
Resenhas IME-USP 1995, Vol. 2, No.1, 27 - 46. 

BAYESIAN HYPOTHESIS TEST: 
Using Surface Integrals to Distribute Prior Information 

Among the Hypotheses 

Telba Zalkind Irony and Carlos Alberto de Bragan<;a Pereira 

Abstract: A solution to the problem of transferring the 
prior preferences about the paraIlleters of interest to the spaces 
defined by the hypotheses in test is proposed. We make use of 
surface (line) integrals to obtain tlus solution . The advantage 
is that the preferences assessed in the original space are man­
tained inside the subspaces defined by the hypotheses. The 
Bayesia.n test obtained is applied to standard situations in 
quality assurance. The first is the detection of shifts in pro­
duction processes (test for comparison of two Poisson rates) . 
The second is the comparison of the quality of two different 
manufacturers (homogeneity test) . The last is the test for in­
dependence between defect types (independence test). The 
line integral solution can be applied not only to hypotheses 
defined by linear relationships (comparison of Poisson rates 
and homogeneity test) but also to hypotheses defined by non­
linear relationships (independence' test) . 
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1. INTRODUCTION 

The demand for hypotheses tests is enormous in all areas . For instance, hy­
potheses tests are often used to detect shifts in production processes, to compare 
the quality of different manufacturers or to check whether a specific type of defect 
has influence on the occurrence of other defects 'in a lot of manufactured items. 

The methodology of testing hypotheses presented here is Bayesian . This means 
that, in the process of construction of the final decision rule , experts' opinions are 
considered and all costs involved are taken into account. 

Under the Bayesian approach, the expert 's prior opinion about the parameters 
of interest can be expressed by a system of preferences over the parameter space. 
This system of preferences should be formally represented by a prior probability 
(density) function defined on the parameter space (see De Groot, 1986) . The 
scenario of testing hypotheses consists on a set of k (~ 2) hypotheses about 
reality and the objective is to choose one among them . The hypotheses to be 
compared define a k-subset partition of the parameter space. Usually , some of 
these subsets are contained in subspaces whose dimensions are smaller than that 
of the original parameter space. The novelty of the methodology presented in 
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this article is that the original system of preferences assessed by the experts to 
the whole parameter space is transferred, in a sensible and natural way, to those 
subsets of smaller dimensions that were generated by some of the hypotheses in 
test. The transference of the original system of preferences to a subset defined 
by a specific hypothesis, say Ho, is made through a straightforward computation 
of a line integral (or surface integral for higher dimensions) of the probability 
(density) function that was defined on the original parameter space. This line 
(surface) integral is computed over the line (surface) defined by the hypothesis 
Ho. 

The test suggested in this article is exact in the sense that it does not require 
asymptotic approximations. Moreover, whenever the prior distributions assessed 
belong to conjugate families, the decision function will be a function exclusively of 
the parameters of the prior distribution and of the sufficient statistic . This means 
that, when dealing with prior distributions that belong to conjugate families, the 
analyst performing the hypothesis test does not have to reconstruct the decision 
rule for each member of the family or for each different data set under analysis. It 
suffices to compute the value of the sufficient statistic and to use it together with 
the parameters of the prior in the general decision rule . 

Another important aspect of the Bayesian test introduced is that it uses di­
rectly the natural parameters defined by the hypotheses being tested . There is no 
need to look for alternative parametrizations in order to obtain simplifications. 

We planned the paper according to the following: 
In Section 2 the test procedure is developed. In Section 3 the test is applied to two 
cases in which the hypotheses being tested are linear. The first is the comparison 
of two Poisson distributions and the second , known as homogeneity test, is the 
comparison of two binomial distributions. Section 4 presents a more sofisticated 
application, known as test for independence, where the hypothesis being tested is 
nonlinear. We would like to point out that, in agreement with our intuition, this 
test of independence has a decision function that differs from the one obtained by 
the homogeneity test presented in Section 3. 

2. THE BAYES TEST 

Let d denote the data obtained as result of an experimen t and I( dlw) represent 
the associated probability (density) function. Here wEn (c IRn) is the unknown 
parameter that identifies the function. n is the parameter space. 

Let L(wld) be the likelihood function; i.e., L(wld) is a function of w such that, 
for each observed d, L(wld) is given by f(dlw) evaluated at d. In many cases, the 
analyst in charge of the experiment will be able to express her preferences for the 
elements of n before the experiment is performed. In other words, her experience 
will suggest that some subset of values in n are, a priori, more likely than others 
and consequently she will be able to assess a prior probability (density) function 
g(.) on n. If there is no preference for any set of points in n, the analyst may 
say that all elements of n are equally likely and will assess a uniform distribution 
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over O. In summary, the analyst preferences over 0 are translated into a prior 
probability distribution over O. 

Let {no, OIl be a partition of 0, i.e., 0 0 U 0 1 = 0 and 0 0 n 0 1 = 0. The 
hypotheses to be considered are H 0 : W E 0 0 and H \ : W E 0\ . The parameter 8 
will be the indicator of the hypotheses, that is, 8 = i if W E Oi, and the analyst 
prior preferences for the hypotheses will be described by P(8 = i) = <i (for i = 0, 1 
and <0 + 6 = 1). 

In order to decide in favor or against Ho before observing the experimental 
results, the analyst must compare {o and 6. The prior odds in favor of Hoare 
ROI = f;- and a Bayesian test will favor Ho if ROI > c, where c is a positive 
constant rela~ed to the losses and gains associated to the decisions. Appendix I 
will clarify the meaning of the constant c. From a classical perspective the test 
may be viewed as a procedure that minimizes a linear combination of the error 
probabilities associated to the hypotheses in test. If the losses associated with the 
errors of first and second kind are the same, then c = 1. 

Note that the values of <0 and 6 vary according to the analyst's experience . 
Thus, before observing d, her experience is described by <0 and 6 and once d is 
observed, her knowledge is updated and the new situation is described by {o( d) = 
P(8 = Old) and 6(d) = P(8 = lid), where <oed) and 6(d) are respectively the 
posterior probabilities that 8 = 0 and 8 = 1, given d. The posterior odds in 
favor of Ho are Rol(d) = t~~~ and a Bayesian test will decide in favor of Ho if 

Ral(d) > c. 

Recall that the probability (density) function g was defined over O. In order 
to obtain the values of {jed) (i = 0,1), the analyst needs to define densities over 
Oi and the novelty of this work is precisely the way in which we will define these 
densities. 

Definition 1: The prior density of W under Hi (i = 0,1) is defined by : 

g(wl8 = i) = g;(w) = PW)Ii(W) (i = 0, 1) 
g(w) dO; 

where Ii(W) is the indicator function l of W E Oi (8 = i) and J g(w) dO; is the 
line integral2 (in IR2) or surface integral2 (in IRn, n > 2) of g(w) in the subset OJ. 
Note that the denominator of the function g; is a normalizing constant . 

{ I if wE OJ 
1 The indicator fWlction li(w) is defined as: li(w) = 0 

ifw ~ OJ 
2See appendix II for the definition of such integrals. 

(8 = i) 
(8 ::/: i) 
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Figure 1 presents an intuitive interpretation of Definition 1. Note that g de­
scribes the analyst's preferences both in n and in ni (i = 0, 1). The lateral yiew 
of the contour defined by g over the subset no suggests a natural way to define 
the analyst's probability density over no. This density is presented in Figure 2. 

is: 

!!9!!!....!' h".~t~ funeU •• 
• n • _Uh 1.1,. Ih •• t.raU .. 

• r it. ".lu •• on .0' 

JJE. FlCUI[ %1 De"alt, runcUoa 

.n.o obt.o' •• d t,.011 , ... 
orjllnal •••• it., Oft eo 

", 

Once d is observed, the posterior density of w, which is given by Bayes' formula, 

L(wld}g(w} 
g(wld} = In L(wld)g(w) dw 

If we apply Definition 1 to the posterior distribution of w, the posterior distri­
bution of w under the hypothesis Hi is given by 

( Id () = .) = .( Id) = g(w)L(wld)Ii(w) 
g W, t g. w I g(w)L(wld) dn; 

where again Ii(w) is the indicator function of w E Oi and I f(w) dOi is the line 
integral (in IR2) or surface integral (in IRn, n > 2) of f(w) in the subset 0;. 

It is important to note that the relationship between the parameter () (the hy­
potheses in test) and the experimental result d is made through the parameter w 

and the likelihood function associated to the experimental model, L(wld). Conse­
quently, in order to obtain the "predictive" distribution, f(d), we must integrate 
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the parameter w out as follows: 

J(d) = 10 J(dlw)g(w) dw 

This suggests the following definition: 

Definition 2: The predictive distribution (or predictive density) of the data 
under the hypothesis H;, J(dl{1 = i), which will be denoted by f;(d) is defined by : 

J;(d) = J g(w)L(wld) dO; 
J g(w) dO; 

where the symbol dO; denotes that we are taking the line integral (or surface 
integral) of the integrand constrained to the subset Oi . 

Note also that J g(w) dO; is the normalizing constant that assures that f;(d) 
is a probability (density) function . 

Since Ji(d) is defined as the conditional probability of d given {1 = i, the 
posterior probability of the event {{1 = i} given d is obtained by Bayes' formula: 

Consequently, the posterior odds in favor of Ho are given by R01 (d) 

and the suggested test will favor Ho if R01 (d) > c. 

3. APPLICATIONS: POISSON AND BINOMIAL CASES 

~oJo(d) 

6!t(d) 

In this section we present typical applications in quality assurance that benefit 
enormously from the procedure suggested in the previous section . 

Here, only for simplicity, we consider prior distributions that belong to con­
jugate classes of distributions (DeGroot, 1986). The advantage of using these 
distributions is that there is no difference between prior and posterior distribu­
tions except for the values of their parameters. This means that there is no need to 
recalculate the whole posterior distribution . It suffices to update its parameters. 

l.From now on the symbol", will stand for the expression "distributed as". 
For instance, x '" G(a, b) will mean that the random quantity ;I: is distributed 
as a gamma distribution with parameters a and b. For a beta distribution with 
parameters a and b we write x '" Be (a, b). 
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To allow changes in the values of the parameters we write 

xl(a, b) '" G(a, b) or xl(a, b) '" Be (a, b) . 

3.1 DETECTING SHIFTS IN PRODUCTION PROCESSES 

In any production process there will always exist a certain amount of inher­
ent variability that is the cumulative effect of many small, essentially unavoidable 
causes. When this background noise is relatively small, the process is acceptable 
and the system is a stable process with "common" causes of variation. Occa­
sionally, however, special causes of variations will occur, resulting in a "shift" to 
an out-of-control state in which a larger proportion of the process output does 
not conform to engineering requirements. If this occurs, the process has to be 
adjusted and this inc curs in a certain cost. On the other hand, there is also a cost 
associated to allowing the process to operate out of control. 

A key issue in quality assurance is to judge whether or not an audited produc­
tion process is in statistical control and this is dope through quality audits . 

A quality audit is a system of inspections done periodically on a sampling basis. 
Samples are collected periodically, sampled product is inspected and defects are 
assessed whenever the product fails to meet the engineering requirements . At 
each rating period, the inspection results are combined and expressed by a quality 
index. See Irony, Pereira and Barlow (1992) for an example of how to model such 
inspection plans in order to estimate the quality index of a production line. 

A sensible method to detect a shift in a production process is to compare 
the quality index of the current rating period, AT, with the quality index of the 
previous rating period, AT-I, using a hypothesis test . 

The Bayes hipothesis test suggested in this paper seems to be the right tool 
to perform this comparison because it allows for the inclusion of: (a) the cost 
of unnecessary adjustments and (b) the costs of allowing the process to go out 
of control. It also allows for the incorporation of expert's opinion translated into 
prior probabilities for the quality indexes and prior probabilities for the hypotheses 
in test . 

Suppose that two audit samples, one of size m and another of size n are 
collected at rating periods T - 1 and T respectively. Let x represent the number 
of defects found in the first sample and y represent the number of defects found 
in the second sample. Notice that an item in a sample may have more than one 
defect . 

Irony and Pereira (1994) show that most production lines have physical char­
acteristics that justify the Poisson distribution for the number of defects in a 
sample. Consequently, we will adopt the Poisson model in our analysis; i.e ., 
x'" Poisson (mAT-I) and y '" Poisson (nAT). AT-l and AT are the quality indexes 
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of the first and second rating periods respectively. They express the frequency of 
defects per unit. The probability distribution of x and y will be given by : 

Here, we are also assuming that for fixed values of AT-I and AT , x andy are two 
independent random quantities. . 

The hypotheses to be tested are: 
Ho : there was no shift in the process (AT-1 = AT) 
HI : there was a shift in the process (AT-I :I AT) 

These hypotheses define the following partition of the parametric space: 

{( AT - 1 , AT) : AT - 1 ~ 0 , 

{( AT - 1 , AT) : AT - 1 ~ 0 , 

AT ~ 0 and AT-1 = AT} 

AT ~ O} 

which are, respectively, the diagonal line of the positive quadrant and the whole 
positive quadrant . 

Let the parameter 8 be defined as: 

8 - {O if Ho is true , i.e., if w = (AT-1, AT) E no 
- 1 · if HI is true , i.e., ifw = (AT-1,AT) E n1 

Suppose that the analyst in charge of the production process can express her 
preferences for the hypotheses by P(8 = 0) = ~o and P(8 = 1) = 6 (~o + 6 = 1). 
Suppose also that the preferences for the quality indexes, AT- I and AT , can be 
expressed by a product of two independent gamma distributions: AT-t!(a , b) '" 
G(a , b) and ATI(c, d) '" G(c, d) . In other words: 

( ) _ (\ \) _ ba \a-1 -bAT_l dC \ c -1 -dAT 
9 w - 9 AT-1,AT - r(a)AT- 1e r(c)AT e , 

where AT-1 > 0 and AT > 0 and r(a) denotes the gamma function that is 
defined as: 

r(a) = 100 x o- 1e-': dx for a> 0 . 

Note that r(n + 1) = n! if n is an integer. 
For fixed values of AT-1 and AT, x and yare distributed as two independent 

Poisson random variables and the likelihood for this problem is given by: 

(mAT -1)': (nAT)Y, , 
L(wld) = L(AT_1,ATlx , y) = I I e -m"T- l e -n"T . 

x . y . 

The class of conjugate distributions for w = (AT-1 , AT) is precisely the product 
of two independent gamma distributions (see DeGroot, 1986) . Hence , the poste­
rior distribution of w = (AT-1, AT) given d = (x , y) will also be the product of 
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two independent gamma distributions , . namely 

(AT-1Ia, b, c, d, x, y) 

(ATla,b,c,d,x,y) 
AT_11(a+x,b+m)-G(a+x,b+m) and 

ATI(c + y, d + n) - G(c + y, d + n) . 

The predictive distribution of the data under the hypothesis H 0 is given by: 

_ m" nY f(A + C - 1)(b + d)a+e-1 
lo(x, y) - ~Yf (B + D)A+C-1 f(a + c - 1) 

where A = a + z, B = b + m, C = c + y, D = d + n. 
The predictive distribution of the data under H1 is given by: 

The posterior odds in favor of Ho are given by: 

R01(X, y) = 

= 

~o/o(x, y) 
611(x, y) 
~o f(A + C - 1) f(a)f(c) BA DC , (b + d)a+e-1 
~1 f(A)f(C) f(a + c - 1) (B + D)A+C-1 bade 

If a = b = c = d = 1, corresponding to the prior assessment of two independent 
exponential distributions with means equal to 1 for AT-1 and AT, we will have: 

R ( ) ~o(x+y)( m+l )"+1( n+l )11+1(' 2)2 
01 z, Y = - m + n + . 6 x m+n+2 m+n+2 

Hence , once Z and yare obtained, the analyst will favor Ho if R0 1(x, y) ~ c, 
where c is a pre-specified constant. Finally for equal sample sizes, m = nand 
~o = ~1 = 1/2 we would have 

( Z+y) '(I)"+Y R01(Z, y) = Z 2 (n + 1) . 

3.2 COMPARING THE QUALITY OF TWO DIFFERENT MANU­
FACTURERS (HOMOGENEITY TEST) 

Suppose that the proportion of defective items produced by two different man­
ufacturers is to be compared. Two audit samples of sizes m and n are collected 
from the first and second production lines respectively. Let x be the number of 
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defective items found in the first sample and y be the number of defectives found 
in the second sample. ' 

It is said that the manufacturer's quality is measured by the proportion of 
defectives that are produced. If p is the proportion of defectives turned out by 
the first manufacturer and q by the second manufacturer , the objective is to test: 

Ho : the quality of both manufacturers is equivalent (p = q) 
HI : the manufacturers have different quality (p # q) 

These hypotheses define the following partition of the parametric space: 

{(p,q): 0:::; p:::; 1, 

{(p,q):O:::; p:::; 1, 

o :::; q :::; 1 and p = q} 

0:::; q:::; I} 

which are, respectively, the increasing diagonal of the unit square and the whole 
unit square. 

For fixed values of p and q, x and yare observations of two independent 
binomial random quantities with parameters (m;p) and (n; q) respectively. 

Let, the parameter () be defined as: 

() = {O if Ho is true; i.e ., if w = (p, q) E no 
1 if HI is true; i.e., if w = (p, q) E n1 

Suppose that the analyst in charge of the comparison can express her prefer­
ences for () by P( () = 0) = ~o and P( () = 1) = 6. Suppose also that she is able to 
establish her system of preferences over n by a product of two independent beta 
distributions. In other words, in her opinion, P"" B(a, b) and q"" B(c, d), or 

( ) _ ( ) _ r( a + b) r( c + d) a-I ( )b-l 0-1 d-l 
9 w - 9 p,q - r(a)r(b) r(c)r(dl 1- p q (1- q) , 

where 0 :::; p :::; 1 and 0:::; q :::; 1 and ro is the gamma function as defined in 
Section 3.1. 

Since the class of conjugate distributions for w = (p, q) is precisely the product 
of two independent beta distributions (see DeGroot, 1986), the posterior distri­
bution of w = (p, q) given d = (x, y) will also be the product of two independent 
beta distributions, namely: 

pl(a, b, x, y) "" pl(A, B) "" Be (A, B) and ql(c, d, x, y) "" ql(C, D) "" Be (C, D) 

where A = a + x, B = b + m - x, C = c + y and D = d + m - y. 

The likelihood of the problem is given by: 
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The arch that represents the hypothesis Ho is given by the equations p = p 
and q = h(p) = p. Hence, the predictive distribution of the data (x, y) under the 
hypothesis Ho is given by: 

/o(x,y) = (m) (n) B(A+C-l,B+D-l) 
x y B(a+c-l,b+d-l) 

where A = a + x, C = c + y, B = b + m - x, D = d + n - y and B(u, v) is the 
beta function evaluated at the point (u,v), which is B(u, v) = ri(J~~\) 

Analogously, the predictive distribution of (x, y) under HI is: 

!J(x, y) = (m) (n) B(A, B)B(C, D) 
x y B(a, b)B(c, d) 

Hence, the posterior odds in favor of Ho are: 

R ( ) _ eo B(A + C - 1, B + D - I)B(a, b)B(c, d) 
01 x,y --el B(a + c - 1, b + d - I)B(A, B)B(C, D) 

If the assessed prior is uniform over n (a = b = c = 1) and eo = el = 1/2, the 
posterior odds in favor of Ho will be: 

R ( ) _ (r;) (;) (m + 1)(n + 1) 
01 x, Y - ( ) m+n (m + n + 1) 

z+y 

and the Bayes test will decide in favor of Ho when ROI(x, y) 2: c. Finally, if we 
have equal sample sizes, m = n, we will have 

R ( )_ C)(;)(n+l)2 
01 x, Y - (2n) 2n + 1 

x+y 

Note that the first term in the product is a hypergeometric probability which is 
used in Fisher's exact test for 2 x 2 tables. Irony and Pereira (1986) compare 
the Bayes test for homogeneity with Fisher's exact test using a large number of 
simulated samples. The comparison favors the Bayes test in the sense that it 
minimizes the linear combination of the errors of first and second kind. 

4. A TEST FOR INDEPENDENCE 

The application presented in this section reveals the strength of the metho­
dology introduced in Section 2. Here, the null hypothesis is represented by a 
set of non-linear equations which are usually avoided by standard techniques of 
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hypothesis testing through reparametrization. The test developed by using the 
line integral does not involve ad hoc parametrizations and the fin'al expression for 
the decision rule has an intuitive flavor . 

The problem of testing independence between two events arises, for instance 
when items coming out from a production line are evaluated according to the 
presence or absence of two types of defects, say E and F. The objective is to check 
whether the presence of defect E (F) in a unit increases the chance of occurence 
of defect F (E). With this objective in mind, a sample of N units is selected from 
a lot . The sampled items are then classified exaustively and exclusively into the 
following categories: EF, EF, EF, and EF, where Eand F indicate the absence 
of defect E and F respectively. The data are displayed in Table 4.1. Analogously, 
the parameters of the multinomial distribution, the cell probabilities associated 
to Tabie 4.1, are displayed in Table 4.2. 

Let the prior assessed to the parameters of the multinomial distribution be a 
Dirichlet distribution of order 4. Recall that the family of Dirichlet distributions is 
a conjugate family for multinomial models . The parameters of the prior (posterior) 
distributions are displayed in Table 4.3. 

The prior density function and the likelihood function are, respectively, pro­
portional to 

Pall -lpa,2-lpa21 -lpa22-1 
II 12 21 22 (4,1) 

and 

( 4 .2) 

In order to obtain the posterior distribution, it suffices to change in (4 .1) Aij = 
aii + xii for aii (for i = 1,2 and j = 1,2). 

The objective here is to test the independence of defects E and F, that is , if 
the presence of defect E (F) does not change the chance of occurrence of defect F 
(E). Formally, this is equivalent to test the hypothesis H 0 defined by the following 
equations system: 

{ 

PII = pq 
H' P12 = p(l - q) 

o· P21 = (1 - p)q 
P22 = (1- p)(1- q) 

(4 .3) 

The alternative hypothesis is represented by the simplex 0 1 = {(PI I , ... ,P22); 
Pii ~ 0, Eii Pii = I, i,j = 1,2}. 

In order to compute the surface integral, associated to flo, we need the matrix 
of derivatives of (Plb P12, P21, P22) relatively to (p, q) (see Courant & John, 1974, 
vol. 2) which is given by: 

q 
(1- q) 

-q 
-(1 - q) 

!p 1 (1 - p) 
-(1 - p) 

( 4.4) 
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Table 4.1: Category sample frequencies 

E E Total 
F Xll Xl2 . Xl · 

F X21 X22 X2 · 

Total X.I X .2 11 

Table 4.2: Parameters of the multinomial model 

E 
F PII 

F P21 

Total q 

Pl2 

P22 

1 - q 

Total 

P 
I-p 

Table 4.3: Parameters of the prior (posterior) distribution 

E 
F all (All) 

F a21 (A2d 

Total a . l (A.d 

al2 (A I2 ) 

a22 (A 22 ) 

Note: Aij = aij + Xij 

Total 
at. (Ad 
a2 . (A 2 ) 

a (A) 
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The six determinants of the squared matrices of rank 2 formed by the rows of 
Mare: D1 = -p, D2 = q, D3 = P - q, D4 = 1 - (p + q), Ds = -(1 - q), and 
D6 = 1- p. 

The factor used in the surface integral is then 

~ = (Dr + D~ + D5 + D~ + D~ + D~)1/2 
= 2[3/4 - p(I - p) - q(I - q)j1/2 

The volume under the density function (4.1) over the surface defined by equa-
tions (4.3) is given by: . 

H(all, a12, a21, a22) = 1111 ~pOl. -2(1 - p)ol-2qo,-2(1 - q)ol-2 dp dq 

The predictive probability function under the null hypothesis is given by: 

H(All,A12,A21,A22) n! 
fO(X11J X12,X21,X22) = ( ) I I I I ' H all,a12,a21,a22 Xll.X12.X21 .X22. 

The predictive probability function under the alternative hypothesis is given 
by: 

B(All,A12,A21,A22) n! 
I1(X11,X12,X21,X22) = B( ) I I I I' 

all, a12, a21J a22 X11· X12 ·X21· X22· 
where 

(all - 1)!(a12 - I)!(a21 - I)!(a22 - I)! 
B(all, a12, a21J a22) = (a _ I)! 

The function 11 is a mixture of multinomial probability functions by a Dirichlet 
density function. 

The posterior odds in favor of Ho are: 

R01(d) = fo(d)eo = eo H(All,A12,A21,A22) B(all,a12,a21,a22) 
l1(d)6 6 B(All,A12,A21,A22) H(all,a12,a21,a22) 

If uniform priors are assessed, that is , all = a12 = a21 = a22 = 1 and eo = 
~1 = 1/2, we obtain: 

R (d) = H(Xll + 1, X12 + 1, X21 + 1, X22 + 1) (n + 3)! 
01 6H(1, 1,1, 1) Xll!X12!X21!X22! 

Note that H(I, 1, 1, 1) = 2/3. 

The Taylor expansion of [3/4 ~ p(1 - p) - q(1 - q)J1/2 about the point (p, q) = 
(!, !) is !+(p- !)2 +(q_!)2. Using this expansion together with some properties 
of the beta distribution we obtain: 

H(all, a12, a21, a22) = 2B(al. - 1; a2 . - I)B(a .1 - 1; a.2 - 1) x 

x { 1 - : = ~ [P( 1 - P) + Q(1 - Q)] } 
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al. - 1 ' a,J - 1 
where P = --2- and Q = '--2-· 

a- a-

Finally, when assessing uniform priors, we have 

where P = Xl. + 1 and Q = X,J + 1. Note that P and Q are respectively the 
n+2 n+2 

Bayes estimators of p and q. 

The results in the following examples are obtained using Taylor expansion . 
Uniform priors and eo = 6 = 1/2 were assessed. In order to evaluate the p-value 
presented, we ordered the sample space according to the value of ROJ (d) in each 
sample point. In other words, we consider a sample point d l to be more extreme 
than a point d2 if R01(d1) < R01 (d 2 ). Hence , the p-value associated t.o do is the 
number Po = "LJo(d) where the sum is over the set. {d : R01(d) :S ROl(do)} . 

Example 1. Suppose that in a sample of size 4, two items were found to have 
both defects E and F and the other two items had no defects at all . The objective 
is to test whether or not the presence of one type of defect increases the chance 
of occurence of the other type. The data is displayed in the following contingency 
table and an independence test is performed. 

E E Total 
F 202 
F 0 2 2 

Total 2 2 4 

The results are: ROJ(d) = 2/10 (p-value = 0.0057) 
As expected, the odds ratio indicates that independence must be rejected. In 

other words, the presence of one type of defect in an item should change the chance 
of occurence of the other type. The p-value also supports this conclusion. 

Example 2. Now, suppose that in a sample of 4 items, all of them were found to 
have both defects. This is a critical case because the conclusion is not intuitive. 
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E E Total 
F 4 0 4 
F 0 0 0 

Total 4 0 4 

The result of the independence test is: ROl(d) = 8/5 (p-value = 1) 
This result favors independence, that is, the presence of one type of defect 

should not change the chance of occurence of the other type of defect . 

Example 3. In this example, a sample of size 4 had an item with both types 
of defects, an item with no defects and two items with only one defect, one of 
them with defect E and the other with defect F. Here, at first glance, intuition 
would favor independence but, due to the small sample size, independence is not 
evident . 

E 
F 1 
F 1 

Total 2 

E Total 
1 2 
1 2 
2 4 

The result of the independence test is: ROl(d) = 4/5 (p-value = 0.2143) 
Note that the odds ratio seems not to support the intuition in this case. This 

is due to the small sample size that makes independence debatable. In fact, for a 
table (k,k,k,k) with sample size equal to 4k, the odds ratio will support the null 
hypothesis only for k>3 

Example 4. Finally, in the last example, a sample of size 4 had 3 items with 
both defects and one item with no defect. 

E E Total 
F 303 
F 0 1 

Total 3 1 4 

The result of the independence test is: ROl(d) = 13/40 (p-value = 0.0486) 
Although favoring dependence, the value of the odds ratio is not as small as 

the one obtained in Example 1. 
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Note that the expression of the odds ratio produced by the Taylor expansion 
highlights the intuitive flavor of the suggested test . 

5. FINAL REMARKS 

The tests introduced in this paper are exact, in the sense that they do not 
require asymptotic approximations and ·· can be used even for small sample sizes. 
As shown in the previous section, one mayne.ed to use numerical integration, which 
sometimes can be difficult and tedious. Approximations like Taylor's expansions 
or Laplace methods (Tierney and Kadane, 1986) may be of some help to obtain 
closed analytical expressions. However, the approximations may be poor in cases 
where sample sizes are small. In addition, sophisticated numerical methods may 
be needed in situations where multivariate models are required. 
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APPENDIX I - The meaning of the constant c 

Suppose we want to test Ho : 8 = 0 vs HI: 8 = l. 
A hypothesis test is a binary function 6( ·) from the data d such that 

if oed) = 1 

if 6(d) = 0 

then, 

then, 

H 0 is rejected and 

H 0 is not rejected. 

Let 0(6) = probability of rejecting Ho given that Ho is true and /3(0) = 
probability of not rejecting Ho given that Ho is false . They are the probabilities 
of the errors of first and second order respectively, associated to the test 6. 

Let i( 8, 6) be the loss function associated to the test. It can be presented in 
the following table 

8=0 
8 = 1 

6=06=1 
o a 
b 0 

If the prior probabilities of the hypotheses are given by P(8 = 0) = ~o and 
P(8 = 1) = 6, the expected loss (risk) of the test, r(6), is given by 

r(6) = E[i(8, 6)] = eoE[L(8, 6)18 = 0] + eIE[i(B, 6)18 = 1] 



Bayesian Hypothesis Test 43 

where the symbol E[X] represents the expected value of X and E(XIY = y) 
represents the conditional expectation of X given Y = y. 
Note that 

E[i(O, 6)10 = 0] = a.P(6 = 110 = 0) = aa(6) and 
E[i(O, 6)10 = 1] = ~ .P(6 = 010 = 1) ~ b{3(6) 

Consequently, r(6) = eoaa(6) +6b{3(6). A test that minimizes the risk r(6) is 
a Bayes test . 

DeGroot (1986) proves that a test 6 defined on d, such that 

6(d) = 0 (Ho is not rejected) if ROled) ~ ~ = c, 
6(d) = 1 (Ho is rejected) if ROl(d) ~ ~ = c 

minimizes the risk r(6). Note that the well known Neyman-Pearson Lemma is a 
corollary of this result . 

The values of a and b determine the relative importance (cost) of the errors of 
first and second order. If eo = 6 = 1/2 and b/a = c = 1, both errors have the 
same cost whereas if b/a = c :f 1, the error of second order costs c times more 
than the error of first order. 

APPENDIX II - Line integral (surface integral)3 

Let C be a smooth curve defined on the plane p x q. A smooth curve is a curve 
represented by the following parametric equations: 

p = 4>(t) 
q = t/J(t) where k ~ t ~ i 

and where 4> and t/J are continuous functions with continuous derivatives on the 
interval k ~ t ~ i. If A is the point (4)(k), t/J(k» and B is the point (4)(i), t/J(l», 
C could be seen as the pathway traveled by a point that is moving continuously 
from A to B. If C is a smooth curve, the arch S is well defined. It is the length 
ofthe line that starts at the point t = kending at the generic t: 

If C is oriented in the direction of increasing t, then S will also inc.rease in the 
direction of the motion and its value will vary from 0 up to the length L of C . 

3See Courant and Jolm (1974) for further infonnation about tius topic. 
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Now, we divide C according to Figure II-I: 

B 

I L;~I 'i 
I I 

I; 

p 

FIGURE 11-1 t Pat.h".,. for the 
line integr.l 

I • 
I 

Let ..!liS' denote the increment in S from ti-l up to ti, i.e., the pathway traveled 
in this interval. The line integral of f over the curve C is defined by: 

1, f(p, q) dS = ~i~ t f(pi , qi)..!liS . 
C ma.xAis-Oi=l 

If f is continuous in C, this integral exists and is given by: 

L f(p, q) dS = l' f[¢(t), ¢(t)]J¢'2(t) + ¢'2(t) dt . 

If C can be represented by q = h(p), a :S p :S b, C will be given by the 
equations: 

p=q 

q=h(p) a:Sp:Sb and 

L f(p, q) dS = 16 
f(p, h(p))Jl + h'2(p) dp 

For instance, if the curve C is a curve whose density varies along C, the wire 
mass will be given by m = Ie f(p, q) dS where f(p, q) is the density at the pqint 
(p, q). 

Surface integral. Surface integrals are an extension of line integrals to higher 
dimensions. 

Now, let C be a piece of smooth surface defined on a space of dimension n . 
A piece of smooth surface of dimension m « n) is a surface represented by the 
following parametric equations: 

PI ¢l(tl, . .. ,tm)=¢l(t) 

P2 ¢2(tl , ... , t m ) = ¢2(t) 
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where cPt, cP2, . .. I cPn are continuous functions with continuous derivatives in aU 
points of the piece of the surface. 

Analogously, as in the line integral case, the volume of the piece of smooth 
surface is given by 

where: 

• the limits of the integrals are obtained ifi order to cover the piece of smooth 
surface; 

• j = (~); and 

• D t , D2 , ••• , Dj are the j determinants of all squared submatrices of order m 
obtained from the rows of the following matrix of partial derivatives: 

If 1 is a continuous function on C, the surface integral of lover the piece of 
smooth surface C is given by 

where the limits of the multiple integral are the ones obtained in order to cover 
C. 
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