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1.1. Historical Background. The formula (a2 + b2)(c? + d?) = (ac — bd)? +
(be + ad)? which shows that the product of two sums of two squares is again the
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sum of two squares is very familiar and most elegantly established with reference
to the field of complex numbers.

The first noncommutative “field” was discovered in the early 1840’s by Sir
William Rowan Hamilton. More properly called a “division algebra” and denoted
H in Hamilton’s honour, this algebra is the 4-dimensional vector space over R (the
reals) with basis {1,i,],k}. Thus a quaternion is a formal sum

q = a+ bi+ cj + dk.
Two such elements are added “coordinatewise”
(a1 + bai + c1j + dik) + (a2 + bi + caj + dok) =
(a1 + az) + (b1 + b2)i + (c1 + ¢2)j + (d1 + d2)k)

and multiplied using the distributive laws and the following table which shows how
to multiply the basis elements:

1 ik
1l i«
ild =t - Kk =
jli =k =1 i
klk j =i -1

Like the complex numbers, there is in the quaternions a notion of norm—for ¢ =
a+bi+cj+dk € H, we set || = a?+b%+c?+d%?—and, as with the complex numbers,
norm is multiplicative: |g1q2| = |q1||g2]- This gives rise to a formula which shows
that the product of two sums of four squares is another sum of four squares. This
particular formula plays an important role in number theory; for example, it shows
that to prove that every natural number is the sum of four squares, it is sufficient
to establish the result just for primes.

For what integers n is it possible to write the product of two sums of n squares
of variables as the sum of n squares of terms each of which is quadratic in the given
variables? The answer, which was given by A. Hurwitz in 1898 is n = 1,2,4, 8.
We refer the reader to a beautiful article on the history and solution of the n-
squares problem by Charles Curtis [Cur63]. That there exist n-squares formulas
for n = 1,2, 4, 8 follows from the existence of the real numbers, complex numbers,
quaternions and a certain nonassociative algebra called the Cayley numbers. That
these are the only integers for which formulas exist is a consequence of the fact
that the reals, complexes, quaternions and Cayley numbers are the only alternative
division algebras over the real numbers. Most of the algebras in this paper will be
alternative, a term we will define in Section 1.2.

Alternative rings arose out of the work of Ruth Moufang in the 1930’s [Mou33].
Given a projective plane, one can label the points and the lines with elements from
a set R and then define the addition and multiplication of elements of R in terms
of incidence relations in the plane. (See [Hal59, Chapter 20] for an introduction to
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projective planes and their coordinatization.) One can then relate various geomet-
rical properties of the plane to algebraic properties of the “ring”, (R, +, ). Two of
the nicest theorems in this regard concern planes in which certain theorems due
to Desargues and Pappus hold. A plane is desarguesian (pappian) if and only if it
can be coordinatized by a planar alternative division ring (field). Since a field is
a particular kind of alternative division ring (one which is commutative), one sees
that a pappian plane is always desarguesian. Since a finite alternative division
ring must be a field, a finite desarguesian plane is necessarily pappian. Much of
Moufang’s attention was directed at the multiplicative structure of an alternative
division ring. Just as the non-zero elements of a field form a group under multi-
plication, so the non-zero elements of an alternative division ring form a Moufang
loop under multiplication. All the loops in this paper will be Moufang, a term
which will be defined in Section 1.3.

Group rings were implicitly introduced in a paper by Arthur Cayley in 1854
[Cay54]. Given Hamilton’s definition of quaternions several years earlier, it was
natural to consider more general algebraic expressions

aje; + azez + -+ -+ anén

where the a; belong to some field F' (originally the real or complex numbers) and
the {e1,...,en} is the basis for a vector space over the field. Multiplication of two
elements with the above form could naturally be defined in terms of multiplication
of basis elements (and distributivity). As a specific example, Cayley considered the
case where the e; were the six elements of the symmetric group S; and, thereby,
gave the first instance of the now-familiar group algebra CS3. The importance
of group algebras became clear in the early 1900’s after the work of T. Molien,
G. Frobenius, I. Schur, H. Maschke, and later R. Brauer and E. Noether, on group
representation theory. Since then, group algebras have taken on a life of their
own. The appearance of two large books on the subject [Seh78, Pas77] at almost
the same time, with very little subject matter in common and neither considering
issues related to group representations, made it clear how the subject had grown
by the mid 1970’s.

The idea of relaxing the requirement of associativity and considering general
loop rings or algebras is due to R. H. Bruck who introduced the idea of a quasigroup
algebra in [Brud4]. There, Bruck proved that over a nonmodular field, the loop
algebra of a finite loop was the direct sum of simple algebras (the analogue of
the well-known theorem of Maschke for group algebras). Two years later, Bruck
determined the centre of a loop algebra [Bru46]. The subject of loop algebras
seems then to have laid dormant until 1955. In that year, Lowell Paige proved
that in characteristic different from 2, in a commutative loop algebra, the very
weak identity, 2?2? = z3z, implies full associativity [Pai55]. In other words,
there are no “interesting” nonassociative commutative loop algebras which are not
already group algebras. This result strongly suggested that it was fruitless to
expect that a loop algebra could satisfy any important identity without, in fact,
being a group algebra. Nevertheless, in 1983, E. G. Goodaire showed that there
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do exist alternative loop algebras (which are not group algebras) [Goo83]. It is
this paper which gave birth to the subject we are surveying here.

1.2. Alternative Rings. A (not necessarily associative) ring is a triple (R, +, -)
where (R,+) is an abelian group, (a,b) — a - b is a binary operation on R, and
both distributive laws hold: a(b+c) = ab+ac, (a+b)c = ac+be, for all a,b,c € R.
If, in addition, (R, +) is a module over a commutative, associative ring ® such that
a(ab) = (aa)b = a(ab) for all « € ¢ and all a,b € R, then (R, +, ) is said to be a
(nonassociative) algebra.
If a,b, ¢ are three elements of a ring, the commutator [a,b] and the associalor
[a,b,c] are defined like this:
[a,b] = ab— ba (ring) commutator
[a,b,c] = (ab)c — a(be). (ring) associator
Both these are linear functions of each of their arguments. The nucleus N(R) and
centre Z(R) are the subrings of R defined by
N(R)={a€ R|[a,z,y] = [z,a,y] = [z,y,a] =0 for all z,y € R}
Z(R) = {a € N(R) | [a,z] = 0 for all z € R}.

A ring R is alternative if [z,z,y] = [z,y,y] = 0 for all z,y € R. From these two
identities, it can be shown easily that the associator is an alternating function of
its arguments (whence the name “alternative”). So also is the Kleinfeld function

f(w$ z, Y, z) = [w:t, b, z] i z[w, Y, z] = [z’ v z]w.
(See [Kle63] for a proof.) It follows that in any alternative ring, the following are
identities.
[zzl yl z] = z[z‘ y‘ z] + [xl yl z]x
[zy,2,2] = [y, 2, 2]z
lyz,z, 2] = z[y, =, 2]

((zy)z)z = z(y(z2)) left Moufang identity
((zy)2)y = z(y(zy)) right Moufang identity
(zy)(zz) = (z(y2))z middle Moufang identity

As indicated, the last three identities are known as the left, right and middle
Moufang identities respectively because they were first studied by R. Moufang.

In nonassociative products, we frequently use dots instead of parentheses to
indicate order of multiplication, juxtaposition taking precedence over dot. So, for
example, we might write (z - yz)z instead of (z(yz))z.

One of the most useful properties of alternative rings is the fact that if three
elements associate, then the subring which they generate is associative [BK51]. For
example, since the associator is an alternating function, z, z and y associate for
any z,y in an alternative ring. Thus alternative rings are diassociative in the sense
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that the subring generated by any two elements is always associative. This result
is due to E. Artin and its proof appears, for example, in R. D. Schafer’s classic
text [Sch66, Theorem 3.1, p. 29].

The most important example of an alternative ring (which is not associative) is
the ring of Cayley numbers whose underlying set is

C=H+Ht={a+bl|abeH)}

where H denotes the real quaternion algebra and £ is an indeterminate. In C, one
adds in the obvious way and multiplies in a way which mimics multiplication in
the complex numbers:

(a+b) + (c+de) = (a+c)+ (b+d)e
(a+ b8)(c + d€) = (ac — db) + (da + be)e,

where a,b,c,d € H and Z denotes the conjugate of the quaternion z. The Cayley
numbers form an 8-dimensional algebra over R with basis

(1.2.1) {1,i,5,k} U {£, it je, k)

where {1,1, j, k} is the usual basis for H.

More general than the Cayley numbers is a Cayley-Dickson algebra, which we
now describe. Let B be an associative algebra with an involution b ~— b (an
antiautomorphism of period 2) such that b+b and bb are scalars for all b € B. Let
£ be an indeterminate and a be a scalar, and let A be the vector space direct sum
B & B{. Define addition and multiplication by

(a+b8)+(c+dl)=(a+c)+ (b+ d)e
(a+ bé)(c + df) = (ac + adb) + (da + bé)e.

Then A is an alternative algebra known as a Cayley-Dickson algebra. Any Cayley-
Dickson algebra is simple. It is a division algebra if and only if, for all nonzero
a € A, we have aa # 0. Thus, if a Cayley-Dickson algebra over a field F' is not a
division algebra, then it has zero divisors and, interestingly, in this case it is unique
(up to isomorphism) [Sch66, Sections 4 and 5]. That Cayley-Dickson algebra over
F which is not a division algebra is called the split Cayley algebra.

With F = R and a = —1, the Cayley numbers are an instance of a Cayley-
Dickson division algebra. The unique split Cayley algebra over R has several
presentations, one as the vector-matriz algebra of M. Zorn. The elements of Zorn’s
algebra are matrices of the form
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where a,b € R and x,y are elements of R® which we think of as vectors. Such
matrices are added entrywise, but multiplied according to the following modifica-
tion of the usual rule:

a; x; az Xz ajaz +xi - y2 aixz + bax; —y1 X y2
yi b y2 b azyy + biyz + x1 X xa biba +y;1 - x2

where - and x denote the dot and cross products respectively in R3.

1.3. Moufang Loops. A loop is aset L together with a (closed) binary operation
(a, b) — ab for which there is a two-sided identity element 1 and such that the right
and left translation maps

(1.3.1) R.:aw az and L.:aw za

are bijections for all z € L. This requirement implies that, for any a,b € L, the
equations az = b and ya = b have unique solutions z, y. (The multiplication table
of a finite loop is a Latin square.)

The concepts of commutator and associator have definitions in loops which are
entirely analogous to their definitions for rings. Given a,b,c in a loop L, the
commutator (a,b) and associetor (a,b, c) are defined (uniquely) by

ab = ba(a,b) (loop) commutator
(ab)e = [a(be)](a,b,e)  (loop) associator
The commutator subloop is the subloop generated by the set of all commutators
and the assoctator subloop is the subloop generated by all associators. The nucleus
and centre of L are the subloops N (R) and Z(R), respectively, defined by
N(R)={z€L|(ab,z)=(a,z,b)=(z,a,b) =1, forall a,b € L}
Z(L)={z€eN(L)|(a,z)=1foralla € L}.
A loop L is Moufang if it satisfies any of the three Moufang identities en-
countered earlier:
((zy)z)z = z(y(zz)) left Moufang identity
((zy)2)y = z(y(zy)) right Moufang identity
(zy)(zz) = (z(yz2))z middle Moufang identity
Moufang showed that any of these identities implies the other two (in a loop). For
proofs, we refer the reader to [Pl90, Chapter IV]. Just as with alternative rings,
if three elements of a Moufang loop associate in some order, then they associate
in all orders; moreover, the subloop which they generate is a group. In particular,
Moufang loops are diassociative: the subloop generated by any pair of elements is
always associative.

Just as the quaternion group of order 8 is related to the quaternion algebra, so
the Cayley loop is related to the Cayley numbers. The Cayley loop is that Moufang



Ring Alternative Loops and Their Loop Rings 53

loop (of order 16) whose elements are the eight elements which form the basis for
the Cayley numbers (1.2.1) together with their negatives.

In a very real sense, the Cayley loop plays the role in the theory of Moufang
loops that the quaternions play in group theory. For example, any Moufang loop
which is not a group and in which all subloops are normal (such a loop is called
Hamiltonian) is the direct product of the Cayley loop, an abelian group of exponent
2 and an abelian group all of whose elements have odd order [Nor52].

Since the Moufang identities are satisfied in an alternative ring, any subset of an
alternative ring which is closed under multiplicative inverses and ring multiplication
is a Moufang loop. Thus, the full set of all invertible elements of an alternative
ring R is a Moufang loop; it’s called the (Moufang) loop of units or unit loop of
the ring and is denoted U (R).

We now give a construction of a whole family of Moufang loops, due to Orin
Chein [Che74]. Let G be a nonabelian group and u be an indeterminate. Let L be
the disjoint union L = G U Gu and define multiplication in L by

glhu) = (hg)u
(gu)h = (gh~')u
(gu)(hu) = h7lg

for g,h € G. Then L is a Moufang loop which is not a group; it is denoted
M(G,2). The case G = Sz, the symmetric group on three letters, gives rise to
M(Ss,2), a Moufang loop of order 12 and the smallest Moufang loop which is not
a group.

Generalizing this construction, suppose G is again a nonabelian group, go is a
central element in GG, and g — g¢* is an involution of G such that gg* is in the
centre of G for every g € G. Let L = G U Gu and define multiplication on GG by

g(hu) = (hg)u
(1.3.2) (gu)h = (gh*)u
(gu)(hu) = goh'yg

for g,h € G, where u? = gq is central in G and g§ = go. Then L is a Moufang
loop denoted M(G,*, go). When * is the inverse map on (7 and go = 1, the loop
M(G,*,1) is just M(G,2). With G = @Q, the quaternion group of order 8, g¢
the nonidentity element in the centre of @ and * again the inverse map, it can be
shown that M (Q, *, go) is the Cayley loop.

1.4. Alternative Loop Rings. Let L be a loop and let R be a commutative
associative ring with 1. The loop ring of L with coefficients in R is the free R-
module RL with basis L and multiplication given by extending, via the distributive
laws, the multiplication in L. Thus the elements of RL are formal sums, ., a,49,
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where the ay € R are almost all 0 and unique in the sense that

Zaﬂg = Eﬂ,g implies a4 = f, forall g € L.

Addition and multiplication are given by

Za,g + Zﬁ,g = Z(ﬂf + By)g
(Z ""9) (Eﬁw) =) (D anBi)g.

hk=g

By an alternative loop ring, we mean a loop ring which happens also to be
alternative. As a subloop of the loop of units of an alternative loop ring RL, the
loop L which defines RL must of course be Moufang, as noted earlier. That such
(nonassociative) loops actually exist was first shown by E. G. Goodaire [Goo83].

1.4.1 Theorem. Suppose R is a commulalive and associative ring with unily
and with no elements of additive order 2. Suppose L is a Moufang loop of the
form L = M(G,*,g0). Then RL is an allernalive ring if and only if g + g* is in
the centre of RL for each g € G, and this occurs if and only if, for each g € G,
either g is central or else h='gh € {g,¢* } forall h € G.

We assume throughout this paper that all rings are without elements of additive
order 2. Consider the implications of Theorem 1.4.1 in the case that ¢g* = g~!.
According to the theorem, RL is alternative if and only if g + ¢~ is in the centre
of RG for all ¢ € G. It is well-known that the centre of RG is spanned by the
finite class sums of G, a class sum being the sum of all the elements in a conjugacy
class (see, for example, [Pas77, Chapter 4]). Thus, g + g~ is central if and only
if, for all h € G, h~'gh € {g,9~'}. This forces all subgroups of G to be normal,
so that G is Hamiltonian and hence the direct product @ x E x A, where @ is
the quaternion group of order 8, E' is an abelian group of exponent 2 and A is an
abelian group all of whose elements have odd order [Hal59]. In our situation, A
is necessarily trivial as can be seen by considering the possibility that an element
(g,1,a) € Q x E x A has a conjugate equal to its inverse. Since, for G = Q x E,
every conjugate of ¢ € G is g or g~!, we obtain the following theorem which
establishes, unequivocally, the existence of (nonassociative) alternative loop rings.

1.4.2 Theorem. Let R be a ring without elements of addilive order 2, G a nona-
belian group, go a central element in G and L = M(G, -1, go). Then the loop ring
RL is alternative if and only if G = Q x E 1is the direct product of the quaternion
group of order 8 and an abelian group of ezponent 2.

For example, the loop rings of the Cayley loop are alternative since the Cayley
loop is M(Q,—1,g0), where go is the nonidentity element of Z(Q). Similarly,
M(Q,2) = M(Q,—1,1) also has alternative loop rings.

It is more difficult to determine, for a general involution on a group G, the
conditions under which g + ¢* is central for all g.



Ring Alternative Loops and Their Loop Rings 55

1.4.3 Theorem (Chein and Goodaire [CG86]). Let R be a ring without ele-
ments of additive order 2 and let G be a nonabelian group. Then RL is alternative
for some L = M(G,*,go) if and only if G has a uniqgue commutator s # 1 and
property

LC: gh = hg for g,h € G if and only if g, h or gh s central.

In any group (or diassociative loop), elements z and y will commute if any of
z, y, zy is central. If this is the only situation in which elements commute, it is
unlikely that a randomly chosen pair of elements will commute; there is a certain
lack of commutativity within the group. For this reason, we refer to the above
property in a group (or loop) as the LC property, “LC” for lack of commutativity.

Groups with LC can be rather tightly characterized. Suppose G is a nonabelian
group with LC. Then squares are central so that G/Z(G) is a 2-group and a vector
space over the field of two elements. It follows G/Z(G) has a basis of precisely
two elements; i.e., that G is an extension of its centre by Cs x C3. Conversely, it
is easy to see that such a group must have LC.

1.4.4 Proposition. A nonabelian group has the lack of commutativily property
if and only if G/ Z(G) = Cy x Cs.

Groups G in which G/Z(G) = Cp x C), for a prime p were studied by G. Leal and
C. Polcino Milies in [LM93]. With p = 2, one of their results gives the following.

1.4.5 Theorem. [LM93, Lemma 1.1] G has property LC if and only if G can be
writlen in the form G = D x A, where A is abelian and D is an indecomposable
2-group generaled by ils cenire and two elemenis z and y which salisfy

i) Z(D) = Cami X Camz X Cams, where Cam; 1s cyclic of order 2™ fori=1,2,3,
my; > 1 and mp, m3 > 0;
ii) (z,y) € Comy;
lll) z? € sz; x Cgmq and Y2 € Cgm; x Cz"ﬂz x C‘zmg.

An indecomposable group is one that is not a direct product except in the trivial
way (one of the groups is the one element group). Those finite indecomposable
groups for which D/Z(D) = C; x C; have been completely classified by Jespers,
Leal and Polcino Milies who obtained the following theorem.

1.4.6 Theorem. [JLM] Let G be a finile group. Then G/Z(G) = Cy x Cz if
and only if G can be writlen in the form G = D x A, where A 1s abelian and
D = (Z(D),z,y) is of one of the following five types of indecomposable 2-groups:
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Type Z(D) D

Dy (tl) (zaystl I(zly)=t?ml_llzg=y2=t¥.“)

D, (t1) vt (@y)=8""le2=9’ =1,
=)

D5 (tl) X (tz) (:1 vt t2 I (z, y) = tf“l-l’zg = t%’ml =
3™ = 1,12 =t5)

Dy (t1) x (t2) {mutub @y =8 2=t =t,
g™ =™ =1)

Dsg (h) X (fg) X (ta) (2, y, t,t2,13 l (z,y) — t?ﬁl-l,zz =13,
=t =" =" = 1)

1.5. RA Loops. An RA (ring alternative) loop is a loop whose loop ring RL
over some ring R (without elements of additive order 2) is alternative, but not
associative. These loops can be described in various ways, the most basic of which
is this.

1.5.1 Theorem. [Goo83] A nonassociative L is an RA loop if and only if
(i) if three elements g,h,k € L associale in some order, then they associale in

all orders;
(i) if three elemenis g, h, k € L do not associale, then gh-k=g-kh = h - gk.

Using this theorem, it is not hard to show

1.5.2 Corollary. The direct product L x K of loops is an RA loop if and only if
precisely one of L and K 1is an RA loop while the other is an abelian group.

In loop theory, a subloop H of a loop L is normal if Hz = zH, Hz -y = H - zy,
zH -y=z-Hyand z-yH = zy- H for all z and y in L. The following corollary
is therefore of interest. We supply a proof, in part to illustrate the use of the
theorem.

1.5.3 Corollary. A subloop H of an RA loop L is normal if and only ifcH = Hz
forallz € G.

Proof. We show that, for RA loops, the conditions.
Hzx -y=H.zy, zH-y=z-Hy and z-yH =zy-H forall z,y

follow from Hz = zH for all z. Assuming Hz = zH for all z, to prove Hz -y =
H - zy, for instance, let z,y € L and h € H. Then either hz -y = h - zy or
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hz-y=z-hy =zy-h = h'-zy for some h’ € H (since H -zy = zy- H), so
Hz .y C H - zy. The other inclusion follows by reversing the argument. In a
similar way, one shows that zH -y =z-Hyandz-yH =zy-H forallz,y. O

The next theorem summarizes some of the most fundamental characteristics of
an RA loop.

1.5.4 Theorem. An RA loop L has the following properiies:
(i) for each z € L, z? € N(L);
(ii) M(L) = 2(L);
(ii) (g,h) =1 for g,h € L if and only if (g,h, k) =1 for allk € L;
(iv) (g,h,k) # 1 implies (g9,h, k) = (9,h) = (9,k) = (h,k) is a central element
of order 2;
(v) the associator and commutator subloops of L are equal, of order 2 and con-
tained in the centre of L. (This subloop is denoted L'.)

Suppose z, y and z are elements of an RA loop L. Since L is Moufang, if
these elements do not associate in one particular order, they cannot associate in
any order. In this case, by part (iii) of the theorem, (z,y) # 1, (z,z) # 1 and
(v,z) # 1. By part (iv), there exists a central element s of order 2 such that
L' = (s), so

This condition may be used to characterize RA loops.

1.5.5 Theorem. [Goo83] A nonassociative loop L is an RA loop if and only if
il contains a ceniral element 8 of order 2 such that for all z,y,2 € L,

(i) if z,y, z associate in some order, then they associale in all orders;
(i) if (z,y,2) #£1, then (z,y,2) = (z,y) = (2,2) = (y,2) = s.

Proof. The paragraph preceding the statement of the theorem gives the proof in
one direction. Conversely, suppose L is a nonassociative loop with central element
s of order 2 such that (i) and (ii) hold for all z,y,z € L. In order to show that L
is an RA loop, it is enough, by Theorem 1.5.1, to show that if (z,y,2) # 1, then
zy-z=y-zz=z-zy. But
zy-2=(z-y2)(e,y,2) = (- y2)e = (z - 29)s? =z -2y
the third equality holding since (y, z) = s is central. Also,
zy-z=(yz-2)s=(y-zz)s’ =y- 22

completing the proof. O

Of the many remarkable properties of RA loops, perhaps none is more satisfying

(and useful) than the fact that an RA loop has property LC. This property makes
possible the following very simple characterization of RA loops.
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1.5.6 Theorem (Chein and Goodaire [CG86]). A Moufang loop is an RA lo-
op if and only if it has property LC and a unigue nonidentity commutator, and it
is not associalive.

One important consequence of this theorem is this.

1.5.7 Corollary. An RA loop L is an extension of its centre by Cy x Cy x Co,
where Cy denoles the cyclic group of order 2.

We are now in a position to describe quite explicitly the structure of an RA loop.
Let L be an RA loop with unique nonidentity commutator s and centre Z. Suppose
a and b are any two elements of L which do not commute. Then there is some
u € L for which a, b, u do not associate. Each subgroup Za, Zb, Zu of L/ Z is cyclic
of order 2 (for any z, z2 € N(L) = Z(L), by Theorem 1.5.4), and the product
(Za) x (Zb) x (Zu) is direct, because of the LC property. By Corollary 1.5.7, this
direct product is L/Z. Letting G be the subloop of L generated by a, b and Z,
we note that G is a group by diassociativity and the definition of centre. Thus u
is not in G and L is the disjoint union GUGu.

Now, for g € G, define g* = ugu~!. Thus g* = g or sg. In fact, we can say
much more. It turns out that g — g¢* is an involution on G such that

. g ifgeZ
1.5. =
(1.5.8) ¥ {sg ifgg Z

and that elements L = G U Gu multiply according to the rules (1.3.2) given in
Section 1.3. Thus the construction of the loop M (G, #, go) given earlier turns out
to describe exactly how RA loops arise.

1.5.9 Theorem. If L is an RA loop, then L is a loop of the form M (G, *, go),
where G is any group generaied by the cenire of L and two noncommuling ele-
ments of L. If G is such a group, then Z(G) = Z(L), G has LC and a unique
nonidentily commutalor s, and the involution * is given by (1.5.8). Conversely,
for any nonabelian group G with LC and a unique nonidentily commautator s, the
loop M(G, %, go) is an RA loop for any go € Z(G), where * is given by (1.5.8).

Just as with groups, we call a loop L indecomposable if it is not the direct
product of two proper subloops. Moreover, we will say that ring alternative loops
Ly and L, are equivalent if Ly = L x A; and Ly = L x A; where A; and A, are
abelian groups, possibly of order 1, and L is an indecomposable RA loop.

1.5.10 Theorem. Any periodic RA loop is equivalent to an RA loop which s a
2-loop.

Proof. Suppose that z is an element of odd order 2n + 1 in the RA loop L. Then
z=! = (z?)" € Z(L) and so = € Z(L). Thus the set A of elements of odd order is
central, from which it is readily apparent that A is a normal (abelian) subgroup
of L. Next, consider the set L; consisting of those elements of L whose order is a
power of 2. If z and y are any two elements in L, then for s > 2, (zy)?" = 22" y*
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from whence it follows that L; is a subloop of L. Since L is periodic, L = L, A.
Clearly Ly N A = {1} and A is normal. Also L, is normal because for any z =
tha € L, y1 € Ly and a € A, we have ™11z = a“y,“Llyla = y,’lLlyl C L
since a is central and L, is a subloop. Hence L = L; x A [Bru58, Lemma 5.1,
p. 73]. Finally, since L is not associative, neither is L;, so L; is an RA 2-loop
equivalent to L. O

Because of this theorem, the search for inequivalent finite RA loops can be
limited to loops of order 2", n > 4 (any Moufang loop of order less than 12
is a group) and, in fact, we can construct RA loops of all these orders, no two
equivalent, as follows. Let N = 2" with n > 1 and let G be the group generated
by two elements a and b with a?N = b2 = 1, ba = a¥+'b. Then 2(G) = (a?) is
cyclic, G’ = (a®) is central of order 2, and G/Z(G) = C3 x C3. Necessarily, G has
property LC and so all the loops of the form M(G, %, go), * given by (1.5.8), are
RA loops of order 8|2(G)| = 8N = 2"+3. Furthermore, they are indecomposable
because their centres are. Now it is not difficult to show that the group G described
here is generated by any pair of elements which do not commute. This observation,
as well as basic properties of RA loops (most importantly, the one expressed in
Theorem 1.5.4(iii)), lead quickly to a most significant feature of the loops we have
constructed jfrom G: all their proper subloops are associative. The argument,
briefly, is as follows: if z;, 2 and z3 are any elements of an RA loop M (G, *, go)
and they all belong to G, then obviously the subloop (z,,z2, 23) generated by the
x; is associative. If z; and z5 are in GG, z3 is in Gu and z; and z» do not commute,
then they generate G and so quite clearly (z,,z2,z3) = L. The possibility that
just z; is in G while both z, and z3 lie in Gu reduces immediately to the case of
two generators in G since (z;,z2,z3) = (z1,z223,3); so does the final case, all
z; in Gu, since (z;, 2, z3) = (2122, 223, T3).

There are ten RA loops of order less than 64, which we wish to enumerate, but
first, it is convenient to record here the following very useful result.

1.5.11 Proposition. If G is a nonabelian group such that M(G, *, go) is an RA
loop, and if A is any abelian group, then M(G x A,*,(go,1)) is an RA loop
isomorphic to M(G, 2, go) x A.

In the enumeration of the RA loops of order less than 64 which follows, we name
the loop using the nomenclature of O. Chein [Che78] and also write each loop in
the form M(G, #, go) where, in each case, * is the involution given by (1.5.8) and
s is the unique nonidentity commutator in G. (Note that * coincides with the map
g — g~ ! in the quaternion group @ and in Q@ x E for any elementary abelian
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2-group E.

Q= (a,b|a*=1,0%=a? ba=a"'b)

D4 = (a,b|a* = b%* = 1,ba = a~1b)

16T2¢; = {(a,b | a* = b = 1, (a,b) = a?)

16T2b = (a,b,c| a* = 1,(a,c) = (b,¢) = 1,a? = b? = ¢? = (a,h))

16T2d = (a,b | a® = b2 = 1, (a, b) = a?)

There are two (necessarily indecomposable) RA loops of order 16:

1. Mi6(Q) = M(Q, -1, s), the Cayley loop, and
2. M“;(Q,?) = M(Q, —1, l) = M(Dq, *, S).

There are six RA loops of order 32, two of which are direct products of the loops
of order 16 with the cyclic group of order 2,

3. Msg(C, 9) = Mls(Q) x Cy = M(Q,—l,s) X Co = M(Q X Cz,—l,(s, l)) and
4. M32(Q x C3,2) = M33(Q x C2,—1,(1,1)) = M(Q,-1,1) x Cy =
M16(Q,2) x C2

and four of which are indecomposable loops:

5. Msy(E;, 16) = M(16T2b, %, a3),

6. M32(5,5,5,2,2,4) = M(16T2d, *, a?),

T. Mag(lﬁ[‘g(?g, 16[‘302, 16[‘261, 16F261) = M(lGFQCQ, *, ﬂzbg), and
8. M32(16F262, 161-‘202, 16["30%, 16[‘2(!5) = M(ISFQCQ, *, az).

Finally, there are two RA loops of order 48, these being the direct products of
Mi6(Q) and M16(@Q, 2) with the cyclic group of order 3.

9. Mas(7,7,7,2,2,6) = My6(Q) x Cs = M(Q x Cs, *,5) and
10. M43(7, 7,7,2,4,6) = Mls(Q, 2) x C3 = M(D4 x Csg, *, s).

E. Jespers, G. Leal and C. Polcino Milies have classified all finite RA loops.

1.5.12 Theorem. [JLM] Let L = M(G,*,g90) be a finile indecomposable RA
loop. Then G is either one of the five groups specified in Theorem 1.4.6 or the
direct product Ds x (w) of D5 and a cyclic group (w) and L is one of the following
seven types of loops:
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Type G 22 y* 9o
Ly Dy 1 1 1
L, D, ty, 41 4
L3 Ds 1 ty 1
L, Dy ty to
Ls Ds t, tz 1
Le Ds ta t3
L7 Dsx{w) ta t3 w

1.6. The Nucleus and Centre of an Alternative Loop Ring. We conclude
this chapter by recording some rather basic information about the structure of an
alternative loop ring.

Let R be an associative ring with 1 of characteristic different from 2. If L is a
loop such that RL is an alternative ring, then, by Theorem 1.5.9, L = M(G, %, go)
for some nonabelian group G' with LC and some central go € . Furthermore
G' = {1, s} and the map #: G — G defined by

o =19 if9€Z2(G)
sg if g ¢ Z(G).
is an involution. This involution extends to an involution on L (change GG to L in
the definition) and then to ring involutions first on the group ring RG and then on
the loop ring RL by setting
(2 agg)’ = Zcrgg‘ and {Z ad) = Za;t’.".
geG ge€G tet tel

Since L = GUGu, any element in RL can be written in the form = + yu, where
z and y are elements of the group ring RG. When elements of KL are expressed
in this way, the involution on RL takes the form

(z + yu)" = z* + syu
since gu noncentral means (gu)* = sgu.

Now the conjugacy class of an element g € G is {g} or {g, sg} according as g is
central or not and since the finite class sums span the centre of RG (as we noted
in Section 1.4), it follows that both g + ¢* and g + sg are in Z(RG) for any g € G,
hence

a+a® and (1 + s)a € Z(RG) for any « € RG.
Furthermore, it can be readily verified that

a € Z(RG) if and only if & = «
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and
@ € RG and sa = a implies a € Z(RG).

Writing elements of RL as elements of RG+ RGu, multiplication in RL becomes
reminiscent of multiplication in a Cayley-Dickson algebra:

(z +yu)(z + wu) = (zz + gow'y) + (wz + yz*)u, where z,y,z,w € RG.
It is straightforward now to determine the nucleus and centre of RL.

1.6.1 Proposition. [GP87) Let N(RL) and Z(RL) denote, respectively, the nuc-
leus and cenire of the alternative loop ring RL. Then
N(RL) = Z(RL) {z+yu|2z,y € Z(RG), sy =y}
= {z+yu|z€ Z(RG) and sy = y}.
1.6.2 Corollary. Z(RL) is spanned by the centre of L and the elements of RL
of the form £+ s, L€ L. -

1.6.3 Corollary. r € Z(RL) if and only ifr* = r. In particular, for anyr € RL,
r+r* and rr* are central elements of RL.

2. THE IsoMORPHISM PROBLEM

2.1. Background. A classical question in group rings is the so-called isomorph-
ism problem, whose analogue in the case of alternative loop rings can be stated as
follows: given a ring R, when does the loop ring RL determine L; i.e., if Ly is
another loop, when does the isomorphism RL = RL, imply that L = L, ?

In the case of group rings, it is very well known that the most significant context
in which to study this question is that of integral group rings, the main reason being
that this is the strongest hypothesis possible: if two groups G and H are such that
ZG = ZH then it is rather easy to see that also RG' = RH for every ring with unity
R. Moreover, it is also true that if G and H are finite, this hypothesis implies that
G and H have the same table of characters.

The first result in that context was due to G. Higman [Hig40] who proved that
if G is a finite abelian group and H is another group such that ZG = ZH then
G = H. Next came a result of A. Whitcomb [Whi68] proving that also finite
metabelian groups are determined by their integral group rings. An interesting
result of R. Sandling [San74] shows that finite groups GG which can be obtained as
the group of units of a ring (such as the linear groups GL(n, F'), F a finite field)
are also among the solutions of the integral group ring problem and, since it is
known that finite permutation groups are determined by their character tables, it
follows that S, is also determined by its integral group ring. The next progress
in this direction was due to K. W. Roggenkamp and L. Scott [RS87] who proved
that this problem has a positive answer for finite nilpotent groups.

The isomorphism problem over fields was first considered by S. Perlis and G.
L. Walker [PW50], who proved that if G is finite abelian and QG = QH for
another group H, then G = H. A similar result was obtained by W. Deskins



Ring Alternative Loops and Their Loop Rings 63

[Des56], who proved that if G is a finite abelian p-group, F a field of characteristic
p > 0 and H another group such that FG = FH, then G = H. In this direction,
however, there soon came a very striking counterexample due to E. Dade [Dad71]
who exhibited two metacyclic groups G, H, which are not isomorphic, but are
such that FG = FH for all fields F'.

Finally, we should mention that it has been a long standing conjecture in the area
that if G and H are p-groups and F, is the field with p elements, then F,G = F, H
implies G = H (see, for example [ZM75]). Recently, R. Sandling [San89] has
shown that this is the case when G is a central-elementary-by-abelian p-group.

For a detailed account of results regarding this problem, as well as for its history,
the reader is referred to the survey of R. Sandling [San85].

2.2. Loop Rings over the Integers. Now let us return to the study of RA
loops. The first result in this direction is due to E. G. Goodaire and C. Polcino
Milies [GM88] who proved that the answer is always affirmative, in the case of
integral loop rings of finite RA loops.

2.2.1 Theorem. Let Ly and L be finile RA loops such that ZL, = ZL. Then
Ly=L.

The proof somehow follows the lines of the one given by Whitcomb for group
rings, though the actual arguments are quite different and rely heavily on properties
that are peculiar to RA loops. First we extend some familiar concepts from the
theory of group rings to loop rings and introduce some notation.

If N is a normal subloop of a loop L and R is a commutative and associative
ring with unity, there is a natural homomorphism w: RL — R[L/N] whose kernel,
which is denoted A(L, N), is the ideal of RL spanned by the elementsn—1,n € N.
In the case that L is an RA loop, A(L, N) is the set of all finite sums of elements
of the form (z + yu)(n — 1) = z(n — 1) + y(n — 1)*u, z,y € RG. Therefore, for
a,B € RG,

a+ PBu € A(L, N) if and only if a, 8 € A(G, N).

In the special case that N = {1}, we write A(L) instead of A(L, L) and call
this the augmentation ideal of L. Note that A(L) is just the kernel of the map
(called the augmentation map)

€: L — L defined by c(z agg) = Za,.

The augmentation of an element & = ) ay9 € RL is just ¢(a). An isomorphism
6: RLy — RL is called normalized if it preserves augmentations; equivalently, if
eo0(g) =1 for all g € L. We now specialize to the case that R is the ring Z of
rational integers.

If $: ZL; — ZL is an isomorphism, then € o ¢(g) €. Z is invertible and so
e o¢(g) = £1 for every g € L. It is easy to see that §: ZL, — ZL defined by
0(g) = (e o #(9))~'¢(g), g € Ly, is normalized. For this reason, when considering
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the isomorphism theorem, there is no loss of generality in making the assumption
that isomorphisms are normalized.

The key step in the proof of the theorem is the following. Let #: ZL; — ZL be
a normalized isomorphism; then, for every element g € L; we have that 6(g) is a
torsion unit of augmentation 1 in ZL and its image, 8(g) € Z[L/L'), is also torsion,
of augmentation 1. Since L/L’ is an abelian group, it follows from a well-known
result of G. Higman and also of S. D. Berman (see [Seh93, Corollary 1.1.6]) that
0(g) is trivial; i.e., that 8(g) € L/L'. Recalling that L = G U Gu, we have that
either 8(g) = h or 6(g) = ki for some h € G.

A lemma due to A. Whitcomb states that if N is a normal subgroup of a group
G,andif ¢ € ZG and g € G aresuch thatz =g (mod A(G, N)), then there exists
an element g, € G such that z = g; (mod A(G)A(N)). Also, it is known that
GN(1+ A(G)A(N)) = 1. (See, for example, [Kar79] for proofs of these results.)

Taking N = G', in the present case we see that z = g, (mod A(G)A(G")), for
a unique g; € G. The case 8(g) = h is similar. Hence, we have two possibilities
for 8(g) = = + yu:

i) z=q (ﬁlod A(G)A(G")) and y=0 (mod A(G:G"))
(i1) z=0 (mod A(G,G")) and y=g; (mod A(G)A(G"))
Then it is possible to prove that the map p: L; — L given by:

o(g) = { go in case (i)

gou in case (ii)
is the desired isomorphism.

There is another question naturally related to the isomorphism problem over the
integers which we discuss first in the context of groups; that of fully describing all
the automorphisms of the integral group ring ZG. Notice that any automorphism
o: g +— g% of G, can be extended linearly to an automorphism 7: EQGG agg —
2_geG 4g9° of ZG. Also, if v € QG is an invertible element in the rational group
algebra such that y~1gy € ZG for all g € G, then the map ¢,: ZG — ZG given
by ¢+(g9) = v~ 'g7 is again an automorphism of ZG. It has been conjectured that
all automorphisms of ZG are compositions of automorphisms of these two types;
more precisely, we have the following

2.2.2 Conjecture (Aut). Let # be a normalized automorphism of Z(G;. Then
there exists a unit ¥ € QG and an automorphism ¢ of G such that 6(g) = v~ '¢%v
for all g € Gj i.e., such that § = ¢, 0 7.

It has been shown by S. K. Sehgal that this is the case if G is a finite nilpotent
class two group [Seh69]. G. Peterson confirmed the conjecture for finite symmetric
groups S, [Pet76] and also extended these results to some classes of metacyclic
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groups [Pet77]. The conjecture has also been verified by A. Giambruno, S. K.
Sehgal and A. Valenti [GSV91] for A1S,, where A denotes a finite abelian group
and ) the wreath product and for P1 S,, where P denotes a finite p-group by A.
Giambruno and S. K. Sehgal [GS92] in the case where p is odd and by M. M.
Parmenter and S. K. Sehgal when p = 2. The problem remains open, for the class
of alternating groups A,, for instance, though a result of A. Giambruno [Gia]
shows that it holds if n < 8, a fact consistent with the case of n = 5 which had
been settled earlier by I. S. Luthar and I. B. S. Passi [LP89].

The conjecture is true in the case of RA loops, but some care should be taken.
We recall the definition of inner automorphism in the alternative case. Given
an alternative algebra A and an element z € A, we define the translation maps
R;: A— Aand Ly : A — A just as in (1.3.1). An inner automorphism of A is
any automorphism in the group generated by the set {R,, L, | a is a unit in A}.
It can be shown that if A is associative, then this concept of inner automorphism
coincides with the usual one. With this definition in mind, we can state:

2.2.3 Theorem. Let L be a torsion RA loop and @ a normalized automorphism
of ZL. Then there exists an inner automorphism ¢ of the rational loop algebra
QL and an automorphism o of L such that @ = ¢ o 7.

2.3. Loop Algebras over Fields. It is natural now to turn to loop algebras
over a field as the context within which to investigate isomorphism questions. In
this regard, a first step was achieved by G. Leal and C. Polcino Milies [LM93]
who found a natural decomposition of the rational loop algebra of an RA loop L.
Writing L = M(G, %, go) as before, and letting s denote the unique nonidentity
commutator of L, we can state the following,.

2.3.1 Lemma. Let L be a finite RA loop. Then:

QL=QL(1;—3)€BQL(IES).

where QL(1$2) = Q[L/L'] and QL(15%) = A(L,L'). Moreover, the centre of
A(L, L") is Z(A(L, L") = Q[2(G)] (152).

With this result, one can obtain necessary and sufficient conditions for the ex-
istence of an isomorphism of rational loop algebras, with one restrictive hypothesis
on the loop.

2.3.2 Theorem. Let L be an RA loop and G a group, such that L = M(G, *, go).
Furthermore, assume that there erists an element « € Z(L) such that a® = s.
Let M be another loop. Then QL = QM if and only if L/L' = M/M' and
Z(QL) = Z(QM).

The techniques involved in the proof of the above theorem also allow us to prove
that Z(QL) = Q[L/L'] ® Z(A(G,G")) and, as a consequence, it is easy to show
that if L = M (G, *, go) is an RA loop that contains an element o € Z(L) such that
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a? = s, then the loop algebra QL is determined by L/L’ and the group algebra of
the group G.

The next advance was given L. G. X. de Barros [dB93a] who called the RA
loops considered in the theorem above loops of type I and defined loops of type I1
as those RA loops which do not contain an element o € Z(L) such that a? = s.
By Theorem 1.4.5, writing L = M(G,*,go) and setting G = D x A with A an
abelian group and D an indecomposable 2-group, we have that L is an RA loop of
type II if and only if Z(D) is of the form Z(D) = Cy X Cym; X Cams, where the
first cyclic direct factor is Cy = {1, s}.

De Barros’s approach is as follows. First, he shows that the isomorphism prob-
lem for rational loop algebras of RA loops of type II can be reduced to the study
of 2-loops of this type, by proving the following.

2.3.3 Proposition. Lel L = Ly x H and M = M; x K be RA loops where L,
and My are RA 2-loops and H and K are abelian groups of odd order. Then
QL= QM if and only if H = K and QL, = QM, .

Next, if L and M are RA 2-loops, we can write L = Ly x H, M = M, x K,
where L, and M; are indecomposable RA loops and H and K are 2-groups. Then,
one has the following.

2.3.4 Lemma. Let L and M be RA 2-loops of type II such that QL = QM.
With Ly, My, H and K as above, if H = K, then L} = M,.

Finally, the main result in this context is as follows.

2.3.5 Theorem. Let L and M be RA loops of type I1. Then QL = QM if and
onlyif L= M.
Similar results, for semisimple alternative loop algebras were also obtained by

L. G. X. de Barros in [dB93b]. First, he obtained the following descriptions of
such algebras.

2.3.6 Theorem. Let L = M(G,*,g0) be an RA loop and let K be a field such
that char K } |L|. Writing G = 112, we have: .

(i) KG = K[G/G")® A(G,G"), and KL = K[L/L'| & A(L, L"),

(i) K[G/GN= KG -G and A(G,G") = KG-(1-G");
(iii) K[L/L)= KL-G' and A(L, L") = KL-(1-G).
2.3.7 Theorem. Let L and M be RA loops. Let K be a field such that char K } |L|.
Then KL = KM if and only if K[L/L'l = K[M/M'] and A(L, L") = A(M,M').

2.3.8 Theorem. Let L = M(G,*,g0) be an RA loop and let K be a field such
that char K } |L|. Then
(i) 2(A(G,G") = Z(A(L,L")) = K[Z(L)] - (1 - G') = @, Ki, where each
field K; is an extension of K by a primitive n'h root of unity;
(i) A(G,G") = @[~ Bi, where each B; is an algebra of generalized quaternions
over the field K;;
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(i) A(L,L') = @i, Ai, where each A; is a Cayley-Dickson algebra over the
field K;.

He then studies in the nonassociative setting a certain notion of field equivalence
which we now describe.

Let £ be a class of finite RA loops. Let F' and K be fields of characteristic not
2. (This restriction will be placed on all fields considered here.). Call the fields F
and K equivalent on L if for all L, M € L, it is the case that FL = FM if and
only if KL= KM.

In [ST76], E.Spiegel and A.Trojan studied this equivalence relation on the class
of all finite 2-groups and for fields whose characteristic is not 2. The following
definitions and results are due to them.

Let K be a field and let £&2» denote a primitive 2”-th root of unity. Define
vk (n) = [K(€2n43) : K(Ean+1)] and call {yx(n)}n=1,2,... the 2-sequence of K. This
sequence has one of the following forms:

1,1:ds00e
0 DO Y
2,2,2,...
Define:
1 ifyx(l)=2
ind2(K) = {n ifyg(n)=2andyx(n—-1)=1forn>2

oo ifyg(n)=1forn=123,...

OK) = 1 if X2+ 1=0issolvable in K

= 10 if X2+ 1=0is not solvable in K
H(K) = 1 if X24+Y2=—1issolvablein K

~ 10 -if X24 Y2 = —1 is not solvable in K

They call indz(K), O(K) and ¢(K) the 2-invariants of K and, for finite groups,
obtained the following two results:

2.3.9 Proposition. [Spi75] The fields K and F are equivalent on the class of all
finite abelian 2-groups if and only if O(K) = O(F) and indz(K) = indz(F).

2.3.10 Proposition. [ST76] The fields K and F are equivalent on the class of all
finite 2-groups if and only if t(K) = t(F), O(K) = O(F) and indz(K) = indz(F).

To study the equivalence problem in the case of RA loops, it is necessary to
introduce another invariant for a field K, defined in [dB93b)] as:

(K) = 1 if X24+Y2+ 224+ W?2=—1issolvablein K
T |0 ifX2+Y24+ 224 W? = —1is not solvable in K
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With this notation, it is possible to solve the equivalence problem on the class
of RA 2-loops.

2.3.11 Theorem. Let F' and K be fields (with characteristics different from 2).
Let C be the class of all RA 2-loops. Then F is equivalenl to K on L if and only
if the following condilions hold:

(a) O(F) = O(K);

(b) Indg(F) — indz(K),'

(c) e(F) = e(K).

Finally, let us consider the modular case which was studied by L. G. X. de
Barros and C. Polcino Milies in [dBM]. The following lemma is frequently used
in the proofs of results relating to this case, though it actually holds for arbitrary
fields. We include its proof, since it is quite simple.

2.3.12 Lemma. Let L and Ly be RA loops and let F' be any field such that
FL= FLy. Then F[L/L'] = F[L,/Lj).
Proof. We shall denote by w: L — L/L’, the natural epimorphism and we consider
its linear extension 7: FL — F[L/L']. Set A(L,L’) = ker(7) = FL(1 — s).

Denote by [FL, FL] the left ideal of FL generated by all the elements of the
form aff — Ba with a, 8 € FL. We claim that [FL, FL] = A(L, L'). In fact, given
two elements £, m € L, if they do not commute, we have fm — mf = ¢m(1 — s) so,
in any case, fm — mf € FL(1 — s) and we see that [FL, FL] C FL(1 —s). On
the other hand, if we choose any two elements £, m € L which do not commute,
we have 1 —s = 1 —(£,m) = m~1£~1(¢m — mf) € [FL, FL] and thus the opposite
inclusion also follows.

Now, given an isomorphism ¢: FL — FL; wehave¢(A(L, L)) = ¢([FL,FL]) =
[FLy, FL1) = A(Ly, L}); consequently ¢ induces an isomorphism ¢ of the corres-
ponding factor rings and we have

FL 3 FL
A(L, L) = ALy, LY)

2.3.13 Theorem. Let L, Ly be finite RA loops and F a field whose character-
istic does not

divide the order of either of these loops. Write L; = M; x A;, where M; is an
RA 2-loop and A; an abelian group of odd order, i = 1,2. Then, FL, = FLy 2f
and only if FMy = FM; and FA; = FA,.

Let F denote a field of characteristic p. The cases where p is odd will certainly
be different—and simpler—than the case p = 2 since, given an RA loop L, we
can write L = Lo x A where Ly is an indecomposable RA loop (and hence, by
Theorem 1.5.10, a 2-loop) and A is an abelian group. If p is odd and divides |L|,
then p is only involved in A while if p = 2 then it is certainly involved in L.

So we start working over fields of characteristic p # 2. In this case it is possible
to give a complete answer to the isomorphism problem. Using the structure the-
orem for finite abelian groups we can always write L as L = M x A, x A, where

F[L/L) = ~ F[L,/L}]. O




Ring Alternative Loops and Their Loop Rings 69

M is a 2-loop (obtained as the direct product of the indecomposable RA loop Ly
and the 2-primary component of A), A, is an abelian p-group and A,/ an abelian
group whose order is odd and not divisible by p. Then, we can state the following.

2.3.14 Theorem. Lel F be a field of characleristic p # 2 and let Ly = M, x
Ap X Apr and Ly = My x By X By be two RA loops written as above. Then, if
FL, = FLj, we have

FM, = FM,
FA, = FBy
Ap = B,

Notice 'that Theorem 2.3.14 actually permits a full study of the isomorphism
problem in the present case since the isomorphism of semisimple loop algebras
was studied in [dB93b] and the isomorphism of semisimple abelian group algebras
was discussed by E. Spiegel in [Spi75].

The case where char F' = 2 needs a description of the loop of units of the loop
ring, which is used to construct a reduction.

2.3.15 Proposition. Assume that L = M x A, where M is an RA 2-loop and A
is an abelian group of odd order. Then 14+ A(L, M) is a normal subloop of U(F'L)
with an ezponent which is a power of 2, and we have

U(FL)= (14 A(L,M)) x U(F A).
Now one can give a splitting of the isomorphism under consideration.

2.3.16 Theorem. Let Ly and Ly be RA loops and F' a field with char F = 2 such
that FLy = FLy. Write L; = M; x A;, where M; is a 2-loop and A; is an abelian
group of odd order, i = 1,2. Then FM, = FM, and FA, = FA,.

Proof. First we recall from Proposition 2.3.12 that FL; = FL; implies that
F[Ly/L}] = F[La/L}); i.e. F[My/M} x A;] = F[M3/M} x A;). Once again, this
is an isomorphism of abelian group algebras and thus, in particular, FA; = FA,
[Des56, Theorem 3].

Now let ¢ > 1 be an integer such that 72' = 1for all v € 1+ A(L2, M3).
Then it is easily seen that, for all @ € U(FL;), we have a2’ € U(FA3). Letting
: Ay — A; be the mapping given by 6(a) = a2, it follows that 0 is one-to-one
(since |A;| is odd) and hence also onto. Thus, given a € A, there exists b € A,

such that b2' = a. If we denote by ¢: FL; — F L, the given isomorphism, then,
since we are assuming that ¢ is normalized, we have

#(a) = $(b*") = $(b)*' € U(F A2).
Thus
$(a—1) = ¢(b)* —1 € A(Lz, A2).
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This shows that ¢(A(L1, A1)) = A(Lz, A2); hence ¢ induces an isomorphism ¢ on
the corresponding quotients. We obtain

FL, $ FL,
A(Ly, A1) — A(Lz, As)

FM, = =FM, 0O

Once again, the isomorphism FA; = FA,; obtained above has been studied
by E. Spiegel in [Spi75], so it remains only to consider isomorphisms of modular
loop algebras of RA 2-loops. At least in the case of algebras over the field of two
elements, this problem has been settled.

2.3.17 Theorem. Let F be the field with two elements and let Ly, L, be RA
2-loops such that FLy = FLy. Then Ly = L,.

3. TRIVIAL UNITS

The determination of the group of units in a group ring is a subject of continuing
interest to many people. In any integral group ring Z(G, the elements of £G, which
are so obviously invertible, are called f{rivial units. Several of the early results
about units in group rings give conditions under which certain types of units are
trivial. For example, when G is abelian, it is known that all the units of finite
order in ZG are trivial. In 1940, Graham Higman [Hig40] found necessary and
sufficient conditions for all the units in an integral group ring of a torsion group
to be trivial and later, S. D. Berman [Ber55] proved a similar theorem for finite
groups for the units of finite order. In 1965, J. A. Cohn and D. Livingstone [('L65]
proved that all the central units of finite order in an integral group ring are trivial.
In 1978, M. M. Parmenter and C. Polcino Milies showed that for a finite group ¢,
the condition that ZG have only trivial torsion units is equivalent to several others,
the most fundamental being that the torsion units of ZG should form a subgroup
of the full unit group [PM78]. This theorem was later extended by Polcino Milies
to arbitrary groups [Mil81]. Our goal in this section is to show how to generalize
all these results to ring alternative loops. What we present here is based heavily
on two papers [GP86, GMa).

3.1. Units of Finite Order. An element of finite order in a loop is often termed
a torsion element.

3.1.1 Proposition. [GM89] Let r = 3,; aul be a torsion unit in the integral
loop ring of an RA loop L. If ay # 0, then r = a; = £1.

Proof. For a givenelement z = 3 a¢f € Z(L), theright translation map R,: ZL —
ZL is linear and satisfies Rzm = RT by Artin’s Theorem (Section 1.2). The matrix
for R; is similar over C to a diagonal matrix A = diag(é;,...,£n), where the §; are
mth roots of unity for some m. Thus the trace of R, is, on the one hand Y I_, &,
while, on the other, it is }_ astr(R¢) = na;. Thus all the & are equal (in fact,
equal to a;) and ag = 0 if £ # 1. O
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3.1.2 Corollary. If r =) o/l € L is a torsion unit in ZL and cy # 0 for some
Le Z=Z(L), then r = +£.
Proof. The element £~1r is a torsion unit with nonzero coefficient of 1. O

Suppose now that L = M (G, #, go) is an RA loop for some nonabelian group G
with central element go, where *: G — G, defined by (1.5.8), is an involution. If
z+yu, z,y € ZG, is a unit in the alternative ring ZL, then for some z + wu € ZL,

(z + yu)(z + wu) = (z + wu)(z + uy) = 1.

Therefore, zz + gow*y = 2w + goy*w = 1 and wz + y2* = yz + wz* = 0. So
z* — yu is invertible too, since

(2" = yu)(z" — wu) (272" + gow'y) + (-wez” — yz)u

(22 + goy*w)" =1

and, similarly, (z* — wu)(z* — yu) = 1. It follows that the product

(z + yu)(z* — yu) = zz* — goyy"* is also invertible. On the other hand, if z and y
in ZL are such that zz* — goyy* is invertible (with inverse a, say), then = + yu is
invertible, with inverse az* — ayu. Furthermore, the map #: ZL — ZL defined by
(z + yu)d = z* — yu is easily seen to be an involution on ZL. Since r € ZL and rf
commute, if r has finite order, so does r(rf) = zz* — goyy™. It is now clear that

3.1.3 Proposition. An element z+yu is a unit in ZL if and only if zz* — goyy*
is a central unit in ZG. If x 4+ yu has finite order, so does xz* — goyy*.

Let £ — £ denote the natural homomorphism L — L/L’, where L' = {1,s}
denotes the commutator (and associator) subloop of L. This map extends to a
ring homomorphism ZL — Z[L/L'] (we use T to denote the image of r) with kernel
the ideal A(L, L") of ZL generated by 1 — s. Thus, if r = 2 + yu € ZL and ¥ = 0,
then(1+s)r=0,s0(1+s)z=(1+s)y=0;ie., z,y € (1 —s)ZG. Suppose that
T is a trivial unit in the group ring Z[L/L']; i.e., ¥ = %7 or +gu for some g € G.
In the first case, (Z F7) + yu = 0 implies that both z F g and y are in (1 — 5)Z(,
while, in the second case, both z and y F g are in (1 — s)ZG. All this shows

3.1.4 Proposition. Let L = M(G,*,go0) be an RA loop. Suppose r = = + yu,
z,y € ZG, is a unit in ZL such that ¥ is a trivial unit in the group ring Z[L/L').
Then either

(1) z=2xg+(1-8)z,, y=(1-su
for certain elemenis =, and y; in the group ring ZG or
(2) z=(1-8)z;, y==xg+(l—s)yn

for some z,,y, € ZG.

3.1.5 Corollary. Suppose r is a central unit in an alternative loop ring ZL such
that ¥ is trivial. Then r is in the group ring ZG.
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If r is a central unit of finite order in an alternative loop ring, then ¥ is a unit
of finite order in an abelian group ring, so it’s trivial. The corollary says that »r
is in the group ring. Therefore r is trivial because central units of finite order in
a group ring are trivial. This establishes the result more generally for alternative
loop rings.

3.1.6 Theorem. [GP86] Central units of finite order in an alternative loop ring
are trivial.

Now the Cayley loop is an RA loop, hence so also is the direct product of the
Cayley loop with an abelian group, by Corollary 1.5.2. D. A. Norton has shown
that a Moufang loop is of this type if and only if all its subloops are normal [Nor52].
Such a loop is called Hamiltonian. Since all the units in the integral group ring of
the quaternion group @ are trivial or, more generally, in the integral group ring of
Q x E for any elementary abelian 2-group E [Hig40], the following theorem is not
surprising.

3.1.7 Theorem. [GP86] The units in the inlegral loop ring of a Hamillonian
Moufang 2-loop are trivial.

We conclude this section by quoting the extensions to alternative loop rings of
the well-known theorems of G. Higman and S. D. Berman for group rings. Proofs
of both can be found in [GP86]. (A torsion (or periodic) loop is a loop all of whose
elements have finite order.)

3.1.8 Theorem. Suppose L is a torsion loop. Then ZL is an alternative ring in
which all units are trivial if and only if L is an abelian group of ezponent 2, 3, 4
or 6, or a Hamiltonian Moufang 2-loop.

3.1.9 Theorem. Let L be a finite loop. Then ZL is an alternative loop ring
in which all torsion unils are {rivial if and only if L is an abelian group or a
Hamillonian Moufang 2-loop.

3.2. Central units. In this section, we give necessary and sufficient conditions
for all the central units in an alternative (but not associative) loop ring to be
trivial. This is one instance where work in alternative loop rings motivated group
ring research because at the time the main theorem, Theorem 3.2.2, of this section
appeared, the analogous result for group rings was not known. The issue, however,
has since been settled [RS90]. °

We begin with a lemma.

3.2.1 Lemma. If all central units in the integral group ring ZG of a finile group
G are trivial, then all the units in the abelian group ring Z[G/G'] are trivial.
Proof. As an ideal of the semisimple group algebra QG, the ideal A(G,G’) is
a direct summand of QG, thus Q(G) = A(G,G') @ A for some ideal A. Since
A= QG/A(G,G") = Q[G/G"], we have

QG = Q[G/GN®A(G, G).
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Let f be a (central) idempotent of QG such that QG f = Q[G/G’] (and so
QG(1- f) = A(G,G")). Then QG = QGf & QG(1 — f) and so

ZIGCR=IGf® IG(1- f) CQGf & QG(l - f) = QG.

This shows that, as a Z-module, R has rank |G| = rank ZG, so, by an argument
of Sehgal [Seh78, pp. 49-50], the unit group of ZG is of finite index in the unit
group of the ring R. Now let u be any unit in Z[G/G'] and let v € ZG be any
preimage of u under the map QG — Q[G/G’]. Then vf ® (1 — f) is a unit in R, so
v'f @& (1 — f) is a unit in ZG for some t and it’s central because u is central in R
(Z[G/G"] is abelian). By hypothesis, v*f @ (1 — f) is trivial. In particular, it has
finite order, so vf @ (1 — f) is a central unit of finite order in ZG. By the result
of Cohn and Livingstone, this element is trivial, so u is trivial and the lemma is
established. O

3.2.2 Theorem. Suppose L is a torsion Moufang loop and ZL is an alternative
loop ring which is nol associative. Let A denote the cenire of L. Then the central
units in BZL are trivial if and only if all units in ZA and Z[L/L'] are trivial; i.e.,
if and only if both A and L/L' are abelian groups of ezponents 2, 4 or 6.

Proof. Suppose ZA and Z[L/L'] have only trivial units. If r is any central unit
in ZL, then it follows by Corollary 3.1.5 that = is in the group ring ZG. Write
r=r1+r2, where ry € ZA and r2 € }° g 4 agg. Since r is central, r = r*, hence
ro = sr3. On the other hand, since 7 is a trivial unit in Z[G/G"], for some ¢ € G
we have r + g € (1 — s)ZG and hence s(r £+ g) = —(r + g). Remembering that
srg = ry, we obtain (1 + s)ry + 2ry £ (1 + s)g = 0; whence r, = 0. Therefore
r € ZA and, by assumption, all units in this ring are trivial.

Conversely, if all the central units in ZL are trivial, then all units in ZA are
trivial and so A has exponent 2, 3, 4 or 6. (but not 3 since s € A has order 2).
By the Lemma, Z[G/G'] has only trivial units, so G/G’ has exponent 2, 3, 4 or 6
and, since £2 € G for any £ € L and L' = G’, L/L' has exponent 2, 3, 4, 6, 8 or
12. If we eliminate the possibilities of 8 and 12, then it will follow that the units of
the abelian group ring Z[L/L'] are trivial and the theorem will have been proven.
Suppose then L/L’ has exponent 8. Thus, for some g € L, g%, but no lower power,
isin L’. Remember that L' = {1,s}. If g8 = s, g% would be a central element of
order 8 in a group of exponent 2, 4 or 6. This cannot be, so g has order 8 and can’t
be central; hence by Theorem 1.5.9, it’s an element in some nonabelian group H
contained within L with Z(H) = A. Since H' = L', the element § € H/H' has
order 8. But all the central units in ZH are trivial, so, by Lemma 3.2.1, all units
in Z[H/H'] are trivial. Thus H/H' has exponent 2, 3, 4 or 6, contradicting the
fact that g has order 8. So L/L’ cannot have exponent 8. Similarly, it cannot have
exponent 12. d

As a corollary, it is not hard to establish the result which motivated the afore-
mentioned theorem of J. Ritter and S. K. Sehgal [RS90].
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3.2.3 Corollary. Let L be a finite RA loop. Then all central units in ZL are
trivial if and only if, for all z € L and for all j with (§,|L]) = 1, the element 2’
is conjugate to © or to z71.

3.3. Can the torsion units form a subloop? In this section, we summarize
some quite recent work by the authors [GMb]. As we have mentioned, the early
literature on group rings contains several results giving conditions under which
various sorts of torsion units are trivial and hence, obviously, form a subgroup
of the full unit group. It was Parmenter and Polcino Milies who realized the
significance of this latter property [PM78], which motivates this section.

We begin with two lemmas, the first of which is not generally true for groups,
while the second is still an open question in the case of arbitrary groups.

3.3.1 Lemma. Let T denote the set of torsion elements of an RA loop L. Then
T is a normal subloop of L. If L s finitely generated, then T is finile.

3.3.2 Lemma. Suppose L = M (G, *,u) is an RA loop. Then the idempolenis of
ZL are trivial; i.e., equal lo 0 or 1.

Then we show that a lemma of Sehgal’s [Seh78, Lemma V1.3.22] holds also in
the setting of RA loops.

3.3.3 Lemma. Let L be a finitely generated RA loop and T ils normal torsion
subloop. Suppose that QT'= D, ®---® D,, is the direct sum of division rings and
that every idempotent of QT is central in QL. Then
(i) Every unit p € ZL can be written in the form p = 5 dif;, with d; € Dj,
£; € L, and
(i) U(ZL) = [U(ZT)]L.

Finally we put these ideas together to generalize two theorems about group
rings. The first, due to M. M. Parmenter and C. Polcino Milies [PM78], applies
to finite groups. The second, by C. Polcino Milies [Mil81], extends the first to
arbitrary groups. Our theorem makes no assumptions about finiteness.

3.3.4 Theorem. Lel L be an RA loop and T" its torsion subloop. Then the torsion
unils in the integral loop ring of L form a subloop of U(ZL) if and only if T is an
abelian group or a Moufang Hamillonian 2-loop and, for every £ € L andt € T,
- 1tl € (t).

The following corollary is the nonassociative analogue of a lemma of C. Polcino
Milies [Mil81].
3.3.5 Corollary. The torsion unils of an alternative loop ring form a subloop if
and only if they are trivial.

It now becomes apparent that several properties of the loop of units in ZL,
known to be equivalent for groups which are finite [PM78], are always equivalent
when L is an RA loop (finite or infinite).
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As with groups, a loop L is said to be an FC loop if theset [a] = {z~'az | z € L}
is finite. Any RA loop L is an FC loop (since any element £ € L has at most two
conjugates, £ and sf).

A loop L is n-Engel if for any z,y € L, the extended commutator
(...((z,¥),9),-..,y) (with y repeated n times) is the identity. Since commutators
of an RA loop are central, an RA loop is 2-Engel (and hence n-Engel for all n > 2).

3.3.6 Theorem. [GMb] Let L be an RA loop with torsion subloop T'. Then the
following are equivalent:

(i) U(ZL) is an RA loop.
(i1) U(ZL) is FC.
(iii) Z(ZL) is nilpotent.
(iv) U(ZL) is nilpotent of class 2.
(v) [U(ZL)) is a torsion loop.
(vi) [U(ZL)) is a group of order 2.
(vil) U(ZL) is n-Engel for some n > 2.
(viil) U(ZL) is 2-Engel.
(ix) T is an abelian group or a Moufang Hamillonian 2-loop and, for anyt € T
and any ¢ € L, we have 2=tz = t¥'. Moreover, if T is abelian and « € L
is an element that does not ceniralize T, then 2=tz =t~ forallt € T.

4. SoME CONJECTURES OF H. J. ZASSENHAUS

4.1. Group Rings. Let us return for a moment to the isomorphism problem
for group rings. Let ZG denote the group ring of a finite group (& over the ring
Z of rational integers, let (G; denote another group and let #: ZGy — ZG be a
normalized isomorphism. Then, for every element g € GG;, we have that 6(g) is a
torsion unit of augmentation 1 in ZG.

According to the well-known theorems of G. Higman and S. D. Berman dis-
cussed in Section 3, if G is either abelian or a Hamiltonian 2-group, then all
normalized units of finite order are trivial; i.e., they belong to G. Hence, in this
particular case, @ gives, by restriction, an isomorphism #: (; — (G and we obtain
a positive answer to the isomorphism problem.

For any other group G, all we can say is that (() is a subgroup of

normalized units of the same order as G itself. On the other hand, J.A. Cohn
and D. Livingstone [CL65) have shown that any finite subgroup of normalized units
in ZG is a set of independent elements and thus its order is less than or equal to
|G|. (Actually, it can be shown that its order must be a divisor of |(7|.) Moreover,
they have shown that if H is such a subgroup and |H| = |G|, then ZG = ZH. Thus,
it is only natural to be curious about normalized torsion units and, in particular,
about subgroups of normalized units which have order the order of G.

There is a rather obvious way of constructing normalized torsion units. If g
is an element in G and v is a unit in the rational group algebra QG such that
u =+v"lgy € ZG, then certainly « is a normalized torsion unit in Z(;. In the mid
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1960’s, H. J. Zassenhaus suggested that all such units of ZG arise in precisely this
way. He made the following conjecture:

4.1.1 Conjecture (ZC1). Every normalized unit of finite order u € V(ZG) is

rationally conjugate to an element g € G; i.e., there exists a unit ¢ € QG such that
-1

Y luy € G.

There are two stronger versions of this conjecture dealing with subgroups of
normalized units, the first being clearly related to the isomorphism problem and
the second one, a generalization of the first.

4.1.2 Conjecture (ZC2). Let H be a subgroup of normalized uniﬁs in ZG such
that |H| = |G|. Then H is rationally conjugate to G.

4.1.3 Conjecture (ZC3). Let H be any finite subgroup of normalized units in
Z(G. Then H is rationally conjugate to a subgroup of G;.

Clearly, ZC3 implies the other two conjectures and a positive answer to ZC2
will imply a solution of the isomorphism problem. It is also easy to verify that ZC2
implies the conjecture Aut which we discussed in Section 2 and that a positive
answer to both Aut and the isomorphism problem would imply ZC2 (see [Seh93,
p. 207)).

These conjectures have been established for various kinds of groups, although
they remain open in general. All of them have long been known to be true for
nilpotent class 2 groups (see S. K. Sehgal [Seh69]). The most far reaching result
in this direction is a theorem due to A. Weiss [Wei91] which shows that ZC3 holds
for group rings of finite nilpotent groups.

ZC1 was proved for metacyclic groups G = (a) » (z) such that ged(o(a), o(z)) =
1 by C. Polcino Milies, J. Ritter and S. K. Sehgal* [MRS86] and A. Valenti has
shown that (ZC3) holds for a group of the form G = (a)x X, where ged(o(a), | X|) =
1 and X is abelian (see also O. S. Juriaans [Jur]). The book by S. K. Sehgal [Seh93]
contains an exposition of most of the known results on this subject.

An interesting fact is that K. W. Roggenkamp and L. Scott [RSpre] found a
metabelian group of order 26 - 3 -5 .7 which is a counterexample to ZC2 and,
afterwords, L. Klinger [Kli91] found another counterexample with a group of the
same order, but using different methods.

In another direction, it should be mentioned that ZC1 was proved for S by N.
A. Fernandes [Fer87], for A4 by I. S. Luthar and I. B. S. Passi [LP89], and for S5
by I. S. Luthar and P. Trama [LT].

4.2. Loop Rings. Henceforth, we shall discuss the validity of the conjectures of
H.J. Zassenhaus for loop rings of finite RA loops and show that, in this context,
all of them do hold. We begin considering ZC1.

Let z be a normalized unit of finite order in ZL. As was mentioned in the proof
sketched for Theorem 2.2.1, we can find an element g € G such that either:

4Here, o(a) and o(z) denote the orders of a and r, respectively.
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(1) z =g+ 8 + b2u, 61 € A(G)A(G’) and 6,2 € A(G,G"), or
(it) z = (g + 61)u + b2, 6, € A(G)A(G') and 62 € A(G, ().
Using Corollary 3.1.2, it can be shown that the square of every torsion unit in
ZL actually belongs to the centre of L. In fact, we can obtain more information
about these squares.

4.2.1 Proposition. Let z be a normalized unit of finite order in ZL. Then r? =
g% or r? = (gu)? according as z is of the form (i) or (it) respectively.

Proof. Assume that z can be written in the form z = g+ 6; + 6,u as in (i). Then,
it is easy to see that r2 can be written as

r? = g? + 6] + S4u, 8 € A(G)A(G"), & € A(G,G").

Corollary 3.1.2 shows that r? € Z C G, so we must have that 72 = g + §{ and
su = 0. Thus

g7l =148 € GN(1+A(G)A(G)) =1
and so r? = ¢g2. If z is as in (ii), the argument is similar. O

Actually, solving ZC1 now amounts to showing that if z is a normalized torsion
unit such that r? = g2 or r? = (gu)? as above, then z is conjugate, in QL, to either
g or gu respectively. To do so, it is first necessary to show that the problem can be
reduced to the question of conjugacy in the complex loop algebra, as was noticed
in the case of group rings by C. Polcino Milies and S. K. Sehgal [MS84]. Using the
same techniques as in the associative case, it is possible to establish the following,.

4.2.2 Lemma. Lel k C K be infinite fields. Let L be a finite loop whose loop
algebra over k is semisimple and allernative. If two elemenis o, € kL are
conjugate in KL, then they are also conujugate in kL.

Before stating the theorem which gives a positive answer to ZC1, we should
remind the reader that in our present nonassociative context, the composition of
two automorphisms of the form z + r~!zr need not be itself of this form (though
it is still inner, in the sense defined in Section 2.2); hence, one should expect that
the result will look somehow more complicated in this setting. As mentioned above,
we do not prove that a torsion unit z is conjugate to an element g € L, but rather
that both z and g have a common conjugate in QL. We obtain the following.

4.2.3 Theorem. [GM89, Theorem 0.1] Let u be a normalized torsion unit in the
integral loop ring ZL of a finite RA loop L. Then, there exist units 1,72 € QL
and £ € L such that v;'(v7 'uy1)y2 = £.

As noted, in the case of group rings the validity of both the isomorphism con-
jecture and Aut imply that ZC2 also holds. Since the arguments in [Seh93, p.
207] can be easily applied in the alternative case, at this point we also obtain that
ZC2 holds. However, the result will also follow as an immediate corollary from
the fact that an analogue of ZC3 holds.
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The first step in the proof of our main result is to determine the structure of
semisimple alternative loop algebras. Remember (Lemma 2.3.1) that if L is a finite

RA loop, then
_ 1+s 1—3s
QL—QL( s )eaoL( - )

QL(~+2) = Q[L/L] and QL(* =

and the centre of A(L, L’) is

Z(A(L, I')) = Q(Z(G)) (‘ - "‘) .

Exactly the same results hold for the loop algebra KL if we assume that K is a
field whose characteristic does not divide |L]|.

Since L/L' is an abelian group, K[L/L'] is a direct sum of fields. It was shown
in [LM93, proof of Lemma 2.3] that A(L, L’) contains no commutative simple
components. Since, for RA loops, L’ is the associator as well as the commutator
subloop (Theorem 1.5.4) similar arguments show that A(L, L') also contains only
nonassociative components.

More precisely, we can state the following.

where

)= A(L, L),

4.2.4 Theorem. [GMa, Theorem 2.8] The loop algebra of a finite RA loop L
over a field F' of characteristic relatively prime to |L| is the direct sum of fields
and Cayley-Dickson algebras. If L' = {1,s} and w denotes the projection of FL
onto a simple component A of FL, then A is a field if and only if w(s) = 14, the
identity element of A, and a Cayley-Dickson algebra if and only if n(s) = —14.

This gives a good characterization of the loop algebra since Cayley-Dickson
algebras are well understood (see Section 1.2).

The main tool for establishing our result will be, again, the homomorphism
constructed in Section 2.2.

4.2.5 Theorem. If L is a finite RA loop and H is a finite subloop of TU,(ZL),
then there is a one-to-one homomorphism pg: H — L such that

(1) pu(a)=a foralla € HNL;

(ii) if « € H, there ezist units v1,v2 € QL such that v; ' (77 'am1 )72 = pr(a);

and,
(ii) if « € H, then o® = pg(a)® € ZL.

Proof. Part (i) follows from the construction of p ana part (ii) is a consequence of
Theorem 4.2.3. Recalling Artin’s Theorem, that the subalgebra generated by any
pair of elements in an alternative ring is associative, we see that (v~ 'ay)? = a"
for any integer n. Now part (iii) follows because squares of elements in an RA
loop are central. O
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Remember that the unique nonidentity commutator, s, of an RA loop L is also
a unique nonidentity associator (Theorem 1.5.4). Also, by Theorem 1.5.5, for
g,h € L, we have (g,h) = 1 if and only if (¢,h,k) = 1 for all k € L. One can
use Theorem 4.2.5 to show that elements in any finite subloop of normalized units
behave, in the respects just mentioned, like the elements of the RA loop itself.

4.2.6 Corollary. Letl L be a finite RA loop with L' = {1,s} and let H be a finite
subloop of TU(ZL), the set of normalized units of finite order. If o, € H and

(e, 8) # 1, then (a,8) = 5. If o, 8,7 € H and («,B,7) # 1, then (o, 8,7) = s.
Also, if H is not commutative, then Z(H) C Z(L).

The next step consists in showing that finite subloops of normalized units have
homomorphic images in L.

4.2.7 Corollary. Let H be a finite noncommutative subloop of TU,(ZL) and let
pr: H — L be the homomorphism described in the theorem. Then H* C H and
pu commutes with *.

Finally, one can describe this homomorphism in a precise way to obtain an
analogue to ZC3.

4.2.8 Theorem. [GMb, Theorem 1.2] If H is a finite subloop of normalized units
in a (nonassociative) alternative loop ring ZL, then H is 1somorphic to a subloop
of L. Moreover, there exist units v1,%2,...,7 of QL such thal

%R Hn)re) - ) € L

Let H be a finite subloop of TU;(ZL) and let p: H — L be the homomorphism
of Theorem 4.2.5. Set Lo = p(H).

The proof follows different lines depending on the structure of H. To give a hint
of the ideas involved, let us discuss here the case where H is an abelian group.
Then Lg is also an abelian group and it is contained in L. If Ly is not central, it
contains a noncentral element £5. If z is any other element in Ly, since £ox = ¥y,
either z or £oz is central. In the latter case, z = 22(€yz)~ 14, is a central multiple
of £y. It follows that Lo is generated by a set S of central elements and the single
element £y. Now Lo = p(H) and S is fixed elementwise by p by Theorem 4.2.5, so
H is generated by S and the single element £, = p~'(£y). Moreover, there exist
71,72 € QL such that v; ' (77 4om1)72 = o, hence also ;' (77 ' Hy1)72 = Lo
which gives the result. _

The cases where H is either a nonabelian group or a nonassociative loop require

a more involved discussion.
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