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On the Complexity of Linear Programming 

Clovis C. Gonzaga 

Abstract. In this paper we show a simple treatment of the complexity of Linear 
Programming. We describe the short step primal-dual path following algorithm and 
show that it solves the linear programming problem in 0 (foL) iterations, each one 
with a bound of O(n3 ) arithmetic computations. 

1 Introduction 

The first polynomial time algorithm for linear programming was published by 
Khachiyan [5] in 1978, and had a complexity bound of O(n4L) arithmetic compu~ 
tations, where n is the space dimension, and L is the bit length of the input data 
(to be discussed below). This hound was lowered by Karmarkar [4] in a landmark 
paper of 1984, which opened a new field of research now known as "interior point 
methods" . 

Karmarkar's algorithm solves a linear programming problem in O(nL) itera­
tions, each of which includes the solution of a linear system in Rn. The complexity 
of each iteration is O(n3 ) operations, but this bound was lowered by Karmarkar 
to O(n2.5 ) operations by using reinversion techniques, thus achieving an overall 
bound of O(n3 .5L) operations. Not only this complexity bound is lower than 
Khachiyan's , but the resulting algorithm has an excellent performance in practical 
problems. 

In 1986, Renegar [12] described the first algorithm with a complexity bound of 
O( foL) iterations, although still with the same overall complexity as Karmarkar's. 
His approach was based on methods of centers, and followed for the first time 
the central path (to be described below) . In 1987, Gonzaga [1] and Vaidya [14] 
obtained simultaneously algorithms with the complexity of O( n3 L) operations, the 
former by means of the traditional logarithmic barrier function, and the latter by 
extending Renegar's results. 

From then on, many algorithms with O( foL )-iteration complexity were de­
veloped. Primal algorithms followed the three lines mentioned above: potential 
reduction methods using Karmarkar's potential function, methods of centers fol­
lowing Renegar's approach, and primal path following methods based on the barrier 
function. 

Starting in 1987 with a paper by Kojima, Mizuno and Yoshise [7], the scene 
was gradually dominated by primal-dual algorithms. These methods are elegant, 
efficient, and are easily extended to a large class of linear complementarity prob­
lems and to quadratic programming. Primal-dual algorithms with a complexity 
of O(foL) iterations were first obtained by Kojima, Mizuno and Yoshise [8] and 
independently by Monteiro and Adler [11] . 
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The evolution ofthe area is described in the surveys by Todd [13], by Gonzaga 
[2] and by den Hertog [3] . In this paper we present the basic short step primal-dual 
path following algorithm in a setting very similar to that of [8, 11], and show how 
the complexity bound is proved. 

Notation. Given a vector z, d, t/J, the corresponding upper case symbol denotes 
the diagonal matrix X, D, ~ defined by the vector. The symbol e will denote the 
vector of ones, with dimension given by the context. 

We denote componentwise operations on vectors by the usual notations for real 
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. denotes 
the vectors with components UiVi, UdVi' etc .. This notation is consistent as long 
as componentwise operations are given precedence over matrix operations. Note 
that uv == Uv and if A is a matrix, then Auv == AUv, but in general Auv i= (Au)v. 

2 Complexity issues 

In this section we study a feasible linear programming problem with integer data. 
We will show that instead of computing an exact optimal solution of the problem, 
it is enough to find a feasible point with cost sufficiently near its optimal value, 
and then to perform a rounding procedure. 

The primal linear programming problem is: 

(LP) 
mmUDlze 

subject to b 
z > 0, 

where cERn, bERm and A E Rmxn is a full-rank matrix. 
Assume that all data are integer (or equivalently rational). 
Define the number I as the total length of the input in binary representation, 

that is, the summation of the number of bits used by all entries in A, band c. 
The significance of this number is the following: no operation containing products 
and sums of data without repetitions can result in a number greater than 2'. The 
determinant of a matrix is dominated by the product of the column norms, and 
hence I det MI ~ 2' for any square submatrix M of [A I b]. 

Define L = 21 + n + 1. 
The next lemma shows that 2-L is indeed a very small number. 

LelllID.a 2.1 Let v be the cost of an optimal solution of (LP). If z is a vertex of 
the feasible set, then: 
(i) For i = 1, ... , n, either Zi = 0 or Zi > 2-L . 

(ii) Either cT Z = v or cT z > V + 2-L . 

If the feasible set is bounded then for any feasible point x, 
(iii) cT x ~ 2L. 
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Proof. Let x be a vertex of the feasible set. The system Ax = b can be partitioned 
as 

where XB is a vector made of the positive components of x and AB is a matrix 
with the corresponding columns of A. Then XN = 0 and the system can be written 
as ABXB = b. 

If x is a vertex then the columns in AB are linearly independent. Assume that 
AB is square (or eliminate redundant equations to make it square). Then the 
solution of the system is given by Cramer's rule, for i E B: 

where 6. = det AB and 6.i is the determinant obtained by substituting b for the 
column Ai. 

Let h and Ie be respectively the total number of bits used respectively by {A, b} 
and by c. 

(i) is true because 6.i is integer and 16.1 ~ 2'1 < 2L. 

(ii) Let x· be an optimal vertex. By the process above, we have either xi = 0 
or xi = 6.:/6.., with 6.i integer and 6.. ~ 2'. It follows that 6.6.. cT (x - x·) is 
integer. Hence, either cT(x - x·) = 0 or cT(x - x·) ~ 1/6.6.· ~ 2- 2' > 2-L. 

To prove (iii), consider first the vertex x as above and i E B. Since l6.i l ~ 2'1 
and 6. # 0 is integer, Xi ~ 2'1 . It follows that eT x ~ n2'1 ~ 2L, and since 
CiXi ~ 2'1 +'c = 2' , cT X ~ n2' ~ 2L. This establishes (iii) for all vertices of S. 
When S is bounded, any feasible point can be expressed as a convex combination 
E jeJ AjXj of vertices, where Aj ~ 0 for j E J and E jeJ Aj = 1. It follows that 
cT x = EjEJ AjCT x j ~ 2L E jeJ Aj = 2L, ~ompleting the proof. 0 

This lemma implies that if we find a vertex with ~ost smaller than 2-L then it 
must be an optimal solution; 

We now state without proof a known result (see [9]): given any feasible point 
x there exists a process called "purification of x" that finds with no more than 
O( n3 ) computations a vertex i such that cT i ~ cT x. 

The purification algorithm is similar to the simplex method, reducing one vari­
able to zero in each iteration by a pivoting operation, so that no more than n - 1 
pivots are needed to reach a vertex. 

Finally, given x such that cT x ~ V + 2-L , where v is the cost of an optimal 
solution, the purification must result in an optimal vertex. 
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3 The primal-dual problem 

We shall consider the primal and dual linear programming problems 

mlnlIDlZe cTz 

(LP) subject to Az b 
z > 0, 

and 

maxIIDlZe bTy 

(LD) subject to ATy+s = c 
s > 0, 

where cERn, bERm and A E Rmxn is a full-rank matrix. 
The following fact will be frequently used: given a primal feasible solution z 

and a dual feasible solution (y, s), the duality gap between these solutions is given 
by 

ZT S = .cT Z - bT y . 

This is seen by direct substitution: zT s = zT (c - AT y) 
cTz _ bTy. 

Optimality conditions. A feasible primal-dual solution (z, y, s) is optimal if and 
only if the duality gap is zero. Note that since in this case z, s ~ 0, zT S = 0 if and 
only if zs = 0 (using componentwise multiplication). This leads to the following 
optimality conditions (which coincide with the Karush-Kuhn-Tucker conditions) 
for the primal and dual problems: 

zs 0 
Az = b 

ATy+s c 
(1) 

z,s > O. 

Remark on notation. Since A has full rank by hypothesis, the vector y is 
uniquely determined by z and s in the feasibility equations. Thus, we can refer to 
a primal-dual solution simply as (z, s), instead of (z, y, 8). 

We define the feasible set for (1) by 

F = Hz, 8) E R2n I Az = b , AT Y + s = c, y E Rm , Z, 8 ~ O}, 

and the set of interior points by 

FO = Hz,s) E F I Z,8 > O}. 

And now we present our main assumption for this paper. We shall postpone 
the discussion of this assumption to the end of this section, after presenting one 
more hypothesis. 
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Assumption 1. FO =F 0. 

The central path. Primal-dual algorithms work directly with the optimality 
conditions. Solving (1) is difficult, and one source of difficulty is the combinatorial 
nature of the complementarity condition xs = 0: one must detect which of each 
pair of variables (Xi, Si) will be null at an optimal solution. 

The essential feature of interior point path following methods is to work with 
the following perturbed conditions, where" E R, " > 0 and as usual, e = [1 . . . 1]T: 

xs "e 
Ax = b 

ATy+s c 
(2) 

x,s ~ O. 

This system has a unique solution (x(,,), s(,,» for any" > 0, and defines a smooth 
curve" > 0 1-+ (x(,,) , s(,,» called central path. The central path runs through the 
set of interior points, keeping a comfortable distance from the non-optimal faces 
of F, and ends at an optimal solution (x·, s·) known as the central optimum. For 
proofs of these facts, see for instance [6]. 

Adding the equations Xi(,,)Si(") = ", we see that x(,,)T s(,,) = n". Taking 
xT s as an objective to minimize, it is enough to find (approximately) points on 
the central path with " -+ O. This is what path following algorithms do, by 
following a homotopy approach as in the model below: 

Algorithm 3.1 Data: f> 0, ,,0 > O. 

k:= O. 

REPEAT 

Find approximately (x(,,"), s(,,"». 

Choose ,,1:+1 < ,,". 
k := k + 1. 

UNTIL ,," < f. 

The proximity measure. The word 'approximately' in the algorithm model 
above will be our concern now. Given" > 0, we want to find (x, s) such that 
xs/" = e. The deviation of this condition for a given feasible pair (x,s) is given 
by the proximity measure 

6(x,s , ,,) = II; -ell· 
Now we show that if 6(x, s, ,,) is small, then the duality gap xT s is again well 
related to " for such nearly central points. 
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Assume that 6(z,s,JJ) E (0,1). Then zS/JJ == e + p, where IIpll = 6(z,s,JJ). 
Pre-multiplying this expression by eT , we obtain 

(3) 

Path following methods work with nearly central points. This becomes clear if 
we define the following neighborhood of the central path: 
Let a E (0,1) be given (usually taken as a = 0.5). Our neighborhood of the 
central path will be defined as 

Ta = U {(z, s) 16(z, s, 1") ~ a}. 
IAE(O,oo) 

The algorithms will generate sequences in Ta. 

Assumption 2. An initial point (zO, sO) and a value 1"0 < 2L are available so 
that 6( zO , so, 1"0) ~ 0.5. 

Remarks on the assumptions. The assumptions 1. and 2. simplify the theory 
very much, but they are not necessary. The most general setting of the linear pro­
gramming problem is the following: given the problem (1), either find an optimal 
solution or certify that no one exists. Note that the problem can be infeasible. 

A paper by Ye, Toddand Mizuno [15] shows how to modify the statement of a 
problem with the introduction of some extra variables, so that the resulting equiv­
alent problem satisfies both our assumptions, and has the following property: an 
optimal solution always exists (as a consequence of the assumptions), and charac­
teristics of the optimal solutions allow us either to retrieve an optimal solution for 
the original problem, or to certify that no optimal solution exists. 

4 The Newton step 

Each iteration of the algorithm above starts with an interior point (z, s) and a 
value of 1", and tries to approach (z(JJ), s(JJ». Ideally, we want to find 

z+ = z + U l s+ = s + v 

such that (z+, s+) E F and z+s+ = JJe. 
The direction (u, v) must be feasible, i.e, A(z + u) = Az and for some y+, 

AT y+ + s + v = AT Y + s. This is equivalent to saying that u E N(A) and 
v E n(AT), where N, n denote respectively the null space and the range space of 
a matrix. 

The Newton step solves this approximately by linearizing (2). The linearization 
is straightforward, and leads to the following system, which has a unique Solution: 

zv + su = -zs + JJe 
u E- N(A) 
v E n(A) 

(4) 
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In what follows we shall prove what seems to be the most important result in 
interior point methods: we prove that in the neighborhood Ta , Newton's method 
is extremely efficient. The theorem will be stated with a little more generality than 
needed in this paper. 

This proof will use the following result on vector norms, due to Mizuno [10]. 

Lemma 4.1 If u, vERn are such that uT v ~ 0, then 

1 2 lIuvll :::; v'B II'll + vII . 

Theorem 4.2 Given (z,s) E F and J.l > ° such that 6(Z,8,J.l) = 6 < 1, let 
(Z+,8+) be the result of a Newton step (4) from (Z,8). Then 

62 
6(z+ 8+ IL) < (5) 

, ,,- - v'B(1 - 6) 

and for any A E [0,1]' 

6(z + AU, 8 + AV, J.l) :::; (1 - A)6(z, s, J.l) + A26(z+, s+, J.l) . (6) 

Besides this, if 6:::; 0.7, then for any A E [0,1] the point «z + AU), (s + AV» is an 
interior solution. 

Proof. We start by scaling the Newton equations to obtain a simpler form. 
Let dE Rn be a positive vector, and let us do a change of variables (a scaling) in 
the New~on equations by setting 

d - d- d-1- d-1-Z = z, u = U, 8 = S , v = v. 

Note that xs = Z8 and uv = uv. The system (4) becomes 

xv + su -xs + p.e 
u E N(AD) 
v E n(DAT). 

Now we choose d = .jZ/8. It follows that x = s = ..;xs, and the first equation in 
the system (4) can be written as 

_ _ p. xs 
U + v = --=-( - - e). 

Z p. 
(7) 

We know that Ilx2/p. - ell = IIzs/p. - ell = 6 and hence for each component i = 
1, ... , n, IxU p. - 11 :::; 6. It follows that xU p. ~ 1 - 6, and consequently for 
i = 1, .. . ,n, 

p. 1 
-<-­x; - 1- 6· 
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Using this result and (7), we conclude that 

lIu + vll2 ~ 1 ~ 6\\ ~ - el\2 = IJ 1 ~ 6' (8) 

Now we establish a bound on the proximity of points along the direction (u, v) . 
We have: 

(x + AU)(S + AV) = xs + A(XV + su) + A2UV 
(1 - A)XS + AlJe + A2UV, 

using (4). It follows that 

(x + AU)(S + AV) _ e = (1- A)(xS _ e) + A2~. 
IJ IJ IJ 

In particular for A = 1, 

and we get for A E [0,1]' 

6(x + AU, S + AV, IJ) ~ (1 - A)6(x, s, IJ) + A26(x+, s+, IJ), 

establishing (6). 
Now we use Lemma 4.1. Since U E N(A) and v E 'R.(AT), uTv = uT V = 0 and 

hence 
lIu+ vll2 

lIuvlI= lIutill ~ v'8 

Merging this with (8), we conclude that 

6 x+ s+ - - < II uv II 62 
( , ,IJ) - IJ - v'8(I- 6)' 

proving (5). 
Now we establish the assertion on feasibility. Since (u, v) is a feasible direction 

. by construction, all that remains to be proved is that the segment {(x + AU, S + 
AV) I A E [0, In does not touch the boundary of R+. . Calculating (5) for 6 ~ 0.7, 
we obtain 6(x+, s+, IJ) < 1, and it follows from (6) that for A E [0,1], 6(x + AU, S+ 
AV, IJ) < 1. 

Assuming by contradiction that for some X E [0,1] and some i = 1, ... , n, either 
Xi + XUi = ° or Si + XVi = 0, we get 

C( '\ '\) I (Xi + XUi)(Si + XVi) - 11- 1 a X + AU, S + AV, IJ > - . 
- IJ 

This contradicts the last inequality above, completing the proof. o 
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This means that Newton's method is very efficient for solving (2) in the sense 
that it reduces the proximity measure quadratically in a large region. We showed 
a little more: not only the complete Newton step is efficient, but the proximity 
falls continuously along the Newton direction. 

5 The short step algorithm 

Now we describe the short step path following algorithm and prove that it solves 
problem (1) in O(..fiiL) steps, each one consisting of a Newton step. We specify 
the procedures in the homotopy model above. 

Algorithm 5.1 Data: t> 0, (ZO, SO) E Tal 110 E (0, 2L) 
with 6(zO, so, 1l0) ~ 0.5. . 

k:= O. 

REPEAT 

Set z := zll:, S := sll: , Il := Illl: . 

Compute the Newton step (u,v) by (4), and set 

Set Ili:+l := (1- ~)Il. 
k := k + 1. 

UNTIL Illl: < t. 

Lemma 5.2 Algorithm 5.1 generates a sequence of feasible iterates, and for all 
k = 0,1,2, ... we have c5(zll:, sll:, Illl:) ~ 0.5. 

Proof. The result is true for k = O. Assume that for some k = 0,1, ... , (zll:, sll:) is 
feasible and 6(zll:, sll: , Illl:) ~ 0.5. We must prove that in this iteration (z+, s+) is 
feasible and 6( z+ , s+ , Ili:+l) ~ 0.5. 
From Theorem 4.2, after the Newton step with Il = Illl:, (z+, s+) is feasible and 

( + +) 0.25 
6 z , s , Il ~ 0.5..;s < 0.2. 

We must show that 
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Ilz+;+ - (1- ~)ell < Ilz+;+ - ell + II~ell 
6(z+, s+, 1') + 0.2 

< 0.4 

< 0.5(1- ~), 

because 1- 0.2/vn 2:: 0.8, completing the proof. o 

The short step algorithm is obviously not practical, but it gives an immediate 
proof of polynomiality, as follows. 

Theorem 5.3 Algorithm 5.1 with f = 2-2L stops in O(vnL) iterations, with a 
primal-dual pair (i, s). A purification from i results in an optimal primal vertex. 

Proof. By construction, the algorithm gives 

k < (1 _ 0.2.) k 0 
1'- vn 1', 

and hence 

log (::) $ klog (1- ~) $ -0.2Jn, 

since log(1 - A) $ -A for A E (0,1). Since 1'0 $ 2L and at all iterations jJk 2:: f = 
2- 2L , it follows that 

2-2L 
k $ -5vn log 2L $ 15 vnL log 2. 

This proves that k = O(vnL). Using (3) and the stopping rule of the algorithm, 
the resulting point (x, s) satisfies 

The analysis in section 2 ensures that the purification from x results in an optimal 
vertex bec~use cT X - V $ iTs , completing the proof. 0 
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