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Automorphisms of free groups. Let F = F, = < 21,22,...,20 >
be a noncyclic free group freely generated by aset X = { z;,25,...,2, }, n >
2. Then every endomorphism of F' can be defined by prescribing the image set
W = { wy,ws,...,w, } of its respective generators. We denote by End(F) the
semigroup of all endomorphisms of F. An element € End(F) may then be
specified by:

n={2z1 —w,z3 > wa,...,Tn — wp }.
If an endomorphism 7 = { ; — wy, 23 — wy, ..., Ty — Wy, } is such that the
image set { wy, ws,...,w, } is also a basis of F then 7 defines an automorphism

of F. We denote by Aut(F) the group of all automorphisms of F. An element
a € Aut(F) may then be characterized as:

a={z3 > w,z3 > wWz,...,Tn — Wy },
where { wy,ws,...,w, } is a basis for F.

Theorem ( Nielsen, 1924 ). Let F = F, = < z1,23,...,2n >, n > 2, be a
free group. Then Aut(F') can be generated by the following four automorphisms
( three,if n=2): =

ay={zy > z3,T3 = 23,...,T5p = T1 };
az={z1 > z3,22 > 21,2, >z, 1 £ 1,2 )
as={z1 -z L zio,i#Fl)
ag={z, > 122,z >z, # 1}
[Remark. If n > 4, then Aut(F) can be generated by a set of two automorphisms
( B. H. Neumann, 1932 ) ].

Consider the natural homomorphism u : Aut(F) — Aut(F/F’). The kernel
of this homomorphism consists of all those automorphisms of F' which induce
identity automorphism modulo the commutator subgroup F’ of F. These are the
so-called IA-automorphisms of F. We denote by IA-Aut(F) the subgroup of all
IA-automorphisms. Elements of IA-Aut(F) may be identified as
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a={xz — z1dy,z9 — z2dz2,..., 2y — Tpdy, },d; € F',

such that { z;dy,z2d2,...,2ndn } is a basis of F. An inner automorphism of
F is clearly an IA-automorphism. We denote by Inner-Aut(F') the subgroup of
inner automorphisms of F'. The centre of F' is trivial, so Inner-Aut(F') = F. The
following inclusions of normal subgroups of Aut(F') are now clear:

F = Inner-Aut(F) < TA-Aut(F) < Aut(F).

Since automorphisms of a free abelian group of rank n can be identified with
n X n invertible matrices over the integers, it follos that

Aut(F3)/ IA-Aut(F;) = GL(2, Z).

When F is of rank 2, then IA-automorphisms and Inner-automorphisms co-
incide ( Nielsen 1924 ) [ for proof see, for instance, Lyndon and Schupp ( 1977 ) ].

Remarks. The following additional comments are of general interest.

(1) ( Bachmuth, Mochizuki and Formanek 1976 ). If F is free of rank 2 and
R is a normal subgroup of F contained in F’ such that the integral group
ring Z(F/R) is a domain then Inner-Aut(F/R’) = IA-Aut(F/R') . The case
R = F' was proved earlier by Bachmuth ( 1965 ) [ see Gupta ( 1981 ) for an
alternate proof ].

(i1) ( Meskin 1973 ). While (? _11) in GL(2,Z) is of order 6, Aut(F3) does
not contain any element of order 6.

[ Note that every finite subgroup of Aut(F,) is embedded in GL(n, Z)].
(iii) ( Magnus 1934 ). IA-Aut(F) is generated by a finite set of automorphisms:

Qijk = { Ty — 3;‘[2.{,:0*,],32; — x4, :}é 1 }I
for all 7, j, k such that either j =14, or j < k and i # j,i # k.

(iv) ( Baumslag-Taylor 1968 ). IA-Aut(F,,)/ Inner-Aut(F,) is torsion free for all
n>3.

(v) ( Baumslag 1968 ). Aut(F,) is residually finite.
(vi) ( Grossman 1974 ). Aut(F,)/ Inner-Aut(F,) is residually finite.
(vii) ( Formanek-Procesi 1990 ). Aut(F,) is not linear for n > 3.

[ Magnus and Tretkoff ( 1980 ) proved that Aut(F3) is embedded in the quotient
group Aut(F,) / Inner-Aut(F,),n > 3. No finite dimensional linear representation
is known for this quotient. In fact, no linear representation is known for Aut(F:) ].
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(viii) IA-automorphisms of an arbitrary 2-generator metabelian group G were stud-
ied in Gupta ( 1981 ) where it was shown, in particular, that IA-Aut(G) is
itself metabelian.

Bachmuth, Baumslag, Dyer and Mochizuki ( 1987 ) addressed the presenta-
tion questions of these groups. They proved that IA-Aut(G) may not be finitely
generated even as normal subgroup of Aut(G), and that Aut(G) may or may not
be finitely presented when G is assumed to be finitely presented. Caranti and
Scoppola ( 1991 ) have revealed some further facts about 2-generator metabelian

groups G = gp{z,y} :
(a) Every map { ¢ — zu,y — yv } extends to an endomorphism of G,

(b) Every map { ¢ — zu,y — yv } extends to an automorphism of G if and
only if G is nilpotent,

(c) Lower central series of IA-Aut(G) and Inner-Aut(G) coincide from second
term onwards.

[ In a subsequent paper they use module-theoretic constructions to study the lower
central series of [A-Au(G) ].

Primitivity in free groups. Let F' = F, = < ¢y, %3,...,&, > be a free group.
A word w € F is called primative if it can be included in some basis of F. Since
an automorphism maps a basis to a basis, w is primitive if and only if a(w) = =4
for some o € Aut(F). For a given word w in F, testing to see if it is primitive
is, in general, a very difficult problem. This problem was resolved by Whitehead
( 1936 ) through topological arguments using a very large but finite set of the
so-called Whitehead ( elementary ) automorphisms. These are of two types:

Typel. a={z; — 2z +,;0, apermutation of {1,...,n} }.
jo=
I [ These form a finite subgroup of Aut(F,) of order 2"n!].

Type II. Put X = { z1,22,...,2,} and X = { 2,7} ,257},...,2,7! }. For
any choice of subSet A of X U X and for any chmce ofa € A,a ¢ A a Type II
automorphism «(A4; a) is defined by the following rule:

a(A;a)={ z;i — a 'zia, ifz; € A, ;7' € A; z; — zia, ifz; € A, ;7! ¢ A;
;i —alz;, ifei ¢ A 27 €A & — i, ifeig A i g A}
[ For example, with F = Fy, A = {z1,22,23,2171}, a = 23,

a(A;a) ={ &1 — 227 2122, 79 — T9, T3 — T3T2, T4 — T4 }

is a Whitehead automorphism of Type II.
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Similary, with F = Fy, A = {z1,22,227 ", 23,247}, a = 21,

-1 -1
a(A;a)={ 21 = 21,22 = ¢, ' 227, 23 — T3T, T4 — T T4 }

is a Whitehead automorphism of Type II ].

Theorem ( Whitehead 1936 ). There is an algorithm to decide whether or not a
given pair of words u, v in F' are equivalent under an automorphism of F. More gen-
erally, there is an algorithm to decide if a given system w = { wy,wa,...,wm },
m < n, of words in F' is primitive.

[ Rapaport ( 1958 ) gave an algebraic proof of Whitehead’s theorem. See also Mc-
Cool ( 1974 ) for a presentation of Aut(F') in terms of Whitehead automorphisms.
Gersten ( 1984 ) gave another proof of the above theorem using graph theoretic
methods and Whitehead automorphisms ].

When m = n, algorithmic decidability of a system of n elements in the free
group F of rank n reduces to decidability of a given endomorphism of F' to be an
automorphism. This, in turn, can be translated to a problem of invertibility of a
given matrix over the free group ring Z F. The following criterion is due to Joan
Birman.

Theorem ( Birman 1974 ). A given system w = {w;, ws, ..., wy,} is primitive in
F, if and only if the n x n Jacobian matrix J(w) = (0w;/dz;) of Fox-derivates of
the system is invertible over Z F.

[fw—1= ) ui(zi —1),u; = Ow/0=; is the ( left ) Fox derivative of w with

t
respect to z;].

Remark. Umirbaev gives a similar criterion for a system of m elements, m < n,
to be a part of a basis. Krasnikov ( 1978 ) has given a criterion for a system
w= {w,ws,...,w,} to generate F' ( modulo R’ ) in terms of invertibility of the
Jacobian matrix J(w) over Z(F/R) ( the case R = F' is due to Bachmuth ( 1965 )
( see N. Gupta ( 1987 ) for proof ).

Generating sets for Aut(F/V). Let V be a fully invariant subgroup of F' con-
tained in F’. Then Aut(F/V) is generated by T, the set of all tame automor-
phisms of F/V, together with the IA-automorphisms of F/V, where tame auto-
morphisms are those induced by the automorphisms of the free group F. We
abbreviate by writing Aut(F/V) = < T,IA-Aut(F/V) > . As we know from the
work of Nielsen, T is generated by at most 4 elementary automorphism. So, we
need to concentrate on IA-Aut(F/V) in order to find a most economical set of
generators of Aut(F/V). When F = F,,,n > 4, Bachmuth and Mochizuki have
" shown that Aut(F/F") =< T >, whereas for n = 3, Aut(F/F") is infinitely gen-
erated. We study this question for the automorphisms of free nilpotent groups
of class ¢ on n generators. Let F, . =< z1,%3,...,2, >,n > 2,c > 2 denote
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the free nilpotent group of class ¢ freely generated by the set {zy,z3,...,2,}.
Then Fn,c = Fn/ve41(Fn), where F, =< fi, f2,..., fa;0 > is the absolutely free
group on {fi, f2,..., f}. Since every automorphism of the free abelian group
Fu,c/72(Fn ) is tame it follows that

Aut(F, ) = < T,IA-Aut(F, ) > .
Consider an IA-automorphism of Fj,/v3(F,) of the form

a={z) = z1d,d€ F, z; — z;,i # 1}.

Modulo y3(Fy,), d can be written as d = [[[z1, z;*] d* = [z1, w] d*, where d*
does not involve ;. Thus a assumes the form {z; — z1“d*, z; — 21,1 # 1}, which
is clearly a tame automorphism. Since every [A-automorphism of F}, /y3(F,) is a
product of automorphisms of the form « above it follows that the automorphisms
of Fy ./v3(Fn,) are all tame. Thus we have the modification,

Aut(Fp ) = < T,IA* — Aut-(Fp ) >,

where IA* — Aut(F, ) consist of [A-automorphisms of the form

{ 2z = zid;, d; € v3(Fpe),i=1,...,n }.

Problem: Together with T how many IA-Automorphisms of F}, . are required to
generate Aut(Fp, c),c> 37

Goryaga ( 1976 ) proved that if n > 3.2°"2+¢, then Aut(F,.) =
< T,83,...,0. >, where 0} are defined by 0 = {z1 — =z[z1, z2,...,2k],
z; =z, 1 # 1}

Andreadakis ( 1984 ) reduced the restriction on n in Goryaga’s result sig-
nificantly by proving that the same conclusion holds for n > ¢, i.e. for n > ¢,
Aut(F,.) = < T,0s,...,0. > . Further improvement of Andreadakis’result is
possible as is seen from the following result.

Theorem ( C. K. Gupta & Bryant 1989 ). If n > ¢, then Aut(F,,.) = < T,03 > .
In fact the following theorem is proved.

Theorem ( Bryant & Gupta 1989 ). Forn > c—1 > 2, Aut(Fy, ) = < T, 63 >,
where
b3 ={ 21— zi[z1,22,21], s >z, i £1}.

[ For n € ¢— 2, more [A-automorphisms seem to be required to generate
Aut(F, ). For instance, if n > ¢ — 2 > 2 then Aut(Fn..) = < T,63,05 >,
where

b4 = {z1 — w1[z1, 22,21, 21], i — 2, 1 # 1}

For ¢+ 1/2 < n < ¢— 1, we give a specific generating set wich depends only
on the difference ¢ — n ( see Bryant and Gupta 1989 ). However, for n < ¢/2 we
do not know any reasonably small generating set for Aut(F, .)].
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Next we consider My, ., the free metabelian nilpotent of class ¢ group, frecly
generated by {z1,Zs,...,2,}. Then M, . = Fp/v.41(Fn)F,", where, as before,
F, is the absolutely free group on the set {fi, f2,..., fn}. For ¢ > 3, a complete
description of IA-Aut(M> ) in terms of generators and defining relations has been
given by Gupta ( 1981 ).

Theorem ( Andreadakis and C. K. Gupta 1990 ). If n > 2 and ¢ > 3 then
for each a € Aut(M,, ) there exists a positive integer a(a) such that a*(*) €<
T,és,...,6. > where, in addition, the prime factorization of a(«) uses primes
dividing [c + 1/2)!

Automorphisms of free nilpotent Lie algebras. The corresponding prob-
lems for relatively free Lie algebras has been studied in Drensky and Gupta
(1990). Let F(n.) resp. M(n.)) denote the free nilpotent ( resp. free metabelian
and nilpotent ) Lie algebra of class c on {zy,...,2,} over a field K of characteristic
zero. Then

(i) If n > ¢, Aut(F(n.)) = group{GL(n,K, 6}, where 6(z1) = 2 + [z1, 23],
§(zi) = @iy i # 15

(it) If n > 2,¢ > 2, Aut(M(n.)) = group {GL(n,K ), 6},

where § is as before. We refer to our paper for details.

Automorphisms of free nilpotent of class 2 by abelian groups. Let
G=F/[F',F"F'], F = <z,y,u,v > . Then we have the following result,

Theorem ( Gupta and Levin 1989 ). Aut(G) = gp {T, b0, 61, 82, ...}, where each
b = {z — x[{z,y]”k,[u,v]],y — y,u — u,v — v} is a non-tame automorphism
of G. [ The details of the fact that Aut(G) is generated by tame automorphisms
and §;'s are extremely technical and we refer to our paper. The non-tameness
of é; is proved by showing that the Jacobian matrix J(w) of the system w =
(::[[..":,y]”k, [u,v]], ¥, u,v) over the free group ring ZF is not invertible. This is
achieved by building a homomorphism of the group GL(4, Z F') into GL(2, Z[t])
which maps J(w) to a non-invertible element of GL(2, Z[t])].

A criterion for non-tameness and applications. The k-th left partial deri-
vative Jx is defined linearly on the free group ring Z(F) (= Z(Fy,)) by: dc(zx) =
1; Oc(zi) = 0, © # k; Or(uv) = Ok(u) + udk(v), u,v € Z(F). In particular,
for any w € ym(F), the partial derivative 9x(w) lies in A™~!(F), and hence,
modulo A™(F), it can be represented as a polynomial f(X;, Xs,...,X,} in the
non-commuting variables X; = z;—1, ¢ =1,...,n. Forany S;,T; € {X1,-..,Xn}
we define an equivalence relation =~ on monomials by : S;...S, = T7...T} if
one is a cyclic permutation of the other. Finally, a polynomial f(X;,...,X,} is
called balanced if f(X1,...,Xn) = 0, or equivalently, the sum of the co-efficients
of its cyclically equivalent terms is zero. Then through a technical analysis of
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the invertibility of the Jacobian matrix associated with a basis of F' we have the
following useful test for an endomorphism of F to be an automorphism.

Criterion ( Bryant, Gupta, Levin and Mochizuki 1990 ). Let w =

w(Ty,...,Zn) € Ym(Fn) for some m > 2 and let a be an endomorphism of F,
defined by: a(z;) = z1w, a(zi) = zi( mod Ym41(Fn)), i = 2,...,n. Let 8;(w) =
FXt500 05 Xn)

( mod A™(F)). If a defines an automorphism of F, then f(X,..., X,) must be
balanced.
[ Using different methods, Shpilrain ( 1990 ) has also obtained a similar criterion .

Application 1. The following automorphism of free class-3 group F, 3 of
rank n > 2 is wild: o = {z — z[[z,y,z],y— y,..., 2 — 2z}
Proof ( cf. Andreadakis 1968 ). We have,

0=([z,y,2)) = 2(y — 1)(z = 1) = (z = 1)(y - 1)(A(F)).

Then f = 2(y—1)(z — 1) — (z — 1)(y — 1) is not balanced, and the proof
follows.

Application 2. The following automorphism of free centre-by-metabelian
group of rank n > 4 is wild :

a={z—z(z4[v],y—>y...,2—2}

This answers a question of Stohr ( 1987 ).

Proof Since, [F",F] < 45(F), it suffices to prove that « is not a tame auto-
morphism of free class 4 group F, 4. Indeed, d,([[z, ], [u,?]]) = (y — 1)([u,v] —
1)(A%(F)) and f = (y—1)(u—1)(v = 1) — (y — 1)(v — 1)(u — 1) is clearly not
balanced.

Application 3. For each k > 1 the following automorphism of free class-2
by abelian group of rank 4 is wild:

ap={z— z[{z,y,z"’],[u,v]],y—» Yu—u,v—0v}.

Proof ( cf. Gupta-Levin ( 1989 ) ). Since, [F", F'] < v6(F), it suffices to prove
that o is not a tame automorphism of free class 5 group Fy 5. We have,

0z ([[z, v, 2*], [w,v]]) = (v — 1)(e* — 1)([u,v] — 1)-
A+z+...4+ 25N ([z,y] — 1)([u,v] — 1)(A3(F))
= k(y — 1)(z — 1)([u,v] - 1) — k([z,y] — 1)(A%(F)).
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Then f = k(y — 1)(z — 1)([u,2] - 1) — k([z, 8] - 1)([u,v] — 1) and the sum of the
co-efficients of terms which are cyclically equivalent to (¢ —1)(y—1)(u—1)(v —1)
is minus k wich is non zero.

Non-tame automorphisms of free polynilpotent groups. The tame range
TR {AutF,(V), n > 1} of the automorphismgroups of the free groups of a variety
V of groups has been defined by Bachmuth and Mochizuki ( 1987/89 ) as the least
integer d > 1 such that all automorphisms of a free V-group Fi(V) of rank k > d
are tame. If no such d exists then TR {AutF,(V),n > 1} is defined to be infinite.

For the variety M of metabelian groups, Bachmuth and Mochizuki ( 1985 )
proved that TR {Aut#,(M),n > 1} = 4. They raised questions about the possible
values of the tame range of automorphism groups of certain relatively free soluble
groups defined by outer-commutator words. We give a complete answer to their
question by proving the following theorem.

Theorem ( Gupta-Levin 1991 ). With the three know exceptions: M, the variety
of metabelian groups, A, the variety of abelian groups and Nj, the variety of
nilpotent groups of class at most 2, the range TR{AutF,(V),n > 1} is infinite
for any variety V defined by an outer-commutator word.

Qutline An outer commutator u has one of the following three types:

(1) u=[ay,-...,anm];

(i) u=[[a1,...,a],[b1,..., 0]}, r > 5> 2,r+s=m;

(i) v = [[a1,...,ar),v,...,w],2 < r < m, where v = v(by,...,b,),...,w =
w(ey, . ..c) are outer commutators of weights s, ..., t, respectively, with s >
2t>1,r+s+...+t=m.

Let F' = F, be free of rank n > m. With (z1,...,zn) = (a1,...,am) if
u is of type (1); (z1,...,2m) = (a1,...,ar,b1,...,b,) if u is of type (ii); and
(z1,...,2m) = (a1,...,ar, by,..., by, c1,...,¢) if wisoftype (iii),let U, V,..., W
be the fully invariant closures in F' of u, v, ..., w respectively. Then, clearly

U =9m(F),U=[v(F),7(F)l or U= [v(F),V,...,W]

according as u is of type (i), (ii) or (iii). Define w* = [y,...,2m-1] if uis of
type (i), v* = [[z1,...,Zr=1]), [Zr+1, -+, Trps]] If uwis of type (ii), u* =
([z1,...,zr=1),v,...,w] if uis of type (iii). Define g = {z; — zu*,z; —
z;, i # 1} € End(F). Then u induces an automorphism of F/U. The proof of the
theorem consists in showing that if U # v2(F), y3(F), F” then p induces a non-
tame automorphism of F/U. We may assume m > 4, anf if m = 4 then U = 74(F).
Since u* € ¥m—1(F) and U < ¥ (F), it suffices to prove that p induces a non-
tame automorphism of F/v,,(F). This is achieved by a direct application of the
criterion.

Lifting primitivity of relatively free groups F/U Recall that a system
“w={wi,...,wn},m < n, of words in a free group F = < z1,...,z, > is said to
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be primitive if it can be included in some basis of F.. Let U be a fully invariant

subgrooup of F'. We say that a system w = {w;,...,wn}, m < n, of words in F
is primitive mod U if the system {wqU, ..., w,,U} of cosets can be extended to
some basis for F'/U. Given a system w = {wy, ..., wy, }, m < n, which is primitive

modulo U we wish to study the possibility of lifting this system to a primitive
system of F. For, instance, if F' is free of rank n > 4 then every automorphism is
tame ( Bachmuth & Mochizuki ) and consequently, every primitive system mod
F" lifts to a primitive system of F. Whereas, for n = 3 the system {z[z,y, z], v, z}
is primitive mod F" but can not be lifted to a primitive system of F' ( Chein ).
We consider the problem of primitivity lifting of certain relatively free nilpotent
© groups.

Lifting primitivity of free metabelian nilpotent groups Let w =
{wi,...,wm}, m < n, be primitive mod U = 7.41(F)F"”. We wish to lift this
system to a primitive system of F. This is not always possible. For example if
F =< z,y,z >, the system {z[y, z,z, 2], y} is primitive mod y4(F) = (ya(F)F")
but the extended system w = {z[z,y, z]u, yv, 2w} is not primitive in F for any
choice of u,v in 74(F) and w in F. This can be seen using Bachmuth - Birman’s
criteria by verifying that the Jacobian matrix J(w) of the system is not invertible.
For n > 4, we can take advantage of Bachmuth and Mochizuki’s result which
reduces the problem of lifting primitivity mod U to that of mod F*. Thus we can
restrict to free metabelian nilpotent-of-class-c groups M, . and need only study
the lifting of primitivity mod y.41(M,) to the free metabelian group M = M,, =<
T1,...,Zn > . An outline of the procedure for lifting a single element w ( which
is primitive mod y.41(M)) to a primitive element of M as follows:

Step 1. Since w is primitive mod 7c41(M) there is an automorphism of M which
maps w to an element of the form z,v,v € M’. Thus we assume w = z,v,v € M".
Further, since every automorphism of free class-2 group lifts, we may assume
c> 3.

. Step 2. Working by induction on ¢, we may assume v = [[[z1, z;]P* [[[z;, zx] ¥,
where p,q € A°~%(M’),2 < j < k < n, g;k independent of z,.
( Notation : [z;, z;]9** = [zi, z;)?[zi, z;]*).

Step 3.  There is an automorphism p of M which maps z; to z; [[[z;, zx]~*.
Applying g to w, if necessary, we may assume w = x; [ [z, z;]'".

Step 4. For each p € A°"2(M), ¢ > 3, consider the system g={g;,. ., gn} with
91 = zi[zy, 2P [2a, 23] T2 VP, g3 = zazy, 23] P[22, 2aP "I g = 20 #
1,3. Let J(g) be the Jacobian matrix of the system g over Z(M/M’). It is easily
seen that with # = fp ( under 0 : ZM — Z(M/M’), the matrix J(g) has the

form,



328 C. Kanta Gupta

1+ (az— 17 = —(az—1)%x 0 wes D
0 1 0 0 s 0
—(az—=1)72 % 1—(az—17+(az—1)*7% 0 0
0 0 0 1 ... 0
0 0 0 0o ... 1

The determinant of J(g) is easily seen to be 1, so J(g) is invertible. Since p €
A=2(M), it follows that g; = @[z, z2]? is primitive in M for all p € A“"2(M).
Consequently, w = z; [[[z1, z:]P** is primitive in M.

We thus have proved,

Theorem ( Gupta, Gupta and Roman’kov 1992 ). If F is free of rank > 4 then
every primitive element mod v.41(F) can be lifted to a primitive element of F.

Likewise, for n > 4 and m < n — 2, it can be proved that every primitive
system g={g1,.-.,9m} mod y.41(My,) can be lifted to a primitive system of M,,,
yielding the following theorem. We refer to Gupta-Gupta-Roman’kov ( 1991 ) for
details.

Theorem For n > 4 and m < n—2, every primitive system g={g1, ..., gm} mod
Ye41(Frn)F" can be lifted ( via ve41(Fn)F") to a primitive system of Fj,.

Remarks.

(1) The restriction m < n — 2 in the above theorem can not be improved. To
see this choose g1 = z;[z1, 23, 23],9: = zi,7 # 1,3. Then for any choice of g3 =
zau,u € M,,', and any choice of elements w; € y4(M,),i = 1,...,n, the Jacobian
matrix J(g) of the system g={giw1,...,gnwn} can be seen to be non-invertible.

(2) When rank of F' is 3 the metabelian approach does not apply as the metabelian
group M = M3 =< z,y, z > admits wild automorphisms ( Chein 1968 ), The proof
that every primitive element of M3 .,c > 3, can be lifted ( via v.41(M)F") to a
primitive element of F3 is quite technical and we refer to our paper for details.

(3) Since, every IA-automorphism of M, is inner ( Bachmuth ), ¢ = z,u can be
lifted to a primitive element of M5 if and only if u is of the form [z}, v]. Thus, for
¢ > 3, not every primitive element of M3 . can be lifted to a basis of Ms.

(4) The existence of non-tame automorphisms of M3 was first shown by Chein

( 1968 ). Specifically, the automorphism {z — z[y,z,z,z],y — y,2 — z} of M3
can not be lifted to an automorphism of the free group Fj. It is easily seen that
every endomorphism in M3 of the form {z — z[y, z]P®¥*) y —y, z — z} is an
automorphism of Ms. So, for each p(z,y,z) € ZMs the element z[y, z]?(#:¥:2) is
primitive in M3 can be lifted to a primitive element of F3 ( Gupta, Gupta and
Romankov ). Two natural questions are:
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(i) Can every primitive element of M3 be lifted to a primitive element of F3 ?
[ Roman’kov ( 1993 ) gave a negative answer to this question.]

(ii) Is primitivity in M,,n > 2, algorithmically decidable?
[ The answer is yes ( see Gupta et al ( 1994 ) ). The corresponding solution
for M,,,n > 4, is due to Timoshenko ( 1989 ). ]

Lifting primitivity of free nilpotent groups.

Let w={wy,...,wn},m < n, be primitive mod U = y.41(F,). We wish to
- lift this system to a primitive system of F,. Here we do not have tha facility of
working modulo F” so certain further restrictions on m may be necessary. We
have the following result.

Theorem ( Gupta and Gupta 1992 ). For m < n+ 1 — ¢, every primitive system
w={wy,...,Wn},m < n,mody.4+1(F,) can be lifted to a primitive system w* of
F,.

Remark. For ¢ > 4,n = ¢ — 1, it would be of interest to know whether every
primitive element mod 7.41(F) can be lifted to a primitive element of F. The
simplest case of the problem is to decide whether or not, for n = 3,¢ = 4, the
element [z, z2, 3, z3] can be lifted to a basis of F.

We conclude with the following more general question.

Question. Is Aut(F/U) always tame for relatively free countable infinite rank
groups defined by outer-commutator words? In particular, are all automorphisms
of free polynilpotent groups of countable infinite rank tame?

[ Affirmative answers are now known in the following cases: free metabelian groups
( Brayant and Groves 1992 ), for free nilpotent groups ( Bryant and Macedonska
1989 ) and for free ( nilpotent of class ¢ ) - by - abelian groups and certain central
extensions ( Bryant and Gupta ( 1993 ) ].

NOTE. The manuscript in prepared by freely using the material from a
series of Lectures I gave in Parma, Italy in 1991.

The reader is also refered to a recent survey article on lifting automorphisms
( Gupta-Shpilrain 1995 ).
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