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Asymptotic Behavior Near Zeros of Solutions of 
Elliptic and Parabolic Equations 

Xu-Yan Chen 

Abstract: This paper discusses two aspects of local be­
havior of solutions of elliptic and parabolic equations, namely, 
polynomial asymptotics and unique continuation. Particular 
stress is laid on describing a new approach to these problems, 
by connecting to the theory of Lyapunov exponents in dynami­
cal systems via scaling transforms. New results obtained along 
this line are presented with a sketch of the key ingredients of 
the proofs. 
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1 Local Asymptotics of Smooth Functions 

1.1 Smooth Functions. Let f(x) be a Coo function defined in a domain n c 
RN. By the Taylor expansion, the local asymptotics of f near a point Xo E n can 
be classified into two types: . 

either (i) Infinite Order Vanishing: f (xo + x) = O(lxlh) as x -+ 0 for any 
h ~ 0; 

or else (ii) Polynomial Local Asymptotics: f(xo + x) = a nontrivial homoge­
neous polynomial + a higher order remainder. Precisely, 

lime- h f(xo + ex) = 4l(x), 
,,10 

where 4l(x) ¢. 0 is a homogeneous polynomial of degree h ~ o. 

1.2 Analytic Functions. If the function f : n -+ R was real analytic and 
was not identically zero, then we have only the second alternative: f(xo + x) = 
4l(x) + o(lxlh) where 4l(x) ¢. 0 is a homogeneous polynomial of degree h ~ o. 

This follows from the Unique Continuation Theorem: if f : n -+ R is real 
analytic and f(xo + x) = O(lxlh) as x -+ 0 for any h ~ 0 at some Xo E n, then 
f == 0 in n. 
1.3 C k Functions. If f(x) was only a C k function with k < 00, the classification 

in Subsection 1.1 does not apply in general. For instance, f(x) = Ixlk+a with 
kEN and 0 < a: < 1 is a C k function which satisfies neither 1.1 (i) nor 1.1 (ii) 
at Xo = o. 

The aim of the present article is to discuss asymptotic properties similar to 
the above for solutions of elliptic and parabolic equations. Sections 2-5 describe 
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the results, and Sections 6-8 give a rough sketch of the arguments. Throughout 
we have opted for illuminating new ideas rather than full generality. Most results 
are stated here under stronger conditions than are really needed in the papers 
[8,9,10]. 

2 Local Asymptotics for Elliptic PDEs 

2.1 Earlier Results. In 1955 Lipman Bers [4] proved that near a zero point of 
finite order, a solution of an m-th order elliptic equation with Holder continuous 
coefficients is asymptotic to a nontrivial homogeneous polynomial. 

Under the Holder condition on coefficients, the standard a priori estimates for 
elliptic equations guarantee that any solution is C m +o and hence is a classical 
solution. Although solutions may not be Coo in general, Bers' theorem indicates 
that their local behavior at zero points is similar to that of Coo functions. Some 
generalizations to nonclassical solutions of second order elliptic equations with less 
smooth coefficients are obtained in [5, 24, 17]. 

2.2 New Result. In a recent work [10], based on a quite different approach, we 
extended the above theorem of Bers to a broader class of elliptic equations with 
very mild hypotheses on the coefficients. 

Consider an m-th order elliptic equation: 

L ao(x)DOu = 0 
lol::om 

x E 0, (2.1) 

where 0 c RN is an open connected set. Assume the following conditions on 
coefficients: 

for lal = m, ao(x) are locally Holder continuous and L:1al=m aa(x)~a =1= 0 for 
any ~ E RN \ {O} and any x E 0; 

and for lal < m, ao are locally Lpo integrable with Po > max{N/(m -Ia!), 1}. 

THEOREM. Under the above assumptions, let u E W;ioc(O) be a generalized 
solution of equation (2.1) with 

1 < p < min Pa, 
m-N<lol<m 

p:S: min Po· 
lol::om-N 

If Xo E 0 and u(xo) = 0, then one of the following alternatives holds true: 

either (i) u vanishes of infinite order at Xo; that is, 

for all h > 0; 

(2.2) 
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or else (ii) there exists an integer h 2:: 1 such that 

Chu(xo + c:x) - ~(x) in W;ioc(RN) as c: ! 0 (2.3) 

where ~(x) is a homogeneous polynomial of degree h satisfying the osculating 
equation 

L aa(xo)Da~(x) = 0 (2.4) 
iai=m 

and is not identically zero. 

The proof of the above theorem combines a homothety scaling argument with 
some elements of the theory of Lyapunov exponents (see later Sections 6 and 7). 

2.3 Hausdorff Dimension of Zero Sets. The vanishing order of u at xo, by 
definition, is 00 in the case of Theorem 2.2 (i), and is the positive integer h in 
the case of Theorem 2.2 (ii). For hEN U {oo}, denote by Zh(U) the set of all 
zero points Xo E n of u with vanishing order 2:: h. By Theorem 2.2, the set of all 
zero points of u is equal to Zl(U) . The following can be derived from the theorem 
together with a geometric measure theoretic argument (see [8]). 

COROLLARY. Let u ¢. 0 be a solution of m-th order elliptic equation (2.1) in 
n c RN and assume all conditions in Theorem 2.2. 

(i) Ifp > N/m, then the Hausdorff dimension of Zl(U) \ Zoo(u) is not larger 
than N-1. 

(ii) If p > N, then the Hausdorff dimension of Zm(u) \ Zoo(u) is not larger 
than N - 2. 

2.4 Heuristic Discussion. Let u be as in Theorem 2.2. We first note that the 
rescaled solution ue:(x) := u(xo + c:x) satisfies 

Ae:ue: = L c:m-iaiaa(xo + c:x)D~ue:(x) = o. 
iai::;m 

In the limit as c: ! 0, the rescaled operator Ae: reduces to the "osculating operator" 

Ao = L aa(xo)D~ 
iai=m 

(at least at the formal level). 
From this observation combined with the use of Taylor series, the polynomial 

asymptotic result, Theorem 2.2, is immediately seen to hold for Coo solutions. 
However, it was not easy to demonstrate the same result for solutions which are 
not Coo. The arguments of Bers for classical solutions made explicit use of power 
series expansion of fundamental solutions at crucial steps. The generalizations 
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to weak solutions of second order elliptic equations in [5, 24, 17J were even more 
difficult and needed more detailed computations of some special functions such as 
fundamental solutions, spherical harmonics, and etc. 

A different approach is taken in [10J. Quite unexpectedly, the theory of dy­
namical systems sheds light on this problem. As will be described in Section 7, a 
correct splitting of rescaled solutions puts us in a framework of iterative dynamics. 
Our analysis becomes notably transparent, appealing to the dynamic Lemma 6.1. 

3 Local Asymptotics for Parabolic PDEs 

In [8J we extended the results in the previous section to parabolic equations as 
well. See also [1 , 2, 9, 11, 15J for related results for the second order case. 

3.1 Polynomial Asymptotics. Consider 

Ut = L ao:(x, t)D;:u 
1001::;m 

(x, t) En, (3.1) 

where n c RN x R is an open connected set. Assume the following conditions on 
coefficients: 

for lad = m, ao: are locally Holder continuous and Llo:l=m ao:(x, t)eo: i:- 0 for 

any e E RN \ {O} and any (x, t) E n; 
and for lad < m, ao: are locally Lpo. integrable with Po: > (N + m)j(m - 1(1). 

THEOREM. Under the above assumptions, let u E W;Z~c(n) be a generalized 
solution of equation (2.1) with 

1 < p < min Po:, 
m-N<lo:l<m 

p ~ min Po:. 
1001::;m-N 

If u(xo , to) = 0 at a point (xo, to) E n, then one of the following alternatives holds 
true: 

either (i) u vanishes of infinite order at (xo, to); that is, 

chu(xo + eX, to + emt) -+ 0 in W;Z~lc(RN x R) as e ! 0 (3.2) 

for all h > 0; 

or else (ii) there exists an integer h ;::: 1 such that 

Chu(xo + eX, to + emt) -+ ~(x, t) in W;Z~~(RN x R) as e ! 0 (3.3) 

where ~(x, t) is a polynomial of parabolic homogeneity of degree h: 

(x,t) E RN x R,A > 0, (3.4) 
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satisfies the osculating equation 

~t(x, t) = L aa(XO, to)D~~(x, t) (x,t) ERN x R, (3.5) 

lal=m 

and is not identically zero. 

3.2 Hausdorff Dimension of Zero Sets. Let u ¢. 0 be a solution of equation 
(3.1) in n c RN x R. For a positive integer h, denote by Zh(U) the set of all zero 
points (xo, to) E n of u of vanishing order ~ h. Let Zoo(u) be the set of all zero 
points (xo, to) E n of infinite vanishing order. Note that n :J Zl(U) :J Z2(U) :J 

.. . . :J ZCXJ(u) and that Zl(U) is exactly the zero set ofu in n. 

COROLLARY. Assume all conditions in Theorem 3.1. 

(i) If p > (N + m)/m, then the (Euclidean) Hausdorff dimension of Zl(U) n 
(RN x {t} ) \ Zoo (u) is not laryer than N -1 for every t and the parabolic Hausdorff 
dimension of Zl(U) \ ZCXJ(u) is not larger than N + m - 1. 

(ii) If p > N + m , then the parabolic Hausdorff dimension of Zm(u) \ Zoo(u) 
is not laryer than N + m - 2. 

Recall that the standard Hausdorff measure is built on the Euclidean distance 
Ix - x'I, whereas the parabolic Hausdorff measure and the parabolic Hausdorff 
dimension are defined using the parabolic distance Ix - x'I + It - t'1 1/ m in the 
space-time RN x R. If E is a k-dimensional vector subspace of R N, the parabolic 
Hausdorff dimension of E x R is k + m. In particular, the parabolic Hausdorff 
dimension of the whole space-time RN x R is equal to N + m . The dimension 
estimates in Corollaries 2.3 and 3.2 are optimal, as one can immediately see from 
simple examples. 

4 Unique Continuation for Elliptic PDEs 

The understanding of the unique continuation property of elliptic equations is 
much better than that of parabolic equations. The first work dates back to 1930s. 
Carleman proved in [6) the strong unique continuation for second order elliptic 
equations in two dimensions and introduced a basic technical tool, the so-called 
"Carleman inequality". The result was later generalized to second order ellip­
tic equations in arbitrary dimensions by Aronszajn [3) and Cordes [12). There 
have been new developments recently in relaxing the smoothness assumptions on 
coefficients (see review articles [19, 27)). 

The unique continuation theorem does not necessarily hold for elliptic equa­
tions of fourth or higher order (see [22)). 



18 Xu-Yan Chen 

5 Unique Continuation for Parabolic PDEs 

5.1 Examples of Infinite Order Vanishing. The fundamental solution 

{ 
(4 )-N/2 {~} 

H(x , t) = ° 1ft exp - 4t 
(x,t) E RN x (0,00), 

(x, t) E R~ x (-00,0] \ {(O, On, 

of the classical heat equation Ut = Dou vanishes of infinite order at any point (x,O) 
with x :I- o. One can even construct a nontrivial solution of the heat equation on 
RN x R, which is smooth everywhere and vanishes on RN x (-00,0] (see [13]). 

These examples show that the unique continuation property in the usual sense 
fails for (second order) parabolic equations. In order to get positive results, some 
careful reformulations are needed. 

5.2 Autonomous Equations. For second order parabolic equations with time­
independent coefficients: weak unique continuation theorems were proved decades 
ago (see [18, 28]); more recently, a strong unique continuation tlulorem is obtained 
by F.-H. Lin ([21]). A basic observation is that solutions of this class of equations 
can be represented by a Fourier series in terms of eigenfunctions of the correspond­
ing elliptic operator. This, combined with some nontrivial arguments, makes it 
possible to reduce the analysis to the elliptic unique continuation theorem. 

5.3 Nonautonomous Equations: Weak Unique Continuation. Weak 
unique continuation results are proved in [25, 26] for parabolic equations with 
time-dependent coefficients. The reduction technique mentioned in Subsection 
5.2 is no longer effective for this class. Instead, the arguments [25, 26] are based 
on intricate derivations of some parabolic variants of the Carleman inequality. 

5.4 Nonautonomous Equations: Strong Unique Continuation. In ap­
plications to nonlinear parabolic problems, most often what we need is strong 
unique continuation theorem for parabolic equations with time-dependent coeffi­
cients. The understanding in this direction is far from complete. The reduction 
technique in Subsection 5.2 does not work. Moreover, the Carleman inequalities 
used in the proofs of weak unique continuation in [25, 26] are not enough to derive 
strong unique continuation. 

The following theorem was established in [9] by a quite different idea. The 
key steps were to recast parabolic equations under the self-similar variables and 
to derive appropriate energy estimates (see Section 8). 

THEOREM. Let u(x, t) satisfy 

N 

Ut = Dou + L bj(x, t)8j u + c(x, t)u x E R N , t E (TI' T2 ), (5.1) 
j=l . 
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where the coefficients bj(x, t) and c(x, t) are bounded measurable junctions, and 
Cl and C2 are constants. If (xo, to) ERN X (Tl' T2) and u(x, to) = O(lx - xol h ) 

for all h > 0 as x -+ Xo, then u == 0 on RN x (Tl' T2)' 

If u is a nontrivial solution of (5.1)-(5.2), the above result states that Zoo(u) 
is empty. This readily yields the polynomial asymptotics of u at any zero point, 
in light of Theorem 3.1. Moreover we can subsequently prove the Hausdorff di­
mension estimates, as we did in Corollary 3.2. (The derivation of the polynomial 
asymptotics we used in paper [9] was not exactly done in this way; it actually 
used a little more complicated argument.) 

6 Lyapunov Exponents and Asymptotics 

The proofs of Theorems 2.2, 3.1, and 5.4 are all related to a dynamic result of 
perturbed operator iterations. 

Let {ukh~o be a sequence in a Banach space X satisfying 

k? 0, (6.1) 

where K is a compact linear operator in X and {~k} C X is "small" in the sense 
that 

Uk ::J 0 (k ? 0) and (6.2) 

The next result quoted from [10] describes the growth/decay rate and the 
asymptotic direction of {Uk}, namely, the limits of IIUklll/k and uk/llukll as k -+ 

00 . The limits of k-lJog IIUkll are called Lyapunov exponents in the theory of 
dynamical systems. For more details, see [16, 7, 10] . 

6.1 LEMMA. (i) Lyapunov Exponent: The limit limk-+oo IIUklll/k = ..\ exists 
and is either 0 or else equal to the modulus of a nonzero eigenvalue of K; 

(ii) Asymptotic Direction: If the limit ..\ in Part (i) is positive, then Uk .­
Uk / II Uk II is relatively compact and its limit set 

w(u) := {¢ E X IUkn -+ ¢ for some subsequence kn -+ oo} 

consists of unit vectors in X>., which is the direct sum of generalized eigenspaces 
of K of eigenvalues on the circle {Izl = ..\}; 

(iii) Finer Asymptotics: If lI~k II/lluk II = O(J.Lk) for some J.L E (0,1) and if..\ is 
positive in Part (i), then there exist a ¢ EX>. \ {O} and a v E (0,1) such that 

Uk = Kk¢ + O(..\kvk) as k -+ 00. 

In the applications to partial differential equations, the case where the limit 
..\ in Part (i) equals 0 corresponds to the case of the infinite order vanishing in 
Theorems 2.2 and 3.1. The result in Part (iii) is used to obtain the polynomial 
asymptotic results. 
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"7 " Rescaling Elliptic PDEs 

The main step of the proof of Theorem 2.2 is to split the rescaled solution family 
into two parts to which the dynamic lemma in the last section can be appl~ed. 

Let U be as in Theorem 2.2. Without loss of generality, we may assume that 
Xo = 0, Bl en, and U t= 0 on any Be with 0 < g < 1. Let 

Ao = L aQ(O)D~, 
IQI=m 

and choose a fundamental solution G(x) of Ao; that is, AoG(x) = 6(x). Denote 
X = W;'(B1 ) and define operators S and T in X by 

(Sv)(x) := v(x/2), 

(Tv)(x):= l G(x - y)(Aov)(y)dy. 
iBl 

The standard interior Lp estimates for elliptic equations imply that K := S -
ST is a compact operator in X. By some elementary analysis, we find that 
the eigenvalues K are {2-hh~o and that the corresponding eigenfunctions are 
given by nontrivial homogeneous polynomials ~ satisfying Ao~(x) = 0 (see [10, 
Section5]) . 

Let Uk := Sku and {k := STUk. We then have 

The coefficients conditions guarantee that lI{kli/llukll decays like O(J.Lk) for some 
0< J.L < 1. Applying now Lemma 6.1, we obtain Theorem 2.2. 

The above proof is strikingly simple and natural. So it comes a surprise to us 
that this approach has not been adapted previously. We feel that the method has 
even wider applications than have been described here. To illustrate its strength 
and effectiveness, let us mention that a similar argument leads to a simple new 
proof of the well-known LP and Schauder estimates for elliptic and parabolic equa­
tions of arbitrary order. The traditional proofs of these results needed masterful 
use of a great number of functional inequalities. (I confess that although 1 have 
applied these estimates on many occasions, the original proofs in the literature are 
so complicated and long that 1 have never tried to read them until very recently.) 
In contrast, our method only uses the dynamic Lemma 6.1, the homothety scaling, 
and the corresponding estimates for the osculating equations. As a matter of fact, 
the LP estimates are almost corollaries of our Theorems 2.2 and 3.1. The Schauder 
estimates are obtained if we choose C6 as the basic function space instead of LP. 
Both interior and boundary estimates can be treated in a unified fashion. The 
details will be reported somewhere -else. 



Asymptotic Behavior Near Zeros of Solutions 21 

8 Parabolic Self-Similar Variables 
In this section we shall discuss the proof of Theorem 5.4. We first show how 
to convert (5.1) into a perturbation problem and next give an energy estimate 
excluding the super-exponential decay of solutions. 

8.1 Self-Similar Variables. Let 

y = (x - xo)/v'to - t, 

and set 
u(x, t) = v(y, s). 

The asymptotics of u(x, t) as x -+ Xo and t i to can be read from the behavior 
of v(y, s) as s -+ 00 . A computation shows that under the new coordinates (y, s), 
equation (5.1) is transformed into 

Vs - Av + ~y . V'v = e-s/2 L bj 8 j v + e-scv, (8.1) 

Y ERN,s> -log(to -Tl)' 

When s -+ 00, the right side is an exponentially decaying perturbation. This 
allows us to relate the long-term behavior of v(·, s) to that of solutions of the 
unperturbed equation. 

The complete detail of the arguments can be found in my recent paper [9] . 
The analogous ideas have been applied to blow-up problems by Giga and Kohn 
[14] . There were also backward uniqueness results obtained along similar lines 
[2, 11 , 20, 23] . 

8.2 Energy Estimates. In order to prove Theorem 5.4, we need to show that 
any nontrivial solution v of (8.1) cannot decay faster than certain exponential 
rate. To be more precise, consider the Hilbert space 

It follows from (5 .2) that v(·, s) E X for sufficiently large s. The elliptic operator 
appearing in the left side of equation (8.1), 

1 -A+ -y.V' 
2 ' 

can be extended to a self-adjoint operator A in X. The following ~rovides the 
required. estimates. 

LEMMA. Consider the Dirichlet quotient: 

Q( ) '=1 (Av(-,s),v(·,s)}x 
s. + IIv(., s)lIk 
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Then, 

(i) Q(s) ::; MoQ(so) for s ~ so, where Mo > 0 is a constant depending only 
on the coefficients bj and c. 

(ii) Ilv( ·, s)llx ~ Ilv(·, so)IIXe-Mt(6-S0) for s ~ so, where Ml > 0 is a constant 
depending only on Mo and Q(so). 
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