~ is one of the defining charac­

teristics of these systems. With this in mind we let CF S+ and CF S- denote the 
class of CFS when ~ = +1 or ~ = -1, respectively. Another important quantity, 
at least as far as the global dynamics is concerned, is the parity of t.he dimension 
of the system n. We shall employ the notation CFSodd and CFSeven to denote 
CFS with n odd or even. 

Systems of this form appear in a variety of applications and, also, are of math­
ematical interest in their own right. 

The idea of using a feedback in models of cell mechanisms goes back to the pa­
per of Jacob and Monod [16]. They modeled genetic regulatory mechanism in bac­
teria using feedback systems. To mention other models, Morales and McKay [25] 
used cyclic feedback systems to model metabolic pathways in bacteria and Weiss 
and Kavanau [31] used the models from this class to describe the control mecha­
nism of the growth of cells. For a more comprehensive list of models we refer the 
reader to the paper of Hastings et.al. [10]. 

We would like to remark that these models were built to explain how the cells 
are able to stabilize certain 0 in ever changing O. The analogy with a control 
theory comes to mind O. It is well known that a negative feedback has stabilizing 
properties and these were explored in the papers [16, 25, 31]. However, it is also 
well known that if one imposes too large a negative feedback, the system usually 
starts to O. 

In recent years there was an increased effort to understand more about 0 phe­
nomena in general. We are keenly aware of the fact. that no living organism is 
in the state of 0 and most processes around us are periodic (or even more com­
plicated). In neural networks, if one considers a ring architecture of the neurons 
where the neurons are connected to each other in a cyclic fashion, then one nat­
urally arrives to the description of the dynamics using CFS . This architecture 0 
attention in recent years for its ability to support stable oscillations, which may 
be viewed as stored spatio-temporal information. As an example, we mention the 
work of Atyia and Baldi [2], who used the models from the class of CF S to explore 
the so called "labeling hypotheses" , which is related to the question how the brain 
processes the visual information. 

From the mathematical point of view CFS are interesting, because in their 
study one comes across many important ideas which have been used in last decade 
in the dynamical systems. 

There is a direct link to a scalar delay-differential equation. Let us consider 
the equation of the form 

x(t) = f(x(t), x(t - 1)). 

If we divide the interval [-1,0] into n equal subintervals and then use the linear 
approximation of the solution on each subinterval, we obtain a c~clic feedback 
system 

Xi 
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In the next section we define a discrete Liapunov function for CF S . Such a 
function was used to study scalar parabolic equations [1, 3, 11, 20] and (not 0) 
scalar delay-differential equations with negative feedback [17] . 

There is a important subclass of CF S , called monotone cyclic f eedback systems 
(MCFS), which are obtained by imposing the additional assumption 

for all (17,'() E R2 . We want to remark that if Ll = 1 in a MCFS , then the 
flow, given by (1), generates a monotone dynamical system. These systems have 
been studied extensively over the last decade by many authors, for instance by H. 
Matano [19], M . Hirsch [12, 13, 14, 15], H. Smith [27] and others. An important 
property of these systems is that almost all trajectories converge to a fixed point 
(Hirsch [13, 14]), which was used in the applications to neural networks. 

The intent of this article is to demonstrate both that CFS display a wide 
variety of dynamics and that these systems share important common dynamic 
properties. We begin by making several assumptions, 

Al Ii E C 1(R2, R) , 

A2 

i = 1, ... , n . 

• fJfi(17,() I >0' 
Ui fJ( (0,0) 1 = 1, ' ' . , n 

A3 The exists a global compact atiractor A . 
compact set A such that for every R > > 1, 
radius R about the origin is A, i,e. 

In other words, there exists a 
the omega limit set of the ball of 

The hypotheses (AI) - (A3) shall be assumed t.hroughout t.his paper . 
With these assumptions we are ready to discuss t.he dynamics of CFS, In 

the next section we shall define a discret.e Liapunov function which is at. t.he 
heart of most of the results described in t.his art.icle, In Sect.ion ;3, the concept 
of a Morse decomposition will be int.roduced to provide an abst.ract framework 
with which we will deal wit.h t.he informat.ion provided by the Liapunov funct.ion , 
This is followed by Section 4 in which t.he Conley indicf's for the Morse sets are 
described. In Sect.ion 5 we discllss t.he dynamics of MCFS, As will he made clear , 
the dynamics for these syst.ems is surprisingly simple , This will be contrasted wit.h 
the general CFS, for which chaotic dynamics can occur, It. is hoped t.hat. by the 
end of this section the reader is aware of the diversity of t.he dynamics possible in 
CFS. The final two sections strive to demonst.rate t.hat. t.here are common facto rs 
within this diversity, For example, in Section 6, reasonably genNal condit.ions 
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which 0 the existence of periodic orbits will be given. Even mon~ generally, it 
will be shown that. some Morse sets must have the topology of at least a circle. 
Finally, in Section 7, the global dynamics will be discussed. In particular, it will 
be shown t.hat. the dynamic strllct.ure of CFS can be mapped onto the dynamic 
st.ructures of a simple (but. not. trivial) model dynamical system. 

2 The Liapunov Function 

Observe that the Sll bspaces 

Yi := {x E R I Xi = O} \ {OJ C R n 

are sections t.o the flow generated by CF S. In particular, on Yi, 

Xi = !;(Xi,Xi-d = !;(O,Xi). 

Thus, by t.he feedback condit.ion 

Xi { > 0 
<0 

ifbi = 1, Xi-I> 0 or {ji = -1, Xi-l < 0 
ifbi = 1, :I:i_1 < 0 or bi = -1 , Xi-I> O. 

The complement of t.h ese regions R" \ UYi can be expressed a'l 

where for (Tj = ±1 , 

(3) 

The Qs are of course open cones which correspond to "ort.hants" ill Rn. Observe 
t.hat (3) indicates how orbit.s move from one Q to anot.her. Now define ./If : 
U Q«(Tl," " (Tn) --> Z by 

./If(X) = cardinality{i I biXiXi_1 < OJ. (4) 

Clearly,./If is constant on each Q, and hence, is a cont.inuous function. Finally, let 

One can check, by examining the flow on Xi, that. it. is possible t.o extend the 
domain of definition of ./If t.o 

while preserving the cont.inuity of./lf (see Figure 1). Furt.hermore, except for the 
origin, the subsets of R" where./lf is not defined , i.e . R n \ (X U {O}) are precisely 
the boundaries between the regions on which ./If assumes different values. Thus, 
./If is left undefined on the complement of X. 

The following result. just.ifies the name Liapunov functional for N . 
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Figure 1: (~ = -1 and n = 3) N = 3 on t.he t.wo orthan t.s Q(1, -1, 1) and 
Q( -1 ,1, -1), and N = 1 elsewhere. Observe that N is not defined only on 
8(Q(I, -1, l)UQ( -1,1 , -1)) . On these partial hyperplanes the vect.or field points 
fr~m the open sets where N = 3 to the open set where N = 1. Finally, on the set 
where N = 1 the vector field on the faces Xi indicate t.he possibili ty of t rajectori es 
passing through the orthant in the following order Q(l, 1, 1) ---+ Q(-l, 1, 1) ---+ 

Q(-l , -1,1) ---+ Q(-l , -1, -1) ---+ Q(I, -1, -1) ---+ Q(I, 1, -1) ---+ Q(1 , 1, 1) . 

Proposition 2.1 (Mallet-Paret and Smith [1 8]) Let x(t) be a nontrivial so lution 
of(1J. Then 

a. xCi) E X except at iso lated values of t. 

b. N( x( i)) is locally cOllsiant for xC t) EX . 

c. if x{1o} fI. X then N(x(tt)) < N(J:(io)) , where tt > to and to < to · 

d. if x(t) E X then (Xi(t) , Xi-let)) i= (0 , 0) for 1 ::; i ::; n . 

Remark 2.2 An immediate impli cation of Proposition 2.1 is that. any recurrent 
dynamics which occurs in a CF S must be cont.ained in t.he open sets of X on 
which N is constant . 

One final comment. ; observe t.hat. for t.hose x E R" wit.h each Xi i= 0, 1 < i < n 

71 n 

(5) 
;=1 i=l 
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so.N takes only odd values if .6. = -1 and only even values if .6. = 1. 

3 Morse Decompositions 

Let cp : R x R n ---. R" denote the flow generated by the C:FS and let a(Y) and 
w(Y) denote the alpha and omega limit sets of Y under cp. Recall (A3) that A 
denotes the global attractor for cp, and hence, is a compact invariant. set. 

Definition 3.1 A Morse decomposition of A is a finite collect.ion of mut.ually 
disjoint compact invariant. subsets of A 

M(A) := {M(p) I p E (P , >)} 

indexed by a partially ordered set P such that if x E A \ UpEP 1"1 (p), then t.here 
exists p> q such that a(x) C M(p) and w(x) C M(q). 

The individual invariant. subsets M(p) are called Morse sets, and the remaining 
portion, A \ U M(p), is referred t.o as the set of connecting orbits . 

Remark 3.2 Observe t.hat the exist.ence of a part.ial ordering on t.he Morse de­
composition implies that the recurrent dynamics of A must. lie ent.irely in the 
Morse sets. 

The similarit.ies between Remarks 2.2 and 3.2 sugges t. t.hat .tv can be used to 
define a Morse decomposition for C:F S . For example, if .6. = -1 olle could set 

M(p):= {x E X 1.N(cp(t,x» = 2p+ 1 Vi E R}, p = 0, 1, 2, ... 

This almost works as a definit.ion of a Morse decomposit.ion . The problem is t.he 
origin 0 ERn . Observe that. 0 is a fixed point for any C:FS and 0 E A . Therefore, 
o must lie in a Morse set . However , 0 ~ X, and hence, cannot li e in any set of the 
form M(p) as defined above. 

Deciding how to include the origin into t.he Morse .decomposit.ion requires an 
understanding of t.he spect.ral properties of D /(0). These spectral propert.ies are 
at. the heart of many of the result.s associat.ed wit.h t.his Liapunov funct.ion, and 
in fact for similar Liapunov functions . For a full account t.he reader is referred to 
[5,7,9,17, 18] . For our purposes it. is sufficient to stat.e the following definit.i ons 
and results . 

Let J represent. t.he number of the eigenvalues with posit.ive real part. of t.he 
matrix D/(O). 

Assume 0 ::; i < n and that. .J > O. 

If .6. = -1 and n is odd, then -P __ { !!±.l. 2 1 

1 

If ~ = 1 and n is odd, then P = { ~ 
1. 

if J = 11 

if j=2i,2i+1. 

if .J = n 
if j=2i-l,2i. 
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If ~ = -1 and n is even, then P 

If ~ = 1 and n is odd, then P 

= {I 
{

!!±1 
= .2 

t 

if J = n 
if j=2i,2i+1. 

if J = n 
if j=2i-1,2i . 
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As a preliminary step in the construction of the Morse sets we make the following 
definitions. 

If ~ = -1 then M(p) 

If ~ = 1 then M(p) 

{x(t) : N(x(t)) = 2p + 1 for all t}. 

{x(t) : N(x(t)) = 2p for all t}. 

Now, for p = 0, ... , P - 1 set 

M(p) = Al(p) 

and 
M(P) = {o} U U M(p). 

i~P 

Proposition 3.3 ([9, Proposition 3.4]) The collection 

M(A) = {M(p) Ip= O, ... ,P} 

is a Morse decomposition of the global atiractor A with an admissible ordering 
p>p-l. 

4 The Conley Indices 

As the reader may have realized by now the existence of Morse decompositions is 
equivalent to the existence of a discrete Liapunov function. The primary reason 
for insisting on using the framework of Morse decompositions is that it permits us 
to use the algebraic machinery associated with the Conley index [4 , 24, 26, 28]. 

Recall that the Conley index of an isolated invariant set S is the homotopy 
t.ype of a pointed t.opological space, i.e. 

h(S) ~ (A, ao). 

For our purposes it is more convenient to use the cohomological Conlcy index 
(which we shall refer to from now on as the Conley index) 

CH*(S) := H*(A, Go) 

where H* denotes Alexander- Spanier cohomology [21, 29]. 
Since each Morse set is an isolated invariant set., it has a Conley index. The 

following proposit.ion indicat.es what. these indices are. 
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Proposition 4.1 The cohomological Conley indices of the M l?rse sets for the CF S 
are as follows . 

CHk(M(P)) = { ~ k = 2P 
otherwise 

If J < n and ~ = I, then 

CHk(M(O)) 

CHk(M(p)) 

IfJ<n and~=-I, then 

{ ~~Z k=O 
othe1"1.lIise 

{ . ~ k = 2p, 2p+ 1 
otherwise 

k = 2p, 2p+ 1 
otherwise 

P = 1, . .. , P- l. 

p = 0, .. . , P - 1. 

If J = n, then the indices of the Morse sets M(p), piP - 1 arc rtS above. The 
remaining index is as follows. 
If ~ = 1 and 11 is even or if ~ = -1 and n is odd. then 

CH k (M(P-l))= {Z 8j Z k:=n~1 
, 0 OfllP1'WIse. 

If ~ = 1 and n is odd or if ~ = -1 alld n isel l l'n. thell 

CHk(M(P-I))={ Z k=I1~2,n-l o otherwIse . 

Though the details of t.he proof are rat.her complicatf>(l, the idea is fairly simple . 
Let 

s 0 0 ±l 
1 s 0 0 

L(s) = 0 1 s 0 

0 0 0 s 

and let ('1 ) 11(.1:) = 
3 .1: 11 

Ohserve t.hat. 
j. = L(s);I: + 11(.1:) (G) 

is a CFS where ~ is determined hy the IIppl'r right hand entry of J,(s) . In RlHllogy 
wit.h t.he ddillition of.J as the numher of eigenvaltws wit h R posit i\'e real part of 
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Df(O), we denote by J(s) the number of eigenvalues wit.h a positive real part of 
L(s). We defined P to be the number of Morse sets in a Morse 0 for the system 
i: = f(x) as a function of J, n and ~. Let us denote Pi := P. Let pes) be defined 
in the same way using J(s), n and ~ for the system (6) . Varying the parameter s 
allows one to vary J(s) from 0 to n . Furthermore, the nonlinearit.y h guarantees 
the existence of a global attractor. For (6) it is reasonably straight.forward to 
compute the index of the 1\10rse sets as a function of s. Now recall that as long as 
the isolating neighborhoods are preserved , the Conley index remains unchanged . 
Therefore, the strategy is as follows. For the CF S of interest , 

i: = f(x) , 

one determines ~ and chooses L(s) accordingly. Next one comput.es Pi from the 
spectrum of Df(O) , and then chooses s such that pes) = Pi . Finally, and t.his is 
the most technical part, one creates a homotopy from L(s) + hex) t.o f(x) which 
does not essentia lly change the spectral properties ~f the linearized operator at 
the origin and whi ch preserves the existence of a global attract.or. 

5 The Range of Dynamics 

In t.his section we will discuss the range of dyn a mics wh ich CFS can exhihit. To 
do this we begin by describing the results for MCFS a nd then cont.rast.ing these 
results with those of non- monot.one syst.ems. 

Theorem 5.1 (Malle t-Paret and Smith, [18]) Let liS consider a MCFS in 
Rn. Consider any point x and its omega limit set w( x) . Th en w(;r) is one of th e 
following : 

i) a fixed po int 
ii) a limit cycle 
iii) a set H = E U C where E is set of equilibria and C is th e set of connecting 

orbits between th e equilibria in E . 

. The main tool used in t.he proof of this resu lt is t he Liapunov fun ct.ion /v defin ed 
in Section 2. However, for MCFS , t he fun ction N is non- increas in g along t.he 
difference yet) := x(t) - xU) of any t.wo so lu tions x(t ) an d x( i.) a nd along yet) := 

x(t) for any solu tion a:(t). Th is can be used t.o examine the st.ruct.ure oft.r aj ec t.ories 
in the neighborhood of a periodi c orbit. 

The discrete Liapunov function can be also used to show transversalit.y of the 
int.ersection of th e stable and unstable manifolds of the crit.ical elements i.e. fixed 
point.s and periodic orbit.s. For the scalar paraboli c equation this was realized by 
Henry [11] anel Angenent. [1] using a zero nllmber as a Liapunov funct.ion . Fusco 
and Oliva [6] used t.he funct.ion N to show that. for MCF S wit.h ~ = 1 st able 
and unst.able manifolds of two crit.ical elements int.ersect I provi<kd at. least. one 
of t.hem is a periodic orb it . 
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These result.s show t.hat. t.he dynamics of .MCFS is 0 simple taking int.o account 
t.he fact t.hat t.hese are high dimensional dynamical syst.ems. A natural quest.ion 
arises, whether t.he dynamics of a general CF S is also as simple. 

The answer is negat.ive. 
Gedeon [8] has const.mct.ed a class of CF S which exhibit.s a chaot.ic O. We 

proceed to describe these results . 
Let us consider the following MCFS with negat.ive feedback (D. = -1) 

(7) 

where 1 is a monot.one C 1 funct.ion sat.isfying the feedhack condit.ion 

xf(x) > 0 if x '# O. 

We also assume without loss of generalit.y that / (0) = 1. It can be shown, t.h at 
if one fixes the 0 (/1, a3, 0.3, b,] , b3 then, under some additional condi t ions, t.here 
is a value bi = bJ(al, 0. 2, a.3, h, b3 ) at which t.he o rigin undergoes a subcrit.ical 
Hopf bifurcation. Thus for the value of b1 such that. b1 - bi < 0, Ib 1 - bil « 1 
the system (7) admits a hyperbolic periodic orbit,. It also can be shown t.hat, if 
f E C3 , f"(O) = 0 and f"I(O) > 0, t.hen, has a one-dimensionalunstahle manifold 
which for us will mean t.hat. there is one Floquet. mult.iplier wit.h absolut.e value 
bigger than one. 

We shall assume from now that. the hyperbolic periodic orbit. -l wit.h one di­
mensional unst.able manifold of t.he syst.em (7) is given. Let b(t)h denot.e the 
third coordin ate of the point ,(t). 

Definition 5.2 Given a periodic orbit " let 111 = (1111 ,1112 ,1113 ) E , sllch t.hat 
M3 = maXo<t<T [,(t)]3, where T is the minimal period of ,(t), he a point wit.h 
maximal vaiue-of the third coordinate on ,. 

Let us consider the following class of nonlinearities (Figure 2) 

g(x) l(a:)ifxE(-oo, lIh+b] 

gl(X) < 
g(x) 

0,0<f/(x):SLifxE(M3 +b+17,OO) 

has a unique maximum in y E (1113 + b, M3 + f, + 17] 

with g(y) < fey) 

(8) 

Observe, that there are three const.ants 6, 1}, L in this definit.ion . 'Ve will assume 
that 0 < L < 1(1113 ) so that the second line of the definition makes sense. We will 
t.ake 6,17 > O. 
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f(x,> 

L 

Figure 2: The graph of the fun ction [lb,T](X) has to li e in a L-shaped region, which 
is shown here for two different values of 0, TJ. 

Note, that. every funct.ion [J from t.his class winciC\f's wit.h t.11f' function f in t.he 
range of...,. and t.herefore A( is a periodic orbit. of t.he syst.em 

(9) 

We denot.e by ~ t.he sparf' of hiinfinit.e sequenres of Os and 1s and hy rr a shift 
map defin ed by 

a-(W)i = Wi-l 

for W E ~ where Wi is t.h e i-th f'nt.ry in w. 
Now we follow t.h e following; st.rat.egy t.o show t.1l(' ('xiskncf' of complicated 

dynamics in CFS. We show t.hat. t.11I' re is a nonlinearit.y [I of t1w type (8) sllch 
t.hat. t.he Poincarf> Ill a p Hq rOITPsponding t.o t.ll(' pf'riodi c orhit. AI for the syst.f'1ll 
(9) admit.s the int.ersect. ion of the stable and unst.ahle manifolds. This is dorlf' in 
the followin g t.heorelll. 

Theorem 5.3 (Gedeon [8]) i1.~S1/11I(, Ihal the systcm (7) adllli/.~ a hY]lfr/lOlif Jle­

riodic orbit A( with on e-dim enswnal unsiablr lIHI 11 iJold. Fi1· r, such that () < L < 
f(!l1n) and choose a two dim enswnal Jamdy (, : (0 , 1/) - [/" ,11 oj J" llcti 01lS oj th e 
Jorm (8). 
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Fix anyone dimensional family F C 9 parameterized by a c01ltinuous curve 
of the form (8,1](8)) in the neighborhood of (0, 0) such that 

3 
q>­

. 2 
as 8 --+ O. (10) 

There exist 8 = 8(F,9) > 0 and a hyperplane H with the following properties. 
For any 8 ~ 8 the system (9) with gb .'1 E F admits H as a Poincare section 

with a Poincare map II g6 " and there exist an invariant set S C H, a continu­
ous surjective map p : S --+ E and an integer d such that the following diagram 
commutes 

s s 

p p 

i.e . (S, II~6,') is semi- conjugate to (E, 0') . 

Observe, that. since the condit.ion (10) is open, the set. of (8,77) for which the 
Theorem holds is open in R 2 . Note, that. the resu It, does assert. t.he existence 
of a semi-conjugacy and not. a conjugacy which means t.hat t.he map p is not. 
necessarily one-t.o-one. 

Let us remark, t.hat. t.he system (9) wit.h gb.'1(X) E F and D :S f, is t.he simplest 
possible syst.em which may have a chaotic behavior, since the phase space is 3-
dimensional and there is only one nonlinear term on the right-hand side. 

The result was obtained by altering a MCFS into a CFS by changing the 
function f(x) int.o a function 9b .'1(X). However, the functions f and 96 .'1(X) are 
not close in any function space. A natural question is , whether we can achieve the 
same result by a small perturbation of the function f. The answer is posit.ive. 

Theorem 5.4 (Gedeon [8]) Assume thai the system (7) admits a hyperbolic pe­
riodic orbit I with one-dimensional unstable manifold. 

For every ( there is a function h E C 1 (R, R) with 

Ilf - hllco < i 

and a Poincare section H with the following properties. 
The system (7) with f replaced by h admits H as a Poincare section with a 

Poincare map 7r and the7'e exist an invariant set S C H , a continu01ls surjective 
map p : S --+ E and an integer d such that the following diagram commutes 
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h(x ) 
3 

Figure 3: Funct.ion h( x) . 

s s 

p 

i.e . (8, rr d ) is semz - conjugate to 0:: , 17). 

p 
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This result. is int.erest.ing because, as we saw in Thf'orem 5.1, for .'\IIeFS a 
Poincare-llendixon t.richot.omy holds and by a rf'sult. of Te rf'si'iik [30) a C 1 pert.ur­
bat.ion of a MCFS will I)l'f'serv(' t.he Poin ca re-nf'mlixon p ropf' rt.if's of t1w flow. 

In more limit.ed sf'tting t.h e C1-pert.urhat.ion result. is due t.o l\L Hirsch . Ohserve 
t.hat. if 11 is odd and we change t - -t in the flow gellf'ratf'd hy (7) then a ll the 
ff'edhacks [,i change t.h l' sign and so we get a .MCFS with ~ = I. Such a flow 
defines a monot.one dynamical syst.em , as was m ent.ioned in In t roduction. For 
11 = 3 such a syst.em cannot. exhibit. chaotic dynamics; furth ermore. this property 
is stable under C I pcrt.u rbat.ions of t.h e flow (II irsch [13) , [11)). Agai II Theorem 5.4 
provides a concre t.e example of the fact. th a t t.his l)J'ol)f' rt.y is not st.able under CO 
perturba t.ion. 

As we see t.he dYllamics of a gene ral CFS may he very cOllipli cated which 
should be cont.rast.ed with t.he simple dynamics of the subclass of. \IIeFS . 
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6 The Structure of Morse Sets 

In the previous section it was remarked that the recurrent dynamics for MCF S 
can consist of at most fixed points, periodic orbits, or heteroclinic cycles. Of 
course, as we saw in section 5, for the general CFS, the dynamics wit.hin the Morse 
sets can be much more complicated, however, it is reasonable to ask whether, even 
in these more general systems, one can be assured that the Morse set.s contain fixed 
points or periodic orbits. Part of the purpose of this section is t.o demonstrat.e 
that the Conley index can be used to answer these questions. Thus, we begin with 
some abstract existence theorems. 

Theorem 6.1 (McCord [22)) Let S be an isolated invariant set and assume 

if k = j 
oth.erwise. 

Th.en, S contains a fixed point. 

The next t.heorem provides for t.he exist.ence of periodic orbit.s. First, however, 
we need the following concept. :=: is a Poincare section for an isolat.ing neigh­
borhood if:=: is a local section, i.e. 'P(( -f, f), :=:), an open subset of R n , is ° to 
:=: x (-f, f) for f > 0, :=: n N is closed, and for every x E N t.1lf're exists tx > Osuch 
t.hat 

Theorem 6.2 (McCord, Mischaikow, and Mrozek [23)) IfS is an isolated invari­
ant set with isolating neighborhood N such that N has a Poinca7·e section and 

if k = j, j + 1 
otherwise 

for some j, then S conta.ins a periodic orbit . 

Returning now t.o CFS we have the following t.heorem. 

Theorem 6.3 1. If ~ = 1, Ihen M(O) contains at leasl two {t.red Jloillis . 
2. Let J = 11. For all CFSdven and CFS-;;dd' IIf( P - 1) fOlllains al least two 

fi.ud points. 

Proof. We give t.he proof of (1) and claim t.hat t.he proof of (2) is similar. \\'e 
assume without loss of generalit.y that. Di = 1 for all i . Then it. is easy t.o check 
that 

111(0) c Q(1, 1, . .. ,1) U Q(-I , -1, ... , -1) = N-1(O). 

"From the details of t.he proof of Proposit.ion 4.1 it. is easy t.o chcck t.hat. 

CH k (InvQ(±l, ... , ±l)) ~ {~ if k = 0 
ot.herwise. 
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Now one applies Theorem 6.1. 0 

The next theorem is concerned wit.h the existence of periodic orbits and as 
t.he reader may have guessed will be proven wit.h the aid of Theorem 6.2. Again, 
Proposition 4.1 provides liS wit.h the appropriate indices, so all that remains is to 
find Poincare sections for t.he isolating neighborhoods. However, for CFS the XiS 
are ideal candidates for Poincare sections. Recall that on Xi, Xi # 0, and hence, 
compact subsets of Xi are local sections for the flow. The most general conditions 
under which Xi acts as a Poincare section is not known, however, if it does then a 
periodic orbi t x( t) in M (p) can be characterized as follows. For every i = 1, ... , n 
there exist times ti and ti such t.hat Xi(ti) > 0 and xi(ti) < O. We shall refer to 
periodic orbits wit.h this property as large periodic orbits. If Xi is not. a Poincare 
section for M(p), t.hen it appears possible that there exist periodic orbits which 
remain in an orthant Q(UI,' .. , un). 

Theorem 6.4 (Gedeon and Mischaikow [9]) If J < n then for CFS+ let p 
1, ... , P - 1 and for CF S- let p = 0, ... , P - 1 

1. If, for some i = 1, ... , 11, some Xi is a Poincare section of III (p), then M (p) 
contains a large periodic orbit. 

2. If, in addition, one considers a MCFS and if M(p) contains no fiud points, 
then the appropriate Xi acts as a Poincare section, and hence, 1I1(p) con­
tains a large periodic orbit. 

While completely general conditions on the existence of Poincare sections are 
not known, the following theorem provides reasonable sufficient conditions. 

Theorem 6.5 (Gedeon and Mischaikow [9]) Consider a CF S of the following 
form 

Xi = Cl'i[/j(X;) + (3;!i(Xi-I), i = 1, ... , n 

where Cl'i,{3i E {±1} and we assume that for every i, 
xigi(Xi) > 0 and xi-di-I(:Z:i-d > O. If 

n 

II Cl'i{3i = (_l)n+1 
;=1 

then for every i Xi is a Poincare section. 

While these theorems are rather general in nature, they fall short of the stated 
goal of this section which was to show that there are dynamic struct.ures that are 
shared by the Morse sets for all CF S. Obviously, if there are fixed points in the 
Morse sets then these theorems are not applicable. On the other hand as the 
following result shows, even when there are fixed points, and hence, when there 
need not be periodic orbit.s, there is a set which topologically is similar (t.hough 
it may be more complicated) t.o the large periodic orbit. 
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Theorem 6.6 (Gedeon and Mischaikow [9]) There exists an essential continuous 
surjective map 

Bp : M(p) --+ Sl 

where Sl is a 1 circle embedded in N-1 (p) eRn . 

Observe that large periodic orbits in M(p) can also be characterized as 1 circle 
embedded in N-1(p) C Rn. 

7 The Global Structure 

Our goal in this final section is to describe dynamic structures which are common 
to all C:FS. The first point which needs to be addressed is what is meant by de­
scribe? From the topological point of view conjugacy provides the most complete 
description of the dynamics. Recall that a conjugacy between a flow <p : Rx Z --+ Z 
and a flow 1/J : R x Y --+ Y is given by a homeomorphism h : Z ---- Y and a time 
reparameterization rp of <p such that 

RxZ 

Z 

id x h 
----..... RxY 

h 
Y 

commutes . Observe t.hat if one does not allow for the time reparameterization of 
one of the flows, t.hen two periodic orbits which differ only in t.heir period can not 
be made conj ugat.e . Clearly, if t.he flow lj' is complet.ely underst.ood, t.hen all the 
topological properties of <p are also understood. In this case 1/J can referred to as 
the model dynamics. 

The results of section 5 should convince t.he reader t.hat this not.ion of equiv­
alence is far too st.rong for our purpose of t.rying t.o express a uniform struct.ure 
for all the possi ble C:F S. A weak notion, and the first we shall em ploy, is that 
of a semi-conj ugacy. In particular , <p is said to be semi-colljugate to 1/J if the 
above diagram commut.es where t.he 0 h is replaced by a cont.inllous surject.ion 
p:Z----Y. 

The model dynami cs 'Ii} for t.he C:F S which we shall use depends on P and is 
defined as follows . Let, A be a square mat.rix of t.he form 

A= [ 
·~oo 
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The submatrices Ap , p = 0, ... , P - 1 have two forms: 

(Type I) 

and 
271' ] 

(p+1)-1 . (Type II) 

Let z = (zo, . . . , Zk-t) E Rk. Then in polar coordinates Z = ,.( where r ~ ° 
10-1 

and ( E 5 k - 1 , the unit sphere in Rio . Let Dk = {z = (zo, . .. , zk-d I L: z; ~ I} 
p=o 

be the closed unit ball in Rk. Consider the flow 

t/J : R x Dk _ Dk 

generated by the equations 

(= A( - (AC()( 

,; = r(1 - ") . 

(11) 

(12) 

(13) 

The dynamics of 1/' is most easily understood if one observes that. (12) is obtained 
by projecting the linear system z = Az onto the unit sphere. 

The choice of Type I or Type II matrices is determined by the CFS. The 
specific choices for the Ap's as a funct.ion of the t.ype of CF S are as follows: 

CFS-;dd: Ap , p = 0, ... P - 1 are of Type II unless n = 2P + 1 when A p , p = 
0, ... , P - 2 are of Type II and Ap-l is of Type I. 

CFS~dd: Ao is of Type I and Ap , p = 1, ... P - 1 are of Type II. 

CF S-;v en: A p , p = 0, ... P - 1 are of Type II. 

CFS~v en: Ao is of Type I and A p , p = 1, . . . , P - 1 are of Type II unless n. = 2P 
when Ap , p = 1, . . . , P - 2 are of the Type II and Ap is of Type I. 

When it is necessary to distinguish between the model flows we shall let t/J; denote 
the corresponding flow where * denotes even or odd. 

Let II(p) , p = 0, .. . , P - 1 denote the invariant. set of .1/; in t.he invariant 
subspace corresponding to Ap and let II(P) := 0 , the origin . Observe that {II(p) I 
p = 0, . .. , P} forms a Morse decomposition of t/J on Dk . 

Theorem 7.1 Consider CFS; . Assume that if Ap is of Type II, then M(p) has 
a Poin care section . Then , there exist a continuous surjective function 

p:A_DK 

for which Mp = p-l (II(p)) (p = 0, . .. ,P) and a continuous flow <p ; R x A -
A obtained via an order preserving time l'eparameterization of t.p such that the 
following diagram commutes 
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RxA id x p • RxDK 

It? ¢; 

p 
A DK 

i. e. It? is semi-conjugate to ¢;. 
Immediate corollaries of Theorem 7.1 are as follows. 

Corollary 7.2 Consider MC:FS;= and assume that if Ap is of Type II, then M(p) 
has no fixed points. Then, there exists a semi-conjugacy from <p to ¢;. 
Corollary 7.3 Consider a C:FS of the following form 

Xi = aigi(xi) + J3di(Xi-t), i = 1, ... , n 

where ai, J3i E {±1} and we assume that for every i, 
xigi(Xi) > () and xi-di-1(Xi-1) > O. If 

n 

II aiJ3i = (-It+1, 
i=l 

then there exists a semi- conjugacy from <p to ¢; . 
These results all depend upon the appropriate Morse sets not containing fixed 

points. In the last section, we dealt with this problem, by showing that these 
Morse sets could always be mapped onto a circle in a non-trivial manner. We will 
employ the same idea here, but on the level of Morse decompositions. 

Recall that given a Morse decomposition M(A) = {M(p) I p E (P , >)} an 
interval I C P satisfies the property that if p, q E I and p > r > q, then rEI. 
The importance of intervals is that given a Morse decomposition all coarser Morse 
decompositions involve isolated invariant set of the form 

M(I) := (U M(P») U ( U C(p, q») 
pEl p,qEI 

where I is an interval and 

C(p, q) := {x E A I w(x) C M£q) and a(x) C M(p)} 

is the set of connecting orbits from M(p) to M(q) . 

Definition 7.4 A Morse decomposition M(A) = {M(p) I p E (P, >)} is topolog­
ically semi-equivalent to M(8) = {M(q) I q E (Q, >)} ifthere exists -
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1. an order preserving bijection p : P -+ Q, and 

2. a continuous surjection p : A -+ B such that 

for every interval I C P. 

Theorem 7.5 Given C:FS!'. The Morse decomposition M(A) is topologically 
semi-equivalent to M(DK, 'I/J:). 

Observe that in this description the dynamics is almost completely ignored. 
In particular, we lose all information concerning individual orbits. On the other 
hand, what is preserved is the purely topological structure of the invariant sets. 
Observe, that unstable manifolds get mapped to unstable manifolds and the same 
for stable manifolds. As an example of the information this description provides, 
let us assume that Ll = -1, n 2: 4 and P 2: 2. Then the set M(O, 1) := M(O) U 
M(I) U C(M(I), M(O)) is a pre-image of an essential map onto Il(O , 1) := Il(O) U 
Il(1) U C(Il(I), Il(O)). One can easily check that Il(O, 1) is homeomorphic to S3 a 
3-dimensional sphere. 
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