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Units of Group Rings and Their Group Identities 1 

Antonio Giambruno 

Abstract : This paper surveys recent results concerning 
group rings KG whose group of units satisfies a group iden­
tity. For torsion groups we present a solution of a conjecture 
of Hartley relating the group identities of the group of units 
of KG to the polynomial identities satisfied by KG . 
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1 Introduction 

Let K be a field , G a group and KG the group algebra of Gover K. It is in general 
a difficult problem to describe U(KG) , the group of units of KG . Here we want 
to survey on the progress recently made on the description of KG in case U(KG) 
satisfies a group identity. 

We recall some definitions. Let X = {2:1' 2:2, ... } be a countable set, F the 
free group on X and K {X} the free algebra on X. Recall that a group U is said 
to satisfy a group identity ifthere exists a nontrivial word w = w( Xl, . .. Xn) E F 
such that w( U1, ... , un) = 1 for all U1, ... , Un E U. Also, a non-zero polynomial 
f(x1 ," " xn) E K {X} is a polynomial identity for a K-algebra R if f(r1,"" rn) = 
o for all r1, .. . ,rn E R . 

We shall address ourselves to the following general questions: 1) are the group 
identities satisfied by U(KG) and the polynomial identities satisfied by KG some­
how related? 2) Can we characterize those group rings whose group of units 
satisfies a group Identity? 

Now, the group algebras satisfying a polynomial identity have been completely 
described . Recall that a group is called p-abelian if its derived group is a finite 
p-group. The following theorem holds 

Theorelll 1 1) (Isaacs-Passman, [17, Corollary 3.8)} If charK = 0 then KG 
satisfies a polynomial identity if and only if G contains an abelian subgroup of 
finite index. 

2) (Passman, [17, Corollary 3.10)} If charK = p > 0 then KG satisfies a 
polynomial identity if and only if G contains a p-abelian subgroup of finite index. 

The answer to question 1) above is easily seen to be negative in general. In 
fact , in one direction, if KG satisfies a polynomial identity then one cannot expect 
in general U(KG) to satisfy a group identity. To see this , take G to be any finite 
non abelian group and K a field not algebraic over a finite field; if charK = 0 
or charK = p > 0 and p A o(G) , then Wedderburn's theorem implies that for 
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some noncommutative finite dimensional simple algebra A the group of units of 
A, U(A), is a homomorphic image of U(KG). Since U(A) contains a free group 
of rank> 1, (see [10]) it follows that U(KG) cannot satisfy any group identity. 

In the other direction , if U(KG) satisfies a group identity, can one expect KG 
to satisfy a polynomial identity? Also in this case the answer is easily seen to be 
negative. In fact, if G is an ordered group, it can be shown (see [21, Proposition 
1.6]) that KG has only trivial units i. e., U(KG) = ±G.Now, since every torsion 
free nilpotent group can be ordered, it follows that U(KG) = ±G and, so, U(KG) 
satisfies a group identity. But it is easy to exhibit a torsion free nilpotent group 
not satisfying the previous Theorem 1; hence KG satisfies no polynomial identities 
in this case. 

We should remark that the above questions can be formulated for group rings 
RG where R is any ring; some results have been obtained in this setting; anyway 
in what follows we shali restrict ourselves to the case when R = K is a field or 
R = 'll is the ring of integers. 

2 Some special group identities 

In the past years characterizations have been obtained of group rings whose group 
of units satisfies a specific group identity; here we give a taste of these results by 
stating some theorems that characterize group rings whose group of units is either 
nilpotent or solvable. Most of these results are well known and can be found for 
instance in [21] . Other theorems of the same flavor include for instance results of 
Cliff and Sehgal [4] and Coelho [5] where a group identity of the form (xf, X2) was 
considered. 

The case when U(KG) is nilpotent was solved for finite groups by Bateman and 
Coleman in [2] and in the general case by Khripta in [13] and Fischer, Parmenter 
and Sehgal in [7] . Here we shall state their theorem only in the case when K is 
an infinite field. Let us denote with T(G) the set of torsion elements of the group 
G. 

Theorem 2 If charK = p > 0 and G has a central element of order p then 
U(KG) is nilpotent if and only ifG is nilpotent and G1 is a finite p-group. In all 
other cases U (K G) is nilpotent if and only if T( G) is a central subgroup. 

The corresponding characterization for integral group rings is due to Polcino 
Milies [19] for finite groups and to Sehgal and Zassenhaus in [23] for the general 
case. This theorem can be formulated in the following way 

Theorem 3 U('llG) is nilpotent if and only if G is nilpotent, every subgroup of 
T( G) is normal in G and one of the following holds: 

1. T(G) is central in G; 
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2. T(G) is an abelian 2-group and for all x E G, t E T(G) there exists t: 

t:(x) E {I, -I} such that x-1tx = tf; 

3. T(G) is a Hamiltonian 2-group. 

The now turn to the case when U(KG) is solvable. The result proved in this 
case is for finite groups and is due to Bateman [1] (see also [3] and [16]). We state 
the theorem for fields of characteristic i- 2,3. 

Theorem 4 Let G be a finite group. If charK = 0, U(KG) is solvable if and 
only if G is abelian. If charK = p > O, p i- 2,3, U(KG) is solvable if and only if 
G' is a p-group. 

The corresponding result for integral group rings holds for general groups and 
is due to Sehgal [21] . 

Theorem 5 If U('llG) is solvable then 

1. T(G) is a subgroup ofG which is abelian or a Hamiltonian 2-group; 

2. every subgroup of T( G) is normal in G. 

The converse holds provided G is a solvable group and G /T( G) is nilpotent. 

3 Torsion Groups 

The examples given in the introduction seem to leave little room for positive 
results concerning question 1) in general; nevertheless for torsion groups Hartley 
made the following 

Conjecture. If G is a torsion group and U(KG) satisfies a group identity then 
KG satisfies a polynomial identity. 

The first positive results were obtained in the early 80s by D. S. Warhurst, c 
student of Hartley, in her Ph .D. thesis [24]; she studied some special cases wher 
G is a p-group and K has characteristic p. Another approach in this setting wa: 
suggested by Menal [15] . 

Goncalves and Mandel in [11] characterized group algebras of torsion group: 
over an infinite field for which U(KG) satisfies a semi group identity, proving thi: 
way Hartley's conjecture in the case of semigroup identities. Recall that if Wl, W: 
are distinct words of a free semigroup, then Wl = W2 is a semigroup identity for, 
group U if it holds for every substitution of the variables by elements of U. Clearl: 
semigroup identities are special instances of group identities and a result of Malee' 
[14] implies a sufficient condition for a group to satisfy a semigroup identity. A 
a consequence, nilpotent-by-finite groups satisfy a semi group identity. 

Another result in [11] related to this conjecture is the following 
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Theorem 6 Let K be an infinite field, G a torsion-generated group and Zits 
center. If U(KG) satisfies a semigroup identity, then 

1. if charK = 0, G is abelian; 

2. if charK = p > 0, G/Z is a p-group of bounded exponent. 

In the setting of semigroup identities and integral group rings we have to record 
the following theorem of Dokuchaev and Goncalves [6]. We say that a group G 
satisfies a semigroup identity-by-torsion if G is an extension of a group satisfying 
a semigroup identity by a torsion group. 

Theorem 7 If'lZG satisfies a semigroup identity-by-torsion and T( G) is a sub­
group of G , then every subgroup ofT( G) is normal in G and T( G) is either abelian 
or a Hamiltonian 2-group. 

Hartley 's conjecture has been recently proved over an infinite field for semiprime 
group algebras by Giambruno, Jespers and Valenti in [8] and in the general case 
by Giambruno, Sehgal and Valenti in [9] . 

For a group G, let tjJ(G) denote the FC-subgroup of G . 

Theorem 8 Let K be an infinite field. If G is a torsion group and U(KG) 
satisfies a group identity, then KG satisfies a polynomial identity. 

Proof Let N be the sum of all the nilpotent ideals of KG: The proof is 
essentially divided into three cases: 1) N = 0, i. e., KG is semiprime; 2) N =I 0 
is nilpotent j 3) N is a nil non-nilpotent ideal. Now, case 1) will be treated in the 
next section . By taking the quotient of G with the p-part of its FC-subgroup , case 
2) can be deduced from case 1) . We give the proof of case 3) . 

Suppose that there exists a nil non-nilpotent ideal I of KG . Let t be an in­
determinate and consider K {X}[[t]] the power series ring over the free algebra 
K{X}. For any n , the elements 1 + xlt, ... , 1 + xnt are units of K{X}[[t]] and 
they generate a free group of rank n . Hence, if W = W(XI , ... , xn) is the group 
identity satisfied by U(KG) , w(l +Xlt , ... , 1 +xnt) =I 1. By writing out explicitly, 
we then obtain an expression of the form 

LPi(XI , . .. , xn)t i =I 0, 
i~l 

where for i ~ 1,Pi(XI, .. . ,xn ) E K{X} . 
Since the above expression is non-zero, there exists m ~ 1 such that 

Pm(XI , . .. , xn) =I OJ notice that Pm(XI, ... , xn) E K {X} is a homogeneous poly­
nomial of degree m . 

Let now A E K .and rl , . .. , rn E Ij the elements 1 + riA are invertible in KG 
with inverse 
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It follows that if we now evaluate W(Xl, ... , Xn) on the elements l+rlA, . . . , l+rnA 
we get 

k 

L:Pi(rl, ... , rn)Ai = 0, 
i=l 

for some k 2: 1 and p,(rl, ... , rn) = 0 for alii> k. Now, since K is an infinite 
field, a Vandermonde determinant argument implies that Pl(rl, .. . , rn) = ... = 
Pk(rl, ... , rn) = O. Thus Pm(rl, ... , rn) = 0 in any case. 

We have proved that Pm(Xl , . .. , xn) is a polynomial identity for the ideal 
I. But then by [20] I satisfies a multilinear polynomial identity f(xl, ... , xm) . 
Since I is not nilpotent there exist elements aI, ... ,am E I such that al ... am f:. 
o. It follows that f(alxl, ... , amxm) is a non-degenerate multilinear generalized 
polynomial identity for KG (see [17, pag 201]). But then by a theorem of Passman 
[17, Theorem V.3.15], [G : <p(G)] < 00 and 1 <p(G)' 1< 00. The proof is now 
completed by showing that <p( G)' is a p-group where P =char K and then by 
applying Theorem 1. 0 

Actually in [9] it was proved that if G is torsion and KG is semiprime (for 
instance if charK = 0) then a group identity in U(KG) forces G to be abelian. In 
[18] Passman has pushed further the results in [9] obtaining a characterization of 
the group algebras whose unit group satisfies a group identity. The final theorem 
is the following (compare with Theorem 4) 

Theorem 9 Let KG be the group algebra of a torsion group G over an infinite 
field K . 

1. If charK = 0, U(KG) satisfies a group identity if and only irG is abelian. 

2. If charK = p. > 0, U(KG) satisfies a group identity if and only if G has a 
normal p-abelian subgroup of finite index, and G' is a p-group of bounded 
period if and only if U(KG) satisfies (x, y)pk = 1 for some k 2: o. 

4 The general case 

The following result concerning the group of units of a general ring was proved in 
[8] 

Theorem 10 Let R be an algebra over an infinite commutative domain and sup­
pose that the group of units U(R) satisfies a group identity of degree d. Then there 
exists a positive integer m = m(d), such that if a, b, c E Rand a2 = bc = 0 then 
bacR is a nil right ideal of R of exponent bounded by m. 

An easy consequence of this theorem is the following 

Corollary 11 Let R be a semiprime algebra over an infinite commutative domain 
A. IfU(R) satisfies a group identity then every idempotent of A-lR is central. 
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Recall that semiprime group algebras were characterized by Passman (see [17, 
Theorem 2.12 and Theorem 2.13]): if charK = 0, KG is always semiprime; if 
charK = p > 0, KG is semiprime if and only if ¢i(G) is a p'-group. 

The following theorem [8] can now be easily deduced (compare with Theorem 3 
and Theorem 5) . 

Theorem 12 If U('llG) satisfies a group identity then 

1. T( G) is a subgroup of G which is abelian or a Hamiltonian 2-group; 

2. every subgroup ofT(G) is normal in G. 

The converse holds provided G/T(G) is a nilpotent group. 

Proof Let g E T(G) be of order n; by the previous corollary the element 
(1+g+g 2 +- . +gn-l )/n is a central idempotent of the rational group algebra <QG. 
It follows that the cyclic group generated by g is normal in G. This proves 2) and 
T(G) is either an abelian or a Hamiltonian group . In case T(G) is a Hamiltonian 
group, then by applying [12, Theorem 1] to a finite non-abelian subgroup ofT(G), 
it follows that T(G) must be a 2-group . 

To prove the converse, since G/T(G) is nilpotent, as in [21, Theorem VI 4.8] 
it follows that U('llG) = U('llT(G))G . Since the units of the integral group ring 
of a Hamiltonian 2-group are trivial, the result follows. 0 

The corresponding result for semiprime group algebras KG was proved in [8] 
and [9]; for simplicity we restrict ourselves to the case of characteristic different 
from 2. 

Theorem 13 Let K be an infinite field, charK :f. 2. If KG is semiprime and 
U (K G) satisfies a group identity, then T( G) is an abelian group and 

1. If charK = 0, every subgroup ofT(G) is normal in G. 

2. If charK = p > 0, every p' -subgroup of T( G) is normal in G. 

Proof Let g E T(G) be of order n and suppose, in case charK = p > ° that 
p) n. As in the previous proof we deduce that {g}, the cyclic subgroup generated 
by g, is normal in G. This proves 1) and 2) . 

We are left with proving that T(G) is abelian. If charK = p, the p'-elements 
form a subgroup Q of G. To simplify the terminology, in case charK = 0, we write 
T(G) = Q. Since every subgroup of Q is normal, Q is abelian or Hamiltonian. If 
Q is Hamiltonian, then Q and, so, G would contain H, the quaternion group of 
order 8. But K H has a summand which is either a quaternion division algebra 
or the algebra of 2 x 2 matrices over K. By [10] then U(KG) would contain a 
free group of rank> 1, which is impossible. Thus Q is abelian. In characteristic 
zero this says that T( G) is abelian and we are done. Thus we may assume that 
charK = p > 0. 
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Let now g, h E T( G) be two p-elements and let 

h = 1 + h + h2 + ... + ho(h)-l. 

Since 1 - g is nilpotent and h(1- h) = 0, by [9, Lemma 2.1] h(1- g)(l - h) = o. 
Hence hgh = hg and it follows that for some i > 0, g = high and, so, ghg- 1 = h-i . 

This says that 
P = {g E G I o(g) = pk, for some k} 

is a subgroup of G and every subgroup of P is normal in P. Thus P is abelian or 
Hamiltonian. Since P is a p-group and p # 2, P must be abelian. 

Take now g E Q and h E P. Since (g) <I G, it follows that H = (g, h) is a finite 
subgroup of G. By [9, Lemma 2.3] H is p-abelian, so the commutator (g, h) is a 
p-element in (g). Hence (g, h) = 1 and gh = hg. It follows that T(G) = PQ is 
abelian. 0 
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