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Integrability and Algebraic Solutions
for Planar Polynomial Differential Systems
with Emphasis on the Quadratic Systems

Laurent Cairé, Marc R. Feix and Jaume Llibre

Abstract: The paper is divided into two parts. In the
first one we present a survey about the theory of Darboux for
the integrability of polynomial differential equations. In the
second part we apply all mentioned results on Darboux theory
to study the integrability of real quadratic systems having an
invariant conic. The fact that two intersecting straight lines
or two parallel straight lines are particular cases of conics al-
lows us to study simultaneously the integrability of quadratic
systems having at least two invariant straight lines.
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1. Introduction
By definition a polynomial system is a differential system of the form

dz d
G =Py,  F=Q@v) 1)

where P and @ are polynomials with coefficients in F , where F will denote either
the real field R or the complex field C. We say that m = max{deg P, deg Q} is the
degree of the polynomial system. The polynomial systems of degree 2 will be called
quadratic systems. In this paper we only consider polynomial systems (1) such
that P and @ are relatively prime. In other words, we only consider polynomial
systems (1) having finitely many singular points. This work contributes to show
the link between the theories of polynomial systems and algebraic curves. Indeed,
already in 1878, Darboux [7] showed how the first integrals of polynomial systems
possessing sufficient algebraic solutions are constructed (see Darboux Theorem
in Section 2). In particular, he proved that if a polynomial system of degree m
has at least m(m + 1)/2 algebraic solutions, then it has a first integral. On the
other hand such links were also suggested in 1900 by the way that Hilbert [12]
stated his 16th problem, in two parts: the first one about the topology of real
algebraic curves and the second one about the maximum number of limit cycles
of polynomial systems having a given degree. Recently, this link appeared in the
theory of the center for quadratic systems. See the work of Schlomiuk [27, 28, 29],
and in particular the Theorem of Schlomiuk-Guckenheimer-Rand, in Section 3,
and our Theorem 4. But this link is not restricted to quadratic systems and there
is a wide literature on this question in recent years; a general reference is the
paper of Pearson, Lloyd and Christopher [22].

In the first part of this paper (Sections 2 and 3) we present a short survey
about the Darboux theory of integrability; in the second part (Sections 4 and 5)

127



128 Laurent Cairé, Marc R. Feix and Jaume Llibre

we apply all mentioned results on Darboux theory to the study of the integrability
of real quadratic systems.

- A renewal of interest in Darboux theory, with several improvements, began
in recent decades. As a mather of fact the best two improvements to Darboux
Theorem are due to Jouanoulou [13], in 1979, and to Prelle and Singer [24], in
1983. The first showing that if the number of algebraic solutions of a polynomial
system of degree m is at least 2+ [m(m+1)/2], then the system has a rational first
integral. The second proving that if a polynomial system has an elementary first
integral, then the integral can be computed by using the algebraic solutions of the
system. Some recent improvements to Darboux theory were made by Chavarriga,
Llibre and Sotomayor [4]. Essentially these improvements are based on the fact
that suitable singular points reduce the number m(m + 1) /2 of algebraic solutions
necessary for the integrability of the polynomial system. Other recent interesting
related results have been published by Christopher [6, 17], Gasull [10], Kooij [17],
Zholadek [35], among other authors (see Section 3).

Quadratic systems have been studied intensively during this century, specially
in the last thirty years. At this moment more than 1000 papers have been pub-
lished on this subject (see for instance the bibliographical survey of Reyn [26]).
However, few results are known about integrable quadratic systems except, of
course, those for the class of quadratic systems having a center (see Kapteyn—
Bautin Theorem in Section 2), the class of quadratic Hamiltonian systems (see
Artés and Llibre [1]), and few others ( see [34]).

Starting with Section 4, we apply the Darboux theory to study the integrability
of quadratic systems having an invariant conic, i.e. an invariant algebraic curve
of degree 2. The results appear in Section 5, where we obtain the normal forms.
These normal forms concern the nine different types of conics, namely: ellipse,
complex ellipse, hyperbola, two complex straight lines intersecting in a real point,
parabola, two parallel straight lines, two complex straight lines and one double
straight line. The fact that two intersecting straight lines or two parallel straight
lines are particular cases of conics, allows us to study the integrability of the
quadratic systems having at least two invariant algebraic curves of degree 1, i.e.
having invariant straight lines. Although our results about the integrability of
quadratic system summarized in Theorems 13, 15, 17, 19, 20, 23, 26, 28 and 29,
and in Propositions 25 and 27 are not complete, they contribute to partially fill
the big gap on this subject.

Roughly speaking we have studied the “generic” Darboux integrability of real
quadratic systems having an invariant conic. More explicitly, we characterize the
real quadratic systems which have an invariant conic and their integrability is
forced by the existence of invariant straight lines. If the integrability of such sys-
tems is forced by the existence of algebraic solutions of degree larger than 1, then
more restrictions on the coefficients of the quadratic systems are necessary for the
existence of the algebraic solution, and consequently the integrability in general
is less generic. See Section 2 for a precise definition of Darboux integrability of a
polynomial system.
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Since the Lotka—Volterra systems have a special interest for their applications

to biology and physics, for them we also study the integrability forced by the
existence of a second invariant conic (see Theorem 21).

2. The Darboux theory of integrability

In this section we start to study the link between the integrability of a polyno-
mial system and its algebraic solutions. We restrict our attention to polynomial
systems in R? or C?, althought the results of this section and many of those of
the other sections can be extended easily to polynomial systems in R™ or C".
The main contribution in this direction are Darboux results [7].

First we need some preliminary definitions. We denote by

0 . .8
D—Pa'i‘Qa—y (2)

the differential operator associated to system (1). System (1) is integrable on an
open subset U of F? if there exists a nonconstant analytic function H : U — F,
called a first integral of the system on U, which is constant on all solution curves
(z(t),y(t)) of (1) on U; i.e. H(z(t),y(t)) = constant, for all values of ¢ for which
the solution (z(t), y(t)) is defined on U. Clearly H is a first integral of system (1)
on U if and only if DH =0 on U.

An invariant algebraic curve of system (1) is an algebraic curve f(z,y) = 0
with f € F[z,y], such that for some polynomial K € F[z,y] we have

Df=Kf, 3)

where K is called the cofactor of the invariant algebraic curve f = 0. We note
that if (zo,yo) is a singular point of system (1), then either K (zo,%0) = 0, or
f(zo,y0) = 0, and if the polynomial system has degree m, then any cofactor has
at most ™ — 1 as degree. We say that the curve f = 0 with f € F[z,y] is an
algebraic solution of system (1) if and only if it is an invariant algebraic curve and
f is an irreducible polynomial over F[z,y]. The following proposition is easy to
prove.

Proposition 1. Suppose that f € F[z,y] and let f = f[** --- fI'" be the factoriza-
tion of f in irreducible factors over Flz,y]. If Df = K f then f; is a divisor of
Df; inFlz,y] foralli=1,...,r.

iiFrom Proposition 1 it follows that if f = f/"'--- f? = 0 is an invariant
algebraic curve of system (1), then f; = 0 is also an invariant algebraic curve of
system (1) for every i =1,---,r.

Let U be an open subset of F2 and let R : U — F be an analytic function
which is not identically zero on U. The function R is an integrating factor of system
(1) on U if we have

d(RP) _ 3(RQ)

az oy '’

(4)
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or equivalently div(RP,RQ) = 0, or DR = —Rdiv(P,Q). The first integral H
associated to the integrating factor R is given by H(z,y) = [ R(z,y) P(z,y)dy +

f(x), satisfying %—Ig— = —RQ.

For a proof of the next result see [29] page 438.

Proposition 2. If system (1) has an integrating factor of the form m ---f,}\q
where each f; is a nonconstant polynomial of F[z,y] and )\; € F\{0}, then the
curves f; = 0 are invariant algebraic curves of the system.

As far as we know, the problem of integrating a polynomial system by using
its algebraic solutions was considered for the first time by Darboux in [7]. His
main results are summarized in the following theorem.

Darboux Theorem. Suppose that a polynomial system (1) of degree m admits
q invariant algebraic curves f; = 0 with cofactors K;, fori=1,...,q.
(a) If ¢ > 14 m(m + 1)/2, then the function f -—-f;" for suitable \; € F not

g
all zero is a first integral and % \; K; = 0.

i=1

(b) If g = m(m + 1)/2, then the function fl’“ -w_f:‘, for suitable \; € F not all
zero, s a first integral and _Sq'_, AiK; = 0, or an integrating factor and i MK =
—div(P, Q). = =

(c) If g < m(m+1)/2 and there exist \; € F not all zero such that Zq: MNK; =0,

i=1

then f{’“ -uf:“ is a first integral.

(d) If ¢ < m(m + 1)/2 and there exist \; € F not all zero such that Zq: MK =
i=1
—div(P, @), then R = f,’“ ---f{.\“ is an integrating factor.

The proof of Darboux Theorem becomes clear looking to the proof of the
theorem of Chavarriga—Llibre-Sotomayor given in Section 3.

A first integral of system (1) of the form f} - .- q’,\" with \; € F and f; €
F[z,y] is called a Darbouz first integral. An integrating factor of system (1) of
the form f ... :" with A; € F and f; € F[z,y] is called a Darbouz integrating
factor. We say that system (1) is Darbouz integrable if it has a Darboux first
integral or a Darboux integrating factor.

If among the invariant algebraic curves a complex conjugate pair f = 0 and f =
0 occurs, then the first integral will have a factor of the form f*f*, which is just
the real valued function [(Ref)? + (Imf)z]RJe Aexp(=2TIm X arctan(Im f/Re f)).
We note that if the polynomial system (1) is real, and we have a complex invariant
curve f = 0, then we also have its conjugate f = 0 as an invariant curve.

If a polynomial system has sufficient algebraic solutions, the theory of Darboux
not only allows to obtain first integrals, but it also works for obtaining invariants.
Roughly speaking, with a first integral we can describe completely the phase
portrait of the polynomial system, while with an invariant we only can describe
its asymptotic behaviour. A nonconstant analytic function I in the variables
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z,y and t such that 7 (z(t),y(t),t) is constant for all solution curves (z(t),y(t))
of system (1) in an open subset U of F2, is a Darbouz invariant or simply an
invariant of the system on U. The next proposition shows us how to obtain an
invariant of system (1) knowing sufficient algebraic solutions of the system.
Proposition 3. Suppose that a polynomial system (1) of degree m admits q
algebraic solutions f; =q0 with cofactors K; fori=1,...,q. If there exist u; € F
not all zero such that 3 y;K; = —s with s €F, then the function f*' ... fieest
i=1l
is an invariant of system (1).
Proof. In order to show that f/* ... f;'"e®* is an invariant, it is sufficient to see
that D(f!" --- fi"e®*) = 0, where D is the differential operator defined in (2).
Thus, we have

Dt fhaett) = (1o froest)(S ’“jf"

i=1

+ s)

q
= (ffr fraet) (Y K +s) = 0.
i=1
| |
In the rest of this section we present applications to quadratic system of each
statement of Darboux Theorem.
Example 1. If abe # 0 then the real quadratic system

z = z(az + ¢), y=y(2az + by + ¢, (5)

has exactly the following five invariant straight lines (i.e. algebraic solutions of
degree 1): fi =z =0, fo =az+ec =0, fs =y=0, fs =ax+by =0,
fs = az + by + ¢ = 0. Then, by Darboux Theorem (a) we know that system
(4) must have a first integral of the form H = fM f22fM fM £ with \; € F

5
satisfying > A\;K; = 0, where K; is the cofactor of f;. An easy computation
i=1
shows that Ky = az + ¢, K3 = az,K3 = 2az + by + ¢, K4 = axr + by + ¢ and
5
K5 = az + by. Then, a solution of > M;K; =0is Ay = X5 = —1, A2 = Ay =1 and

i=1

Az = 0. Therefore a first integral of system (5) is

(az + ¢)(az + by)
z(ax + by + ¢)

H =

| |
Example 2. If rj3 = ¢B(A—a)+aC(b— B) =0, and a2C? + ¢2B? # 0, then the
real quadratic system

@ = z(az + by + ¢), y =y(Az + By + C), (6)
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has the following three invariant straight lines: fi =2 =0, fp =y =0, f3 =
aCz + ¢By + ¢C = 0. Then, by Darboux Theorem (b) we know that the function
H = fM 2229 is a first integral if there exists \; € F not all zero such that
Z MK; = 0, where K; is the cofactor of f;. An easy computation shows that
K1 =azr+by+ec Ky = Az + By + C and K3 = az + By. Then a solution of
Z MK =0is Ay = (A —a)B, A2 = a(b— B) and A3 = aB — bA. Hence a first

i=1

integral of system (6) is
H = z(A=9)Bya(b=B) (4Cy 4 cBy + cC)"B_"’A i

|
Example 3. If apy # 0 then the real quadratic system

t=x>~1=P, 3 =ao+ a1+ any+ a0z’ +anzy+any’*=Q, (7)

with agg = (2(111 + (131 -~ 1)/(4&02), ajg = 601(311/(20.02) and agy = a“(a“ -
2)/(4ag2), has the following three algebraic solutions: two straight lines f; = z+1,
f2 = — 1, and one hyperbola

fo= ayy(a; —2) 72
4ao2

Their cofactors are Ky =z — 1, K =z + 1 and K3 = (a1; + 1)z + 2a02y + ao1,
3

respectively. Since }° A\ K; = —div(P, Q) for \; = A2 = —1/2, and A3 = —1, from
i=1

ap1(ai; — 1) 01 =1

z+agy+———=0.
2a0; ¥ dagy

z° + (a1 — Vay + ap ot +

Darboux Theorem (b) it follows that f* f;2 f3 is a Darboux integrating factor.
By computing its associated first integral we obtain

H = —2arctanh (a1 — 1)z + 2a02y + apm

]—ln‘:r+ (z® - 1)1/3],

(z2 — 1)1/
| |
Example 4. If a # 0 the quadratic system
& =-ylay+b) - (2> +y* -1), y=z(ay+d), (8)

has the algebraic solutions f; = ay + b = 0 with cofactor K; = az, and f; =
z2 + 9% — 1 = 0 with cofactor K3 = —2z. Since 2K; + aK, = 0, by Darboux
Theorem (c¢) we have that H = (ay + b)?(z? +y® — 1)@ is a first integral of system

(8). =
Example 5. The real quadratic system

i=-y-bz’+y)=P, y=z=0Q, 9)
has the invariant algebraic curve f; = z? + y? with cofactor K; = —2bz. Since

K, = div(P,Q), from Darboux Theorem (d), it follows that f;! is an integrating
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factor. Then an easy computation shows that H = exp(2by)(z? + y?) is a first
integral of system (9). -
An interesting application of Darboux Theorem (d) allows us to present a
new and shorter proof of the sufficient conditions for the classification theorem of
centers of quadratic systems due to Kapteyn [14, 15] and Bautin [2]. The first
proof of this fact was due to Kapteyn in the 1910s. Recently Schlomiuk [28] gave a
generic proof based also on the algebraic solutions (see later). A first step in order
to get a different generic proof based on the algebraic solutions and on integrating
factors appears in the Ph. D. Thesis of Giné [11].
Kapteyn—Bautin Theorem. Any quadratic system candidate to have a center
can be written in the form

= —y— bz — Czy — dy?, ¥ =2+ az® + Azy — ay®. (10)

This system has a center at the origin if and only if one of the following conditions
holds
(KB;) A—2=C +2a=0,
(KBj;) C=a=0,
(KB;“') b+d=0,
(KBry) C +2a=A+3b+ 5d = a® + bd + 2d*> = 0.

The following result gives a very short proof of the sufficient conditions of
Kapteyn—-Bautin Theorem.
Theorem 4. If system (10) satisfies one of the four conditions of the Kapteyn—
Bautin Theorem, then it has a center at the origin.
Proof. Since system (10) has a linear center at the origin, to prove that system (10)
satisfying one of the four conditions of the Kapteyn—-Bautin Theorem has a center
at the origin, it is sufficient to show that it has a first integral in a neighbourhood
of the origin.
Assume that system (10) satisfies condition (K By). Then it is easy to check that
the system is Hamiltonian, i.e. @ = —8H/8y, y = 6H/8z with H = § (2® +y?) +
%9:3 +bz?y —azy®+ %y:". Therefore H is a first integral defined in a neighbourhood
of the origin.
Suppose that system (10) satisfies condition (K Bjr). Then the system can be
written in the form

= —y— bz? — dy?, y =z + Azxy.

If A # 0 this system has the invariant straight line f; = 1 + Ay = 0 with cofactor
K; = Az. The divergence of the system is (A — 2b)z. Then, if A(A — 2b) # 0 we

have the divergence of the system is equal to (1 - %?) K. Hence, by Darboux

Theorem (d) we obtain that (14 Ay)?*/4-! is an integrating factor of system (10).
Since this integrating factor is not zero at the origin, the first integral is defined
in a neighbourhood of the origin, and consequently the origin is a center.

We can assume that A — 2b # 0, otherwise we would be under the assumptions
of condition (K By). So, it remains only to study the case A =0 and b # 0. Then,
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the system becomes & = —y — bz? — dy?, § = z. This system has the algebraic
solution f; = 2b%(bx? + dy?) + (b — d)(2by — 1) = 0 with cofactor K; = —2bz,
which is equal to the divergence of the system. Therefore, by Darboux Theorem
(d) we obtain that f;! is an integrating factor. Hence the first integral associated
to this integrating factor is defined at the origin if b — d # 0, and consequently
the origin is a center.

Now we suppose that in addition b — d = 0. Then the system goes over to

& = —y — b(z? + y?), ¥ = z. By Example 5 we know that H = exp(2by)(z? + y?)
is a first integral, which is defined at the origin, and therefore the origin must be
a center.
Assume that system (10) satisfies condition (KBjry). As Frommer observed in
[9] (see also [28]) the form of system (10) with b+ d = 0 is preserved under
a rotation of axes. After performing a rotation of axes of an angle 6, the new
coefficient a’ of 2% in the second equation of system (8) becomes of the form
a' = acos® @ + acos? fsinf + Bcosfsin? 6 + dsin® §. Therefore, if @ # 0 we can
find € such that @’ = 0. So we can assume that a = 0, and consequently C' # 0;
otherwise we would be under the assumptions of condition (K Byy).

The system & = —y —bx? — Czy+by?, i = v+ Axy, has the algebraic solutions
fi =1+ Ay = 0 if A # 0 with cofactor K; = Az, and fo = (1 -by)2 + C(1 —
by)z — b(A + b)z? = 0 with cofactor K3 = —2bz — C'y. Since the divergence of the
system is equal to K; + K>, by Darboux Theorem (d) we obtain that f;' f;! is
an integrating factor. Hence, again the first integral associated to the integrating
factor is defined at the origin, and consequently the origin is a center.

We remark that if A = 0 then f; is not an algebraic solution of the system,
but then the divergence of the system is equal to K3 and the integrating factor of
the system is f;', and using the same arguments we obtain that the origin is a
center.

Suppose that system (10) satisfies condition (Kryv). Then, if d # 0 the system
becomes

3a® + d*
d

2 +2d?
:J‘::—y+2i——a:2+2axy—dy2, ¥ =z +az’ +

il
P Ty —ay”.

We note that if d = 0 then we are under the assumptions of condition K;. This
system has the algebraic solution f, = (a? + d?) [(dy — az)? + 2dy] + d* = 0 with
cofactor K; = 2(a? + d?)z/d. Therefore the divergence of the system is equal
to 3K;. Hence, by Darboux Theorem (d) the function ‘3"1_5/2 is an integrating
factor of the system. Since d # 0, its associated first integral is defined in a
neighbourhood of the origin, and consequently the origin is a center. @

3. Improvements and topics related with Darboux theory

Let us present first some results on the cases not covered by Darboux Theorem
due to Chavarriga, Llibre and Sotomayor [4]. In order to be more precise we need
some notation and definitions.
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If S(z,y) = Z a;;z'y’ is a polynomial of degree m — 1 with m(m + 1)/2
i+j=0
coefficients in F, then we write S € Fp,_1 [z, y]. We identify the linear vector space
Fyn-1lz, y] with F""‘(’“‘"”/2 through the isomorphism

S — (@00, @10,@015 - -+ y@m—1,0,Gm-2,1,- - -, Q0,m—1)-

We say that p points (zx,yx),k = 1,...,p, are independent with respect to
F,._1[z,y] if the intersection of the p hyperplanes

Z xiyiaijzos k=13"'1p‘
i+7=0

in F™(m+1)/2 is a linear subspace of dimension [m(m + 1)/2] —

We remark that the maximum number of isolated singular points of system
(1) is m? (by Bezout Theorem), and that the maximum number of independent
isolated singular points of system (1) is m(m + 1)/2 and that m(m + 1)/2 < m?
form > 2.

A singular point (zg, yo) of system (1) is called weak if the divergence, div(P, Q),
of system (1) at (zo,yo) is zero.

The next result [4] improves statements (a) and (b) of Darboux Theorem
when the polynomial system has independent singular points, or weak independent
singular points. Since the statements of this theorem are slightly different from
the corresponding ones of [4] we shall prove it.
Chavarriga—Llibre-Sotomayor Theorem (CLS Theorem). Suppose that a
polynomial system (1) of degree m admits q invariant algebraic curves f; = 0
with cafactors K;, fori=1,...,q, and p independent singular points (zy,yx), for
k=1,...,p such that fi(zr,yr) # 0.

(a) If g = [m(m +1)/2] + 1 — p > 0, then system (1} has a first integral of the

formf -wf,;\" where \; € F are not all zero aﬂdZAK =0.
i=1

(b) If ¢ = [m(m + 1)/2] — p > 0 and the p independent singular pointls are weak,
then the function fl f; for suitable A\; € F not all zero is a first integral and

Z MK =0, or it is an integrating factor and Z MK = —div(P, Q).

Pmof By hypothesis we have g algebraic solut.lons fi=0,i=1,...,q, of system
(1). That is, the f/s are polynomials such that Df; = K;f; w1th K; the cofactor
polynomial of degree m — 1, or equivalently K; € F,,_;[z,y]. We note that the
dimension of F,,,_;[z,y] as a vector space over F is 1+2+4...+m =m(m+1)/2.

Since (zx,yx) is a singular point, P(zk, yx) = Q(zk,yx) = 0. Then, from Df; =
P[8fi/0z] + Q[8fi/dy], it follows that K;(xk,yx)fi(zk,yx) = 0. By assumption
fi(zk,yk) # 0, therefore K;(zk,yx) =0 fori=1,...,p. Consequently, since the p
singular points are independent, all the polynomials K; belong to a linear subspace
S of F,,—1[z,y] of dimension [m(m + 1)/2] —
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Let us prove statement (a). Since ¢ = [m(m+1)/2]+1-p> [m(m+1)/2]-p,
we obtain that the ¢ polynomials K; must be linearly dependent on S. So, there

q
are A\; € F not all zero such that Z AiK; = 0. Therefore, we obtain

i=1

9 i q
DU - i) = (f - ) (): AsD—f') = (R ) (Z A:-Kf) =0,
i=1

i=1

ie. file.. f: ? is a first integral of system (1), proving the statement (a).

To prove statement (b), let K = div(P,Q), clearly K € F,,_;[z,y]. Since the
singular points (zy,yx) are weak, K (zx,yx) =0 for k= 1,...,p. So K belongs to
the linear subspace S.

On the other hand, since dim S = ¢ = [m(m + 1)/2] — p and we have ¢ +
1 polynomials Ki,...,K,, K in §, it follows that K,,...,K,, K are linearly
dependent on S. Therefore, we obtain A; € F and A € F not all zero such that

q
(Z /\iK,-) + AK = 0.
i=1

If A = 0 then, as in the proof of statement (a), we obtain that f{\’ ---f;* is a
first integral of system (1).

If we assume now that A # 0, and if moreover pu; = A;/A, then we have

q
K = - Y p;iK;. Therefore, we obtain

=1

D -+ fle) = (f2 -+ fi) (Zp,-fc.-) -
i=1

=—(ff" - Sy K = —(f" - ff)div(P, Q),

ie. fi* ... f49 is an integrating factor of system (1). -
The next three propositions are different applications of the CLS Theorem
to quadratic systems. The space F™(m+1)/2 is now F3 and its elements are
(ago, @10, ao1)- The plane associated to a point (z;, y;) is now ago+z;a10+¥ia01 = 0.
Therefore, since the vector (1,z;,y:) # (0,0,0) we have that a unique point
is always independent. Since the vectors (1,z;,¥:),(1,z;,y;) are independent if
the points (z;,y:) # (z;,¥;), two points are always independent. Finally, since
the three points (1,z;,¥:), (1,%;,v;), (1, Tk, yx) are never collinear if the points
(@i, ¥:), (zj,y5), (T, yx) are isolated singular points of the quadratic system (see
the proof of Lemma 11.1 of [34]), it follows that three isolated singular points of
any quadratic system are always independent. Of course, since the dimension of
F? is 3, four points are always dependent. In short, we have proved the following
result.
Proposition 5. One, two or three isolated singular points of a quadratic system
are always independent with respect to F[z,y]. For the quadratic systems (1) the
divergence vanishes on a straight line. Since no more than two isolated singular
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points of a quadratic system can be collinear (see again the proof of Lemma 11.1
of [34]), we have the following well-known result that will be used later on.
Proposition 6. A quadratic system has at most two weak isolated singular points.
The next proposition presents an application of statement. (a) of CLS Theorem.
Any real quadratic system which has as invariant algebraic curves two complex
straight lines intersecting in a real point can be written, after an affine change of
coordinates in the form (11) (see Proposition 12 for more details). In the next
proposition we will use the fact that the invariant algebraic curve 2 4+ y® = 0
gives two algebraic solutions in C2.
Proposition 7. Consider the quadratic system

i = %(2®+y?) + Sz +2y(pr+qy+r1) = Pz,y), (11)
v = 3(@®+¢*)+5y-22(pz+qy+7) =Qlz,y).

If ep+4rq =0 and (c® + r%)(p? + ¢*) # 0, then the system has 3 singular points
and a Darbouz first integral

H = (2% + y®)* exp (carctan (%)) .

Otherwise it has at most 2 singular points or a straight line of singular points.
Proof. To study the singular points of system (11) we compute the resultant of
the polynomials P and @) with respect to the variable y, which turns out to be a
polynomial of the form zT(z) = z(4 + Bz + Cz? + Dz?). By the properties of
the resultant, we know that if (zo,%0) is a singular point of system (11), then z,
is a root of the resultant. We define

w = 27TA%D? + 2(2B? - 9AC)BD + (4AC - B%)C2.
Then w is equal to
64(cp + 4rq)® [b* + (a + 4(;)2]2 [16(cq — br)*+

+16(cp — ar)? + c*(a® + b* + 8aq — 8bp))>.

It is well known for a polynomial T'(z) of degree 3 (D # 0) that T'(z) has a unique
simple real root if w > 0, one simple real root and one double root, or a triple real
root, if w = 0, and three simple real roots if w < 0.

If cp+ 4rqg = 0 and (c® + r2)(p? + ¢°) # 0, then w = 0 and working with the
roots of T'(x), the resultant has 3 real roots, and one of them is double. Otherwise
w > 0 and the resultant has at most 2 real roots, or it is identically zero. Then
the statements of the proposition with respect to singular points are proved.

It is easy to check that z* +y% =0 is an invariant algebraic solution of system
(11). By Proposition 1, fi = z +yi = 0 and fo = = — yi = 0 are two algebraic
solutions of system (11) in C2. If ¢p + 4rq = 0 and (¢? + 7?)(p* + ¢*) # 0, then
system (11) has three real singular points, one of them being the origin. The other



138 Laurent Cair6, Marc R. Feix and Jaume Llibre

two are not contained in the algebraic curves z + yi = 0 and z — yi = 0. So, by
applying CLS Theorem (a) we obtain that H = f;" f;* is a Darboux first integral
of system (11) with A\; K; + A2 K, = 0, being K; the cofactor of f,. Hence the
proposition is proved. o

Before presenting another application of CLS Theorem, let us recall the the-
orem due to Schlomiuk, Guckenheimer and Rand [27] concerning the Kapteyn—
Bautin Theorem. We denote the points of R® as (a,b,d, 4,C) and we define the
following submanifolds of R®

M; = {(a,bd,A,C)€R’: A-2b=C+2a=0},

My = {(a,bd,A4,C)eR’: C=a=0},

Mir = {(a,b,d,A,C) €R®: b+d=0},

My = {(a,b,d,A,C) €R®: C+2a=A+3b+5d=a®+bd + 2d°}.

According to the Kapteyn-Bautin Theorem the quadratic systems (10) have a
center at the origin if and only if (a,b,d, A,C) € My U My U My U Mpy.

We recall (see Section 2) that systems (10) in M; are Hamiltonian with H equal
to a cubic polynomial. Therefore all solutions of these systems are algebraic.

We say that a system (10) in M satisfies property Py if it has as invariant
algebraic curve a real straight line and a real conic solution irreducible over C.
Both invariant algebraic curves do not pass through the origin.

We say that a system (10) in M/ satisfies property Py if it has as invariant
algebraic curve a real straight line L and a real conic which is not the line L with
multiplicity 2. Both invariant algebraic curves do not pass through the origin.

We say that a system (10) in My satisfies property Pry if it has as invariant
algebraic curve a parabola and an irreducible cubic curve. Both invariant algebraic
curves do not pass through the origin.

Schlomiuk—Guckenheimer—-Rand Theorem. The property P; is generic for
the real quadratic systems of M; fori = II,III IV.

For a proof of this theorem see [27] or [28].

As an application of CLS Theorem (b) we have the following corollary of the
Schlomiuk—Guckenheimer—Rand Theorem, which is a particular case of Theorem
3.

Corollary 8. For i = II,III, IV the real quadratic systems of M; generically
have a center at the origin.

Proof. From the Schlomiuk—Guckenheimer-Rand Theorem we have that, generi-
cally, the systems of M; have two algebraic solutions which do not pass through
the origin. Since the origin is a weak focus, from CLS Theorem (b) with ¢ = 2
and p = 1, it follows that such systems have a first integral which is defined in a
neighborhood of the origin. Hence, the origin is a center. =

Jouanolou [13] proved that if the number of algebraic solutions is ¢ > 2 +
[m(m + 1)/2], then the exponents ); in the statement of Darboux Theorem may
be chosen to be integers and hence we have a rational first integral in this case.
Following [29] we state Jouanolou Theorem in Singer’s formulation [30].
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Jouanoulou Theorem. If a polynomial system (1) of degree m admits q algebraic
solutions f; = 0,i=1,...,q, being fi,..., f, relatively prime in Clz,y], then one
and only one of the following statements hold.

(a) g <2+ [m(m+1)/2].

(b) There egist integers n; not all zero such that f ... fI'" is a rational first
integral. In this case, if f = 0 is any algebraic solution, then either there exist
c1,¢2 € C not both zero such that f divides ¢, H; fi=e [1 fjf-“"l where [ = {i :

i€ j€T
n; > 0} and J = {j : nj <0}, or f divides the greatest common divisor of P and

We note that Example 1 of Section 2 has a rational first integral because for
m = 2 we have 2 + [m(m + 1)/2] = 5, and the system of this example has 5
algebraic solutions.

From the Theorems of Darboux and Jouanolou it follows easily the next result
(see also [29]).
Corollary 9. For a polynomial system (1) of degree m, one and only one of the
following statements hold.
(a) System (1) has a finite number q < 2+ [m(m + 1)/2] of algebraic solutions.
(b) System (1) has an infinite number of algebraic solutions and admits a rational
first integral of the form fi" o fq? where f; =0 fori=1,...,,q are algebraic
solutions with f; and f; relatively prime if i # j,q > 2 + [m(m + 1)/2], and the
n; are integers not all zero. Moreover, the degree of every algebraic solution of
system (1) is bounded by

N = max { Z n; deg f;, Z |n,ridegfi} :

n; >0 n; <0

Note that in both cases of Corollary 9 we can obtain a natural number N which
bounds the degrees of all algebraic solutions of a given polynomial system (1). We
remark that the degrees of all invariant algebraic curves of a given polynomial
system (1) is not bounded. This is due to the fact that if a polynomial system (1)
has an invariant algebraic curve f = 0, then also f™ = 0 is an invariant algebraic
curve for alln € N.

One natural open question due to Prelle and Singer [24] (see also [29] and [4])
is the following.

Open Question 10. Give an effective procedure to find an upper bound N for
the degrees of the algebraic solutions of a given polynomial system (1) with degree
m > 2.

For a fixed degree m > 2 does not exist an upper bound N(m) for the degrees
of the algebraic solutions of all polynomial systems (1) of degree m as the following
example shows for m = 2. We consider the system

n+2(x2
n

. 2 2
¢=y-_zy, Yg=-z+ —y?), (12)
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which has the first integral

2 —n—2
H:[(l—n+2x) _n_+£y2] (l—gx) .
n n n

(See for more details expressions (29) and (31) of [21]). Therefore, system (12)
has algebraic solutions of degree n + 2.

We do not know examples of polynomial systems with algebraic solutions so-
lutions of arbitrary degree which are not Darboux integrable. So another natural
question is:

Open Question 11. For a fired degree m > 2 prove the existence of an upper
bound N(m) for the degrees of the algebraic solutions of all polynomial systems
(1) of degree m which are not Darbouz integrable.

In the case m = 2 we know that N(2) > 4, see [32]. This last open question is
essentially due to Poincaré [23].

The next theorem due to Prelle-Singer [24] concerns the elementary first inte-
grals. Roughly speaking an elementary first integral is a first integral expressible
in terms of exponentials, logarithms and algebraic functions. The notion of ele-
mentary function of one variable is due to Liouville who, between 1833 and 1841,
used it in the theory of integration. Elementary functions of two variables are
defined by starting with the field of rational functions in two variables C[z, y] and
using extension fields but with two commuting derivations 2 and 3%. For more
details see [24]. Of course, Darboux first integrals are elementary functions.
Prelle-Singer Theorem. If the system (1) has an elementary first integral, then
it has an integrating factor of the form f]'"* --- fg'* with f; € C [z,y] and n; € Z
and each f; = 0 is an algebraic solution.

We remark that this theorem says that if a polynomial system (1) has an
elementary first integral, then this integral can be computed by using the algebraic
solutions of the system.

The next theorem is due to Christopher, see [6] or [17]. Recently Zholadek
[35] rediscovered it. The theorem shows that for the integrability of a polynomial
system (1) of degree m we do not need many algebraic solutions; when these
solutions are in generic position, it is enough that the sum of their degrees be
m + 1.

Christopher Theorem. Let f; = 0 fori = 1,...,q be q irreducible algebraic

curves in C2%, and let k = i deg f;. We assume
i=1
(i) there are no points at which f; and its first derivatives all vanish,
(ii) the highest order terms of f; have no repeated factors,
(iii) no more than two curves meet at any point in the finite plane and are not
tangent at these points,
(iv) no two curves have a common factor in their highest order terms,
then any polynomial vector field X of degree m tangent to all f; = 0 is of the form
described below.
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(a) If m > k — 1 then

q q q
X:Y(Hf,‘)-l'Zhg Hf_, X_f.., (13)
=1 im1 i=1

J#i

where Xy, = (—0fi/0y,0fi/0z) is a Hamiltonian vector field, the h; are polyno-
mials of degree <m —k+1 andY is a polynomial vector field of degree < m — k.
(b) If m =k —1 then

q q
X=3 o | [[5| Xz
J=1

i=1

i#E
with a; €C. In this case a Darbouz first integral exists.
(¢c) If m < k—1 then X = 0.

We note that if f = 0 is an irreducible algebraic curve of degree m + 1 in C?
satisfying assumptions (i) and (ii) of the previous theorem, then there is a unique
vector field of degree m (modulus a multiplicative constant) tangent to f = 0,
namely Xy = (—8f/0y,0f/dz).

Kooij and Christopher in [17] improved statement (b) of the previous theorem.
Kooij—Christopher Proposition. Under the assumptions of statement (b) of
Christopher Theorem it follows that the polynomial system (1) has an integrating
factor of the form (fy--- f,)”" and a first integral of the form f& .- fo~, where
the constants «; are as in statement (b) of Christopher Theorem.

The next theorem due to Zholadek [35] extends Christopher Theorem to the
case where the algebraic curves f; = 0 have singular points, i.e. points (zg,yo0)
where fi(zo0,y0) = (8fi/0z)(z0,¥0) = (8fi/0y)(z0,y0) = 0.

Zholadek Theorem. Let f; =0, fori =1,...,q, be q irreducible algebraic curves

in C? satisfying the conditions (ii)-(iv) from the previous theorem and

(i’) all the singular points of f; = 0 are double points (transversal self-intersections),
then any polynomial vector field X of degree m tangent to all f; = 0 is of one of

the forms described below.

Let D(z,y) be a polynomial of degree d such that the curve D = 0 goes through the

singular points of all f; = 0 and that D and f; have no common factors in their

q
highest order terms and let k = (Z deg f.-), then any polynomial vector field X

of degree m tangent to all f; =0 :s :)f the one of the forms described below
(a) If m > k —d — 1, then formula (13) holds but with Y/D instead of Y, and
hi/D instead of h;.
(b) If m = k—d—1 then statement (b) of the previous theorem divided by D holds.
(¢) Ifm<k—d-1then X =0.

We note that the denominator D of the previous theorem is not fixed.

The previous two theorems give us the expression of the polynomial systems
which have a given generic set of irreducible algebraic curves as solutions. The
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next result due to Gasull [10] gives a characterization of all polynomial systems
which have a. given set of irreducible invariant algebraic curves.
Gasull Lemma. Suppose that a polynomial system (1) admits q algebraic so-

lutions f; = 0 for i = 1,...,q. We denote by F = H fi,Fr = 8F/8z, F, =

OF/dy,d = gcd(F,, F,), Hi,Hy,H3, K, Pk, Qk € Flz, y] satisfying F PK+Fny
= KF. Then the system can be written in the form

L1 F, 1 F
I_-H_s(HIPK_Hz?)’ Y= (HIQK'l'Hz )

with suitable Hy, Hy, Hy, K, Pg and Q g, such that Hy Px — Hg%"— and H1 Qg +
Hg—f} are polynomials divisible by Hs.

The following lemma due to Christopher [6] tells us how must be the higher

degree terms of an invariant algebraic curve f = 0 of a polynomial system (1). We
find preliminary versions of this lemma in other authors, see for instance Theorem
1 of Yablonskii [33].
Christopher Lemma. Suppose that a polynomial system (1) of degree m has the
invariant algebraic curve f = 0 of degree n. Let P,,, @, and f, be the homogeneous
components of P,Q and [ of degree m and n respectively. Then the irreducible
factors of f, must be factors of yPp — Q.

We note that the irreducible factors of f, in R[z,y] are either linear or
quadratic because f, is a homogeneous polynomial. While the irreducible factors
of fn in C[z, y] are always linear. We also remark that y P, —2Q, is the maximum
degree of @ if we write system (1) in polar coordinates £ = rcosf,y = rsinf.

4. Darboux integrability for real quadratic systems

In this section we apply the previous results about the integrability of a real
polynomial system (1) of degree m to the particular case m = 2, i.e. to real
quadratic systems.

We remark that a real quadratic system can have real algebraic solutions and
complex algebraic solutions, and that both types of algebraic solutions must be
taken into account when we study its integrability. Moreover, if f; = 0 is a complex
(non real) algebraic solution, then its conjugate f; = 0 is also an algebraic solution,
and its cofactor is the conjugate cofactor of f;. On the other hand, if we have an

equality of the form
q1

92
3o (ifi +mifi) + D migi =0,
i=1 j=1
with \;, iu; € C, nj € R, f;, fi € C[z,y] and g; € R[z,y], then p; = \;.

In the rest of this section we assume that system (1) is a real quadratic system
having q real or complez algebraic solutions f; = 0 with cofactors K; # 0 for
i=1,...,q. Also we suppose that div(P, @) # 0, otherwise the system should be
Hamiltonian. Then the following statements hold.

4
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(i) If ¢ > 5 then the quadratic system has a real rational first integral of the form
g
... fg'% with the n;’s integers such that 3" n:K; =0, and consequently all the
i=1
solutions of the quadratic system are algebraic (Jouanolou Theorem).
(ii) If the quadratic system has exact.ly q = 4 algebraic solutions, then it has a

real first integral of the form f - f with A\; € R if f; € Rlz,y], A\; € C if
fi € Clz,y] and z AiK; = 0 (Darboux Theorem (a)).

(iii) If the quadratic system has exactly ¢ = 3 algebraic solutions, then the real
function f; f22 £33 for sultable AieRif fie Rlz,y], \s e Cif f; € C[::: y] is

either a first integral and E AiK; = 0, or it is an integrating factor and E MK =

i=1
—div(P, Q) (Darboux Theorom (b)).
(iv) Suppose that the quadratic system has exactly g = 2 algebraic solutions.

(a) If there exist A\; € R if f, G Rlz,y], \i € C if f; € Clz,y] such that
MK + K5 = 0, then fl ‘)’22 is a real first integral (Darboux Theorem
(c))-

(b) If there exist A\; € R if f; € Ra:,y], Ai € C if f; € C[z,y] such that
MK+ Ky = —div(P, Q), then f;" f is a real integrating factor (Darboux
Theorem (d)).

(c) If the quadratic system has 2 singular points not contamed in f; = 0 for
i = 1,2, then it has a real first integral of the form f ’ with A; € R if
fi € Rlz,y], \i € C if f; € C[z,y] and \\ Ky + MKy = 0 (CLS Theorem
(a)-

(d) If the quadratic system has 1 week singular point not contained in f; = 0
for i =1, 2, then the real function _fl‘\‘ fg’\’ for suitable A; € R if f; € Rz, y],
Ai € C if f; € Clz,y], is either a first integral and A\ K; + A2 K5 = 0, or an
integrating factor and A\ K; + A2 Ky = —div(P, Q) (CLS Theorem (b)).

(v) Suppose that the quadratic system has exactly ¢ = 1 algebraic solutions. Then
f 1€ R[.I, y]'

(a) If there exist A; € R such that A\ K; = —div(P,Q), then f{\‘ is an integrat-
ing factor (Darboux Theorem (d)).

(b) If the quadratic system has 2 weak singular points not contained in f; = 0,
then the function fl’“ for suitable A\; € R is an integrating factor and
MK, = —div(P, Q) (CLS Theorem (b)).

We remark that CLS Theorem (a) cannot be applied to quadratic systems
having a unique algebraic curve f; = 0, because its application needs 3 singular
points outside f; = 0, that is in K; = 0, and we know that 3 singular points
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cannot be on an straight line (otherwise the straight line would be formed by
singular points and this is not allowed in this paper, see Section 1).

5. Real quadratic systems having an invariant conic

Quadratic systems with an algebraic solution of degree 2 have been studied by
many authors. For instance, Qin Yuan-xum [25] studied the quadratic systems
having an ellipse as limit cycle. Druzhkova [8] formulated in terms of the coeffi-
cients of the quadratic system necessary and sufficient conditions for the existence
and uniqueness of an algebraic solution of second degree. A nice result is the
following: a quadratic system having an algebraic solution of degree 2 has at most
one limit cycle. This result is essentially due to Qin Yuan-xun and Kooij and
Zegeling [18] (see also Christopher [5] and Gasull [10]).

We want to study the integrability of quadratic systems which have an in-
variant conic, i.e. an invariant algebraic curve f(z,y) = 0, with f(z,y) a real
polynomial of degree 2.

The conics in R? are classified as ellipses (E), complex ellipses (CE), hyperbolas
(H), two complex straight lines intersecting in a real point (p), two intersecting
straight lines (LV), parabolas (P), two parallel straight lines (PL), two complex
straight lines (CL) and one double straight line (DL). After an affine change of
coordinates, we can assume that the above conics have equations z? +y? —1 =0,
22492 4+1=0,22-9y2-1=0,224+92=0,zy=0,y—22=0,22 — 1 =0,
z? +1 =0 and z* = 0, respectively.

In order to apply the theory of Darboux to study the integrability of a real
quadratic system having as invariant algebraic curve a conic, and simplify the
computations, we start obtaining the normal forms for such systems.

We say that a quadratic system is of type (E) if it has an invariant ellipse. In
a similar way we define the quadratic systems of type (CE), (H), (p), (LV), (P),
(PL), (CL) and (DL).

Proposition 12. A real quadratic system having an invariant conic after an
affine change of coordinates writes in one of the following nine forms

=8+’ -1 +2ypz+qy+r), y=2@*+y*-1)—2z(pz+qy+r),
c=22+y+ ) +2ypz+qy+r1), y=2@+y*+1)-2z(pz+qy+r),
t=2@" -y -1)-2ypz+qu+r), Y=-3@="-y*-1)-2z(pz+qy+r),
t=2@2+y")+ S+ 2y(pz+qy+7), =52 +y?)+ Sy —2z(pr+qu+7),
z = z(az + by + ¢), 7 =y(Az + By + C),
g=1tzy—S(y—2*)+pz+qy+r, ¥ =by?® + c(y — 22) + 2z(px + qy + 1),
T = %(:52 hes 1)! y = Q(zsy)s

=% (z2+1), ¥ =Q(z,y),

& = z(az + by +¢), ¥ =Q(z,y),

((E), (CE), (H), (p), (LV), (P), (PL), (CL) and (DL) respectively), if the invari-
ant conic is an ellipse, a complez ellipse, a hyperbola, two complex straight lines
intersecting in a real point, two intersecting straight lines, a parabola, two parallel
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straight lines, two complez straight lines, and one double straight line, respectively.
Here Q(z,y) denotes an arbitrary polynomial of degree 2. Moreover, except for the
system (LV), the cofactor of the invariant conic is ax + by +c, where the constants
b and c are zero if they do not appear in the system.
Proof. The proposition is easy to prove using Christopher Theorem for quadratic
systems of type (E), (CE), (H), (P), and (LV), or using Gasull Lemma for quadratic
systems of any type. Let us show how to proceed in the case (E). Assume that one
algebraic solution for the quadratic system (m = 2) is the ellipse f; = 2% +y*—1 =
0. Then ¢ =1, k = 2 and as m > k — 1, we must apply the statement (a) of
Christopher Theorem. We see that the degree of h; is m — k + 1 = 1, the degree
of the polynomial vector field Y is m — k = 0 and finally Xy, = (—2y,2z), from
where the expression for (E) follows. Let us show how the Gasull Lema applies
in the case (p). We have F = f; = 2% + 3%, ie. F, =2z, F, = 2y, d = 2 and
from the equation 2z Pk + 2yQx = K(z? + y*) and because our system must be
quadratic, it follows that we must take as Px and @ g two quadratic polynomials,
say Px = [cxz + a(z? + 1?)]/2, Qk = [cy + b(z® + 4?)]/2 and K = az + by + ¢,
then the choice Hy = 1, Hy = —2(pz + qy + r) and H; = 1 gives the right an-
swer. Finally, let us show how the Gasull Lema applies in the case (PL). Here
F=fi==z F, =1, F, =0 and d = 1. Now the equation Px + 0Qx = Kz
gives Pg = z, K = 1 and Qg an arbitrary quadratic polynomial, from where the
expression for (PL) follows. =
We note that six of these nine normal forms appeared in [10], and that system
(DL) of Proposition 12 is also the normal form for a quadratic system having an
invariant straight line. We remark that real quadratic system having an invari-
ant conic of type (LV), (PL), (p) or (CL) have at least two algebraic solutions.
Real quadratic system having an invariant conic of type (E), (CE), (H), (P) or
(DL) have in general only one algebraic solution. In what follows we study the
integrability of each type of quadratic system given above.
Theorem 13 (Ellipse Theorem). Let f; = x® + y*> — 1. Then for a system of
type (E) the following statements hold.
(a) If ap+bq = 0 and (b*+p?)(p®+q?) # 0, then the straight line f> = pr+qy+r =
0 is an algebraic solution of (E) and f{\‘ _fzj\2 is a Darbouz integrating factor for
A1 = Ay = —1, which gives the first integral

 (pz+gqy+r1)°
RGeS

(b) If p=q = 0 and r(a® + b*) # 0, then f,'\' is a Darbouz integrating factor for
A1 = —1, which gives the first integral

H = ay — bz + In|2* + —1|2r.
(c) Ifb=p =0 and a(q® + %) # 0, then f}' is a Darboux integrating factor for
A1 = (2q — a)/a, which gives the first integral

H=(qy+r)" (z* +y* -1)".
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Moreover, if ¢ # 0 this system has the invariant straight line qy +r = 0.

Proof. From Proposition 12 the cofactor of f; is K; = ax + by. Since ap+ bg = 0,
we obtain that fo = 0 is an algebraic solution of system (E) with cofactor K, =
—2¢z +2py. The divergence of system (E) is div = (a—2q)z + (b+2p)y. Therefore,
we have K; + K = div. Then, by Darboux Theorem (d), fl"lfg_l is a Darboux
integrating factor of system (E). Hence, if (b + p?)(p® + ¢*) # 0 statement (a)
follows.

If p=q =0, then K; = div. Therefore, by Darboux Theorem (d), f;
Darboux integrating factor of system (E). Hence, if r(a® 4+ b?) # 0 statement (b)
follows.

If b=p=0and a # 0, then (a — 2¢)K; = adiv. So, by Darboux Theorem
(d), 1(2"_“)/“ is a Darboux integrating factor. Hence, if a(¢? + %) # 0 we obtain
statement (c). ™
Proposition 14. Statements (a) and (c) of Theorem 18 contain all real quadratic
systems which have an invariant ellipse, an invariant straight line, and verify that
these two algebraic solutions force the integrability.

Proof. From Christopher Lemma we know that all real invariant straight lines of
the systems of type (E) must be of the form f; = (4p— b)z + (49 + a)y + constant.
On the other hand, since the cofactor of f; = 2% + y?> — 1 is K, = az + by, and
the divergence of systems (E) is div = (a — 2¢)z + (b + 2p)y, we have that the
independent term of K3 must be zero if we want for the systems A\ K; + A2 Ky =
—div, or A; K} + A;K; = 0 to have a solution. In other terms, for obtaining
an integrating factor or a first integral for a system (E) only using the algebraic
solutions f; = 0 and f» = 0 we need that the independent term of the cofactor of
f2 be zero. In short, using these two restrictions, the first in the form of f; and
the second in the form of K3, the proposition follows easily.

Theorem 15 (Complex ellipse Theorem). Far a system of type ( CE) the
three statements of Theorem 13 hold interchanging z* + y% — 1 with 22 + y® + 1.
Proof. The same proof as in Theorem 13. =
Proposition 16. Statements (a) and (c) of Theorem 15 contain all real quadratic
systems which have an invariant complez ellipse, an invariant straight line, and
verify that these two algebraic solutions force the integrability.

Proof. The same proof as in Proposition 14. w
Theorem 17 (Hyperbola Theorem). Let f; = 22 —y? — 1. Then for a system
of type (H) the following statements hold.

(a) If ap—bq = 0 and (b2 +p?)(p®+q?) # 0, then the straight line fo = pr+qy+r =
0 is an algebraic solution of (H) and f{\‘ f;" is a Darboux integrating factor with
A1 = Ay = —1, which gives the first integral

H={px+qy+r)°(12—y2—1]zp-

(b) If p=g=0 and r (a® + b?) # 0, then f* is a Darbouz integrating factor for
A1 = =1, which gives the first integral
H =ay+b:c+ln|zg—y2—1|2r.
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(c) Ifb=p =0 and a(g*> +12) # 0, then f" is a Darbouz integrating factor for
A1 = (29 — a)/a, which gives the first integral

H=(qy+r)"(a® -y -1)",

Moreover, if q # 0 this system has the invariant straight line qy +r = 0.

(d) If a4+ b =1 =0 and a(p® + ¢*) # 0, then the straight line fo = z —y = 0
is an algebraic solution of (H) and fi" £} is a Darboux integrating factor with
A1 = (29— 2p—a)/a, A2 = 1, which gives the first integral H equal to

(z® —y® = 1P ((p — g)[(a — 4p)=>+

+2(2p — 2¢ — a)zy + (a + 49)y*] + a(p + ¢))*.

(e) Ifa—b=r =0 and a(p? + q%) # 0, then the straight line f =z +y =0
is an algebra ic solution of (H) and f}' f2% is a Darbouz integrating factor with
A1 = (2p+ 29 — a)/a, Ay = 1, which gives the first integral H equal to

(x:z -y - 1]2(q+p} ((p+4q)[(a+ 4p)x’+

+2(2p + 2¢ + a)zy + (a + 49)y*] + a(p — ¢))°.

Proof. The first three statements can be proved as in Theorem 13. We prove
statement (d) and in a similar way statement (e) can be shown.

We assume that a+b=r =0and a (j!)2 + qg) # 0. Then it is easy to check that
fo = 0 is an algebraic solution of system (H) with cofactor K» = 2(pz + qy). The
divergence of (H) is div = (a —2q)z+ (b— 2p)y. Then the equation A\ K} + A2 K3 =
—div, has the solution A\; = (2¢ — 2p — a)/a, A2 = 1. Therefore, by Darboux
Theorem (d), statement (d) follows. =
Proposition 18. Theorem 17 contains all real quadratic systems which have an
invariant hyperbola, an invariant straight line, and verify that these two algebraic
solutions force the integrability.

Proof. The same as in Proposition 14. @

We recall that Proposition 6 tells us that systems (p) satisfying c¢p + 4rq = 0
and (c*+r?) (p? +¢*) # 0, have a Darboux first integral. The next theorem
characterizes all real quadratic

systems of type (p) which are integrable having at least three algebraic

solutions of degree 1. Of course, systems (p) always have two complex straight
lines ¢ + yi =0 and = — yi = 0.

Theorem 19 (Two complex straight lines intersecting in a real point
Theorem). Let fi = z +yi and f» = fi. If a system (p) has a third algebraic
solution f3 = 0 of degree 1 then it verifies one of the following two statements.

(a) If p[dar —c(4p—b)]+q[4br—c(4g+a)] = 0 and (4p—b)* +(4q+a)® # 0, then the
straight line f3 = (4p—b)z+(4q+a)y+4r—[4br—c(4g+a)]/(4p) = 0 is an algebraic
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solution of (p) and f f;‘a is a Darbouz integral for \y = (cp + 4rq)(8r — 2ci),
X=X, Az=a (c e 161" %) + 4c(eq — 4rp). A real ezpression of it is

_ 9 2\ 8ri{cp+drg) E .
H = (+3°) exp (4c(cp + 4rq) arctan (J:))
((4p — b)z + (4g + a)y + 4r — [4br — c(4q + )]/ (4p)) (<" H107") Hclea=trn)

(b) If r = 0 and c [(4p — b)® + (4¢ + a)?] # 0, then the straight line f3 = (4p —

b)z+ (4g+a)y = 0 is an algebraic solution of (p) and f" flA‘f:;\’ is a Darbouz in-
tegrating factor for A\, = — ([a® + b + 6(ag — bp) + 8 (p> + ¢*)] + 2(bq + ap)i) /
[(4p — b)? + (49 + @)?] , A2 = A1, A3 = —4[p(4p —b) + q(4g +a)]/ [(4p — b)*+
(4q + a)?]. Moreover, fi"* fi"' fi*e*t is a Darbouz invariant of (p) for pa = fi,
m = —4([p(4p — b) +q(4q + a)] — (bg + ap)i)/ (c[(4p — b)* + (4¢ + @)*)), p3 =
2[b(4p — b) — a(4q + a)]s/ (c[(4p — b)* + (4g + a)?]).

Proof. An easy computation shows that the cofactor of f; is

a b !
Kl—[§+(§—2p)'l]$+

b
+{§—-(2+2q) ]y+§-—2ﬂ
Of course, the cofactor of f; is K, = K;. With the assumptions of statement (a),
the cofactor of f3 is K3 = 2(—qz+py). Since p[4ar—c(4p—b)]+q[4br—c(4g+a)] = 0,

it follows that \{K; + MKy + A\3K3 = 0 for Ay = (cp + 4rq)(8r — 2ci), and
A3 = a (% + 1672) + 4c(cq — 4rp). Therefore, by Darboux Theorem (b) we obtain

that f f ™ f2% is a first integral, and consequently statement (a) is proved.

Now we suppose the hypothesis of statement (b). Then the cofactor of f; is
K3 = —2qz + 2py + ¢/2. Since ¢ [(4p — b)? + (4¢ + a)?] # 0, the system A K +
A Ky + A3K3 = (29 — a)z — (2p + b)y — ¢ has a unique solution for A; and s,
the one described in the theorem. Then, by Darboux Theorem (b) f{\‘ f A f._,’:‘3 is
an integrating factor of (p). Since the system pj K; + ji; Ky + u3K3 = —s has a
unique solution for y; and ps, the one described in the theorem, by Proposition
3, fi* /1" fi*e*! is an invariant of (p). Hence, statement (b) is proved.

In order to check that the statements of the theorem give all algebraic solutions
of systems (p) of degree 1, we must find all polynomials f3 of degree 1 satisfying
(3). This tedious task can be made easier with the help of an algebraic manipulator
and Chirstopher Lemma, which fixes the form of f3 to be f3 = (dp — b)z + (4¢ +
a)y + constant.

The systems (LV) are called Lotka—Volterra systems; their study was st.arted
to be studied by Kotka and Volterra in [19, 20, 31]. Later on Kolmogorov studied
them in [16] and some authors call the systems (LV) Kolmogorov systems.

The next theorem characterizes all Lotka—Volterra systems which are inte-
grable having at least three algebraic solutions of degree 1. Of course, Lotka-



Integrability and Algebraic Solutions 149

Volterra systems in the normal form (LV) have always two invariant straight lines
z=0and y=0.

Theorem 20 (Two intersecting straight lines Theorem). Let f; = z and
f2 =y be the two trivial algebraic solutions of a Lotka—Volterra system (LV). Then
the following statement holds

(a) If 112 = ¢B(A — a) + aC(b — B) = 0 the expression f f* is an integrating
factor of (LV) with A, = [(C—c)B+Cb]/(cB—Cb) and Ay = (2¢B—Cb)/(cB—Cb).
If the condition is aB — bA = 0, then the expression fI" fi?e** is a Darbouz
invariant of the (LV) provided that p, and ps be a solution of the system

cy +Cpy = -—s,
apy + b”2 = 0!
Aﬂ] + Bﬂ.g = 0.

If the (LV) has a third algebraic solution f3 = 0 of degree 1, then modulus the sym-
metry (z,y,a,b,¢,A,B,C) = (y,z,B, A, C,b,a,c) it verifies one of the following
statements.

(b) If b =0 and c # 0, then the straight line f3 = ax+c = 0 is an algebraic solution
of (LV) and £ f;2 2% is a Darbouz integmtiﬂgfactorfar M =(C=e)/e, Ay = =2,
A3 = (cA—ac—aC)/(ac). Moreover, fI'' f? f3*e*t is a Darbouz invariant of (LV)
for p1 = —s/c, p2 =0, pz = s/ec.

(c) Ifc = C and (A—a)(B-b) # 0, then the stm:ght line f3 = (A—a)z+(B-b)y =
0 is an algebraic solution of (LV) and f f2 *f3 ) is a Darbouz integrating factor
for Ay = b/(B—=0), A = Af(a— A), A3 = (ab — 2aB + AB)/[(a — A)(B — b)].
Moreover, fi" fi* f¥*e®t is a Darbouz invariant of (LV) for u; = sB/[C(b — B)],
iz = as/[C(A = a)], pis = (aB — bA)s/[C(a — A)(B — b)].

(d) If ri2 = 0 and acBC(a — A)(b— B) # 0, then the stratght line f3 = aCzx +
cBy + ¢C = 0 is an algebraic solution of (LV) and f f3? f2* is a Darbouz first
integral for Ay = (A —a)B, Ay = a(b— B),A\3 = aB — bA.

Proof. As the cofactors of f; and fo are respectively K; = az + by + ¢ and
K, = C + Az + By + C, under the assumptions of statement (a) the equations
MK+ MK +div(P, Q) and puy Ky + pup Ko + s have, as solution, the stated values
for the A; and p;.

Under the assumptions of statement (b) the cofactor of f3 is K3 = az. Since
acB # 0, the system A\ K; + A2 Ko + A3K3 = (2a + A)xr + 2By + ¢+ C has a
unique solution Ay = (C —¢)/e, A2 = —2,A3 = (¢A — ac — aC)/(ac). Therefore,
by Darboux Theorem (b) we obtain that f f22f2* is an integrating factor of
system (LV). The system p; K + p2 K2 + pu3 K3 = —s has a unique solution p; =
—s/c,p2 = 0, u3 = s/c. Hence, by Proposition 3, f{"* f4* fi*et is an invariant of
(LV). So, statement (b) is proved.

Now we assume the hypotheses of statement (c¢). Then the cofactor of f3 is
K3 = ar + By + c. Since ¢(A — a)(B — b) # 0, the system A\ Ky + A Ko + A3 K3 =
(2a+A)z+(b+2B)y+2c has a unique solution A; = b/(B—b),A; = A/(a—A),As =
(ab — 2aB + AB)/[(a — A)(B — b)]. Then, by Darboux Theorem (b) we obtain
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that f f22f2* is an integrating factor of (LV). The system u; K + po Ko +

pu3K3 = —s has a unique solution py = sB/[C(b — B)), p2 = as/[C(A — a)),

pu3 = (aB —bA)s/[C(a— A)(B — b)]. Therefore, from Proposition 3 it follows that
1 f42 f{% e is an invariant of (LV).

Statement (d) is proved in Example 2 of Section 2.

Finally, in order to check that modulus the symmetry (z,y,a,b, ¢, A, B.C) —
(y,z,B, A, C,b,a,c), the statements of the theorem give all algebraic solutions of
the Lotka—Volterra system (LV) of degree 1, we must find all polynomials f; of
degree 1 satisfying equation (3). This tedious task is made with the help of the
algebraic manipulator Maple, and Christopher Lemma. We note that Christopher
Lemma says that fz must be of the form f3 = (a — A)z + (b — B)y + constant,
fs = z+constant, or f3 = y+constant. Moreover, due to the mentioned symmetry
it is sufficient to consider the first two possibilities. @

We remark that the integrability of the Lotka—Volterra systems described in
statement (d) of Theorem 20 can also be detected by using either Darboux The-
orem (d), Chavarriga-Llibre-Sotomayor Theorem (b), or Christopher Theorem
and Kooij-Christopher Proposition.

The next theorem characterizes all Lotka—Volterra systems which are inte-
grable having an invariant conic.

Theorem 21. Let fi = x and fy = y. If a Lotka—Volterra system (LV) has a third
algebraic solution f3 = 0 of degree 2, then modulus the symmetry (z,y,a,b,c, A, B,
C) = (y,z,B,A,C,b,a,c) it verifies one of the following statements
(a) If B = 2b, a(2¢ + C) — cA = 0 and acC # 0, then the parabola f3 = C(azx +
¢)? + ¢®By = 0 is an algebraic solution of (LV) and f f3*f3* is a Darbouz
integrating factor for Ay = =2, Ao = (¢ —C)/C, A3 = —(2¢+ C)/(2C). Moreover,
11 f42 fi%e%t is a Darbouz invariant of (LV) for py = —s/c, pa =0, uz = s/(2c).
(b)) If b+ B =0, a(2¢+ C) — cA = 0 and ac(c + C) # 0, then the hyperbola
f3 = (c+C)(az+c)?+2acBzy = 0 is an algebraic solution of (LV) and f* f3* f3
is a Darbouz integrating factor for Ay = —c/(c+ C), A\a = —(2¢+ C)/(c + C),
A3 = (c— C)/[2(c + C)). Moreover, f{"* f'* f¥*e** is a Darbouz invariant of (LV)
for my = p12 = —s/(c+ C), pg = (3¢ + C)s/[2¢(c + C)].
(c) If (¢ +2C)B — bC = 0, a(2c + C) — cA = 0 and acC # 0, then the parabola
f3 = (aCz + c¢By + ¢C)? — 4acBCzy = 0 is an algebraic solution of (LV) and
f“f;“f;‘s is a Darbouz integrating factor for Ay = Aa = —1, A3 = —1/2. More-
over, fi'' f§?fi%e** is a Darbouz invariant of (LV) for uy = —s/(2¢), ps =
—s/(2C), p3 = (c+ C)s/(2cC).
(d) If c = 2C, A(2B — b) — a(3B — 2b) = 0 and ac(2B — b) # 0, then the parabola
fs = acz+[az+(2B-b)y)?* = 0 is an algebraic solution of (LV) and f f22 f3 is a
Darbouz integrating factor for Ay = (B—b)/(b—2B), A\ = =2, A3 = b/[2(b—2B)].
Moreover, fi"* f* f¥*e®t is a Darbouxz invariant of (LV) for u = 2Bs/[c(b—2DB)),
p2 = 2s/c, pz = 2(B — b)s/[c(b— 2B)].
(e) Ifc=C, aB —bA + 2(A—a)(b— B) =0 and caB(b— B)(A — a) # 0, then
the parabola f3 = c¢[(A — 2a)®z + aBy] + a[(A — 2a)z — By)? = 0 is an algebraic
solution of (LV) and f f22f* is a first integral for Ay = (A —2a)/(a— A), Ay =
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af(a— A),\; = 1.

Proof. The cofactors of f; and f» are Ky = az + by +c and Ky = Az + By + C
respectively. Under the suitable assumptions for each statement it is easy to check
that f3 = 0 is an algebraic solution of system (LV).

For statements (a)—(d) we must check that A\ K7 + A2 K5 + A3 K3 is equal to
minus the divergence of system (LV), i.e. equal to —(2a+ A)z— (b+2B)y—(c+C).
Then, according to Darboux Theorem (b) 1*" fz'\’ :;\3 is a Darboux integrating
factor of system (LV). Similarly for statement (e) we see that A\ K; + Ao Ko +
A3 K3 = 0 accepts a non trivial solution provided that aB—bA+2(A—a)(b—B) = 0,
which is precisely the second relation needed for the existence of fj.

Again, to see for statements (a)—(d) that f}"* f}' f4* e is an invariant of system
(LV), from Proposition 3 it is sufficient to verify that p, K + po Ko + 13 K3 = —s.

Finally, in order to check that modulus the symmetry (z,y,a,b, ¢, A, B.C) —
(y,z,B, A, C,b,a,c), the statements of the theorem give all algebraic solutions
of the Lotka—Volterra system (LV) of degree 2, we must find all polynomials f;
of degree 2 satisfying equation (3). We note that Christopher Lemma and the
mentioned symmetry imply that f3 must be of the form f3 = foo+ fioz+ fory+72,
fa = foo + frioz + fory + 2y, f3 = foo + fr0z + fory + z[(a — A)z + (b — B)y],
fs = foo+ f10z + fory + [(a — A)z + (b — B)y)*. =

We must mention that statement (d) of Theorem 20 and the invariants of
statements (a) and (c) of Theorem 20, and (b), (c) and (d) of Theorem 21 were
already found by Cair6 and Feix [3] using the Carleman method.

Proposition 22. Let f; = z and fo = y. If aB — bA = 0, then fI'' f¥?e® is a
Darbouz invariant of system (LV) for py = Bs(cB —bC), p2 = bs(cB — bC).
Proof. The cofactors of f; and fz are K} =ar+by+cand Ky = Az + By +C
respectively. Then the system A\; K; 4+ A2 K> = —s has solutions if and only if
aB — bA = 0. It is easy to check that u; = Bs(cB — bC), pa = bs(cB — bC)
is one of the solutions of the above system. Therefore, from Proposition 3, the
proposition follows. 8
Theorem 23 (Parabola Theorem). Let f; = y— 2. Then for a system of type
(P) the following statements hold.

(a) If 2b%r + (a — 2q)(a® + 2bp — 2aq) = 0, cb — (a? + 2bp — 2aq) = 0 and b # 0,
then the straight line f, = bxr + 2g — a = 0 is an algebraic solution of (P) and
H = f} £ is a Darboux first integral for \y = 1, Ay = —2; i.e.

L
T (bx +2¢—a)?’

(b) If b= 0, a = 29 # 0, and A% = p? — 4gr > 0, then the two parallel straight
lines fo = 2qx + p+ |A| =0 and f3 = 2gz + p— |A| = 0 are algebraic solutions of
(P) and H = f f22 f2* is a Darbouz first integral for Ay = |A|, Xo = c—p— |A|,
Aa=p-c—|A|; ie

H=(y—- 3;2)iA| (2gz +p+ |A])c—p—|A! (2qz + p — ]Al)p-c-|A| )
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(¢c) If b = 0,a = 2q, p> — 4qr = 0 and g(p — c) 7! 0, then the straight line
fo = 2qz+p = 0 is an algebraic solution of (P) and f ’ is a Darbouz integrating
factor for Ay = =1, Ao = =2, which gives the first mtegml

_2c-p) . |29y —2?)
2qx +p (2gz +p)? |’

(d) If b = 0, ap—2cq = 0 and aq # 0, then the straight line f, = 2cqr+aqy+ra =0
is an algebraic solution of (P) and f f3* is a Darbouz integrating factor for
A = —(a + 2q)/a, Ay = 0, which gives the first integral

(2cqz + agy + ra)®
(y — 22)™

H =

(e)Ifa=b=qg=0 andp # 0, then the straight line fo = pz+r = 0 is an algebraic
solution of (P) and ;" f5* is a Darbous integrating factor for Ay = Ay = —1, which
gives the first mtegml
— z2\?
H= (y-2%)"
(pz +r)°

(f) If 16b*r — (a — 2:,,1)(1"(12 — 24aq + 164°) = 0, 16bp + 16¢> — 40aq + 15a% = 0,
8bc + Ta® — 24aq + 16g%> = 0 and b # 0, then the 3tnght Ime f2=2(2¢ — a)z +
by + (@ —2¢)?/b= 0 is an algebraic solutwn of (P) and f 2 is a Darbouz first
integral for \y = —1, A = 1, which gives the first integral

2(2q —a)z + by + (a — 2q}2/b
y—a?

H=

(9) If 64b°r —a(4g—a)? = 0, 32bp+(a—4q)(3a+4q) = 0, 16bc+(a—4q)(5a—4q) = 0
and b(3a —4q) # 0, then the straight line fo = (4g—a)z + 2by + (4g—a)?/(8b) = 0
is an algebraic solution of (P) and f} f3* is a Darbouz integrating factor for
A = —1/2, A2 = =2, which gives the first integral

H:arctan( vy ._xz) (3a — 49)V/y — 22

dbr +4q —a 2[(4g — a)z + 2by + (49 — a)?/(8b)]"

(h) If 3a — 4q = 0, 3¢ — 2p = 0, 54b%r + 16q3 — 36bpg + 9V2|A]*/? —/2(10¢® —
15bp)|A| = 0 and b|A| # 0 where A2 = 2¢*> — 3bp > 0, then the straight hne
fo = 2(2¢+ V2| A|)z +3by +[8v/2¢° —12\/'bpq+(2q +3bp)|A| +3|A[%)/(3blA]) =
is an invariant algebraic solution of (P) and fl "’ is a Darboux integrating factar
for Ay = =5/2, Ay = 0, which gives the first mtegml

54b3z® — 81b3zy — 54b%px — 54b%qy — 36bpg + 16¢° + 4v/2 lA|3

= (y — z2)*/?




Integrability and Algebraic Solutions 153

(i) If 3a — 4¢ = 0, 3bp — 29 = 0, 27b°r — 4¢® = 0, 9bc — 4¢*> = 0 and b # 0, then
the stmaght fme fa = 12qz + 9by + 4¢*/b = 0 is an algebraic solution of system
(P) and _fl 22 is @ Darbouz first integral for \; = —1,\y = 1, which gives the
first sntegm!
12gz + 9by + 4q2/b

y—2?

() If 3a — 4q = 0, 27b%r + 8¢ — 18bpg = 0, 9bc + 8¢*> — 18bp = 0 and (4q —
3a)(3bp—2¢®) # 0, then the parallel straight lines fo = 12qz+9by +4¢>/b =0 and
fa = 12qz + 9by + 2(9bp — 4¢%) /b = 0 are algebraic solutions of (P) and f} f3* 2
is a Darboux integrating factor for Ay = Az = —1, Ag = —1/2, which gives the first
integral

H=

95%2 + 24bgzx + 9b%y + 8¢* + 2(3bx + 2q)(12bgz + 9b%y + 4q2)‘/3
92 (y — =2)

(k) If 3bp — 2¢* = 0, 27b%r — 4¢® = 0, 9bc + 4¢* — 6aq = 0 and bg(3a — 4q) # 0,
then the straight line f; = 12qx + 9by + 4¢?/b = 0 is an algebraic solution of (P)
and fl)“f;’ is an integrating factor of (P) for \y = —1, Ay = —3/2, which gives
the first integral

6a—8g 9b%z? + (24bg + 6b\/bf2) = + 9%y + 8¢* + 4q\/b_j‘"
VbF2 952 (y — 2?)

Proof. From Proposition 12 we know that the cofactor of f; is K1 = ax+by+c. We
denote the divergence of system (P) by div. Under the assumptions of statement
(a), the cofactor of f; is K3 = [az + by + 2p+ (a — 2g)a/b]/2. Since K| — 2K, =0,
from Darboux Theorem (c), statement (a) follows. Similarly for statement (b),
the cofactors of fo and f3 are Ky =gz + (p— |A])/2 and K3 = qz + (p + |A])/2.

Since Z AiK; = 0 for the values of A;’s given in (b), by Darboux Theorem (b),
i=1

statement (b) is proved. For statement (c), the cofactor of fs is K3 = gz + p/2.
Since K; + 2K, = div, from Darboux Theorem (d), statement (c) follows. In
statement (d), it is easy to check that f» = 0 is an algebraic solution of (P). Since
(a + 2q)K; = —adiv, by Darboux Theorem (d), we obtain statement (d). For
statement (e), the cofactor of fs is K3 = p. Since K; + K3 = div, by Darboux
Theorem (d), we get statement (e). For statement (f). So the cofactor of f; is
K5 = az+by+c. Consequently K; = K5, and by Darboux Theorem (c¢), statement
(f) follows. For statement (g), the cofactor of f; is K = (¢ + a/4)z + by — a(a —
4q)/(8b). Since +K; + 2K, = div, by Darboux Theorem (d), statement (g) is
proved. For statement (h), the cofactor of fo is Ky = (4q — v2|A|)z/3 + by +
[(6bp + 4¢®)|A| + V2(12bpg — 8¢®) — 6| A|*]/(18b|A|). Consequently f, = 0 is an
algebraic solution. Since 5K; = 2div, by Darboux Theorem (d), statement (h)
is proved. For statement (i), the cofactor of f» is Ko = 4qx/3 + by + 4¢%/(9b).
Since K; = K3, by Darboux Theorem (c), we obtain statement (i). For statement

H =
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(j), the cofactors of f, and f;3 are K, = 4qz/3 + by + 2(9bp — 4¢*)/(9b) and
K3 = 4qz /3 + by + 4¢*/(9b). Consequently, K; + ;K> + K3 = div, by Darboux
Theorem (b), statement (j) follows. Finally, for statement (1), the cofactor of f;
is Ko = 4qx/3 + by + 4¢%/(9b). Since K; + g-Kg = div, by Darboux Theorem (d),
statement (k) follows. =
Other cases of integrability related to Theorem 23 have been found. They have
been omitted here due to the lenght of the expressions involved.
Proposition 24. Theorem 23 contains all real quadratic systems which have an
invariant parabola, an invariant straight line, and verify thatl these two algebraic
solutions force the integrability.
Proof. From Christopher Lemma we know that all real straight lines of systems
of type (P) must be of the form

2
fa= qu - g + ‘/(g - 2q) + 2b(c — 2p)] x + by + constant,

a

2
fo=|2¢- \/(E - 2q) + 2b(c — 2p) | = + by + constant,
2 2
f2 = = + constant.

The cofactor of f; =y — 22 is K; = az + by + c¢. We denote the cofactor of f, by
K3 = koo + kioz + ko1y. Since the divergence of systems (P) is div = (a + 2¢)z +
5by/2+ c+p, a necessary condition in order that the systems A Ky + A2 Ky = —div
or A\ K; + Ay K9 = 0, can have solutions is that

a ko a+2q
b k(}l 56/2 =,
¢ koo c+p

Then, by using these two restrictions, the first in the form of f, and the second

given by the determinant, it is a straightforward but tedious work to prove the

proposition. m
We write system (PL) in the form

=% — 1, ¥ = ago + a0 + any + 02012 +ancy + augyz. (14)

Proposition 25. Let fj = 2+ 1 and fo = = — 1. If apa = 0 in the system
(14), then ff“ _f;’.\"‘ is a Darbouz integrating factor for Ay = (ap1 — a11 — 2)/2 and
A2 = —(ap1 + a1 + 2)/2.
Proof. Let Ky and K> be the cofactors of f; and f, respectively. Then K; =z —1
and K3 = z + 1. From Darboux Theorem (d) and since Ay K; + A2 K is equal to
minus the divergence of system (14), the lemma follows. "
Since we are interested in systems (14) which are integrable, by Proposition 15
we can assume that agy # 0. The next theorem characterizes all systems (14) with
ap2 # 0 which are integrable having at least three algebraic solutions of degree
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1. OIf cogrse, systems (14) always have the two algebraic solutions z + 1 = 0 and
r—1=0.

Theorem 26 (Two parallel straight lines Theorem). Let h=z+1, fo =
z -1 and A* = (a1y — 1)? — 4agoage > 0. If a system (14) with ags # 0 has a
third algebraic solution fs = 0 of degree 1, then it verifies one of the following
statements.

(a) If 4—12 azo ap2 +5 af, +4 ao2 ago — 8 a1y — 8 a3, a00 az0 — 4 ag2 ago ayy +ai; a3, —
ajy +2adya30— 2ag2 aio ar1 agr +4 a1y az agz + 2 a2y a0 ao2 + 2 ags ago af, —a}, +
(211 + a3, —4ao2a00 — 3) |A| — |A]® = 0 and |[A| # 1, then the straight line
fi = (0.11 -1+ IAD.’L‘ + 2a02y — (2ap2a10 — a11a01 + agy — am|Af)/(|A[ -1)=10
is an algebraic solution of (14), and fM f}* 23 is a Darbous integrating factor
fOf‘ )\1 = (A2 -1+ 2&02&10 = 0110.01)/[2{1 - IA])], /\2 = (A?' -1- 26‘.02&10 +
ai1ao)/[2(1 = |A|)], Az = —2. Moreover, f{' {3 fi*e*t is a Darbouzr invariant of
(14) for py = s/2, a2 = —s/2, 3 = 0.

(b) If aypair — 2ag2a10 = 0, A% =1 and B? = agl + 2a;; — 4agaaqg > 0, then the
two parallel straight lines f3 = a11T+2a02y+ao1 +|B| = 0 and f4 = a1+ 2a02y+
ap1 — |B| = 0 are algebraic solutions of (14), and f{“fg\’ f;a f" is a Darbouz first
integral for Ay = |B|/2, 2 = =\, A3 = =1, Ay = 1.

(c) If agra1y — 2ap2a10 = 0,A% = 1 and B = 0, then the straight line f3 =
an® + 2a02y + aon = 0 is an algebraic solution of (14), and fi* f32f3* is a
Darbouz integrating factor for Ay = Ao = —1 and A3 = —2, which gives the first
integral

s - z—1 ‘
anT + 2a02y + apy z+1
Moreover, fi'' f3* f¥*e®" is a Darbouz invariant of (14) for uy = 8/2, 42 = —s/2,

pz = 0.

(d) If 4 — 12az0a02 + 502, — 8a11 — 8a3,ap0a20 — 4ap2ap0a1; + a11a3, — a2, +
2&%20%0 — 2agpa10a11a01 + 4ay1azpap2 + 2&%1020002 + 2&02&000%1 - a?, — (2&11 +
a3, — dagzae0 — 3)|A| + |A]? = 0 and |A| # -1, then the straight line f; =
(a11 — 1 —|A])z + 2a02y + (2a02a10 — a11001 — o1 — ap1|A])/(JA| + 1) +2a0; = 0 is
an algebraic solution of (14), and fl‘\‘ _fébf:;" is a Darbour integrating factor for
A1 = (A% = 1+ 2ap2a10 — an1a01) /[2(1+]A])], A2 = (A% — 1 — 2ap2a10 + a11a01) ,
A3 = —2. Moreover, f{"' f* fi'*e*t is a Darbouz invariant of (14) for 1 = s/2,
po = —8/2, uz = 0.

(e) ff 160.00(102 s 8&11 + 16 + 4a32a¥0 — (p2Q@10Q01a211 + 0310%1 = 4a§1 = 0 and
A% = 1, then the straight line fs = (a1 — 2)z + 2a02y + @o2a10 + A01 — @p1a11/2
is an algebraic solution of (14), and f{\’fg‘\’f;’ is a Darbouz integrating factor
fO‘I" A) = (2&02010 — 001011)/4, /\2 = -—/\1, /\3 = -2. MO!"GOva’, ff“fé“f;"e" is a
Darbouz invariant of (14) for py = s/2, po = —s/2, uz = 0.

Proof. Taking into account that the cofactors of f; and f; are K; = z — 1 and
K, = = + 1 respectively, and under suitable assumptions for each statement it is
easy to check that f3 = 0 is an algebraic solution of system (14), i.e. f3 verifies
equation (3) where K3, the cofactor of f3 is of the form pz + gy + r, and where
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we have written the system (14) in the form z = P(z,y),y = Q(z,y)-

For all statements except statement (b) we must check that A\ K + A2 K> +
A3 K5 is equal to minus the divergence of system (14) i.e. equal to (2+ ay)z +
2apyy +ao1- Then, from Darboux Theorem (b) f £22 f22 is a Darboux integrating
factor of system (14).

For statement (b) we must verify that 2 MiK; = 0, where the cofactors of f3

and f; are K3 = a112/2+ ap2y + ao /2 — |Bi/2 and K4 = anz/2+ agey + a0 /2+
| B|/2. Hence, by Darboux Theorem (a) f* f22 fa* f* is a first integral of system
(14).

To verify for all statements except statement (b) that f{'* fi'* fi*e* is a Dar-
boux invariant of system (14), from Proposition 3 it is sufficient to check that
Ky + pa Ko + p3Kz = —s.

Finally, in order to show that the statements of the theorem provide all al-
gebraic solutions of (14) of degree 1, we must find all polynomials f; of de-
gree 1 satisfying equation (3). By Christopher Lemma, f3 must be of the form
fa = (a11 — 1+ |A|)z + 2ap2y + constant, f3 = (a;1 — 1 — |A|)z + 2ag2y + constant,
fs = = + constant. It is easy to verify that the unique invariant straight lines of
system (14) of the last form are f; and f,. Now knowing these two possible ex-
pressions for f3, it is tedious but easy to verify that the theorem give all algebraic
solutions of (14) of degree 1. -

We assume that a # 0 for the systems (CL), otherwise £ = constant is a first
integral. Therefore, doing a rescaling of the time variable (if necessary) we can
assume that a = 2, and consequently systems (CL) can be written in the form

T =.132 +1; = Go[)-}-ama:-!-amy-l-azg:ﬂz +{111Iy+(102y2. (15)

Proposition 27. Let fy =z + 1. If ap2 = 0 for a system (15) of type (CL), then
M fM s a Darboux integrating factor for Ay = —3(2+an + ani).
Proof. The cofactor of f; is K3 = z — ¢. From Darboux Theorem (d) since

M K + A1 K is equal to minus the divergence of system (15), the lemma follows.

|
Due to Proposition 27 in the rest of the section we assume that agy # 0. The
next theorem classifies all real quadratic systems of type (CL) with ags # 0 which
are integrable having at least three algebraic solutions of degree 1. Of course,
systems (CL) always have two complex straight lines z +7 =0 and z — i = 0.
Theorem 28 (Two complex straight lines Theorem). Let f; = z + i and
= (an — 1)2 —4azpagz > 0. If a system (CL) with ap2 # 0 has a third algebraic
solution f3 = 0 of degree 1, then it verifies one of the following statements.
(a) If —4 + 12a3pa92 + 4ag2agp + 8a1; — 50%1 - 0%1 + 20%20%0 — 2ap2a10001 @11 +
ag a1 + 2ao2a00a3, — 8ad;a00a20 — 4a02a00a11 — 4a11a20002 + 203, 020002 + a3 +
(3 — 2ay1 + a}y — 4ao2a00) |A| + |A]* = 0 and |A| # 1, then the straight line f3 =
(@11 —14|A|)z+2a02y+2a01 — {2002&10 ag1a11 —ao1 +ao1 |A|)/(JA]—1) = 0 is an
algebraic solution of (15) and f™ 22 is a Darbouz integrating factor for \; =
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[1 - A% - (apra1; — 2a02a10) i] /(2(]4| - 1)), A3 = —2. Moreover, f}' ffi1 flsest jg
a Darbouz invariant of (15) for = —(si)/2, ,ua =0.

(b) If agra1y — 2ag2a10 =0, A2 =1, and B? = agy — 2ay1 — dagzagy > 0, then the
two parallel straight lines f3 = ay1x+2a00y+ a0, -|B| 0 and f.; = aj1T+2a0y+
ao1 + |B| = 0 are algebraic solutions of (15) and f} _.;‘3 * is a Darbouz first
integral for \y = |Bli/2, A3 = —1, A\ = 1; i.e.

l)) an + 2a02y + ao1 + |B|
z ) ) anz + 2a02y + ap1 — |B|’

H = exp (—|B| arctan (

(c) If agiar1 — 2ap2a10 = 0, A2 = 1 and B = 0, then the stmight line f3 =

a1+ 2a02y +ao1 = 0 is an algebraic solution of (15) and f 1 ;3 is a Darbouzx

integrating factor for Ay = Ay = —1, A\3 = —2, which gives the first integral
2

H = + arctan(z).
aux+2a02y+am ( )

Moreover, fi" f{'' f{*e% is a Darbous invariant of (15) for juy = —(si)/2, us = 0.
(d) If —4 + 12a30a02 + 4ao2a00 + 8ayy — 5a3; — a3, + 2a3,a%, — 2ap2a10a01a11 +
a3 a11 + 2a02a0003; — 8ad,a00a20 — 4ap2agoa1y — 4ar1azag: + 2a3,azgao2 + al; —
(3 = 2a11 + a3, — 4agzag0) |A|—|A|® = 0 and |A| # —1, then the straight line f3 =
(@11 — 1 — |A|) T+ 2a02y +2a01 + (2002310 —anan —ao1 —an|A|) / (|A] +1) =0
is an algebraic solution of (15) and f _‘\‘ fé‘s is a Darbouz integrating fac-
tor for \y = [A? — 1+ (ap1a11 — 2a02a10) ] / (2(|A| + 1)), As = —2. Moreover,
1 fi flsest 45 o Darbouz invariant of (15) for uy = —(si)/2, uz = 0.
(e) If 16agoaoz +8a11 —16+4a3,a%, —4agzaioao1a11+a3,a; —4a2; = 0 and A% = 1,
then the straight line f3 = (a;; — 2):1: - 2:1023; + ap1 + ag2a10 — apia1 /2 = 0
is an algebraic solution of (15) and f ’\’ is a Darbouz integrating factor
for A1 = (ao1a11 — 2ap2a10) i/4, A3 = —2. Moreover, 1 f fisest is a Darboux
invariant of (15) for py = —(s1)/2, uz = 0.
(f) If 4aooaoz + 2a11 — 2 + 4a2,a2, —4agzai0a01011 + a3 a?, — a2, =0 and A2 =0,
then the straight line f3 = (a11 — 1)z + 2a02y + a1 + 2a02a10 — @o1811 = 0
is an algebraic solution of (15) and f f* fo* is a Darbouz integrating factor
for Ay = —[1 — (ag1a11 — 2a02a10) i) /2, A3 = —2. Moreover, fi*' fi"* fi3est is a
Darbouz invariant of (15) for py = —(si)/2,u3 = 0.
Proof. 1t is easy to verify that under the suitable assumptions each statement has
the corresponding invariant straight line, the corresponding integrating factor or
first integral, and the corresponding invariant.

In order to check that the statements of the theorem provide all algebraic
solutions of systems (CL) of degree 1, we must find all polynomials f3 of degree
1 satisfying equation (3) with a suit&ble cofactor, and where we write the system
(CL) in the form # = P(z,y), ¥ = Q(z,y). By using Christopher Lemma we
know that f3 must have one of the following three forms f3 = (a;; — 1+ |A])z +
2agsy + constant, fz3 = (a3 — 1 — |A|) z + 2ag2y + constant, f3 = z + constant. It
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is easy to check that the unique invariant straight lines of the last form are f; =0

and f; = 0. Now, working with the first two expressions for f3, we can prove after

some tedious computations that all invariant straight lines of system (15) with

agy # 0 are given in the statements of the theorem. u
We write system (DL) in the form

& = z(az + by + ¢), § = Qoo + @107 + Go1Y + A20T° + a117Y + ag2y®.  (16)

If this system, which has the invariant straight line « = 0, has another invariant
straight line or an invariant conic, then after an affine change of coordinates (if
necessary) it can be written as one of the first eight normal forms of Proposition
12. Hence we do not need to study the integrability of systems (DL) if they have
some invariant algebraic curve of degree 1 or 2 different from z = 0.

In the next proposition we study the integrability of systems (DL) when a
priori we do not know any algebraic solution of them except the invariant straight
line z = 0.

Theorem 29 (One double straight line Theorem). Let f; = z and assume
b(2a+ay,) = a(b+2ag3), c(b+2ag2) = b(c+ap1) and a # 0, then fl‘\‘ is a Darbouz
integrating factor for Ay = —(2a + a11)/a which gives the first integral

2 2 2 2 a+a
H = ( SOE, 3 C8T +2cy + 2azy — e 2 +by2) =g
a+apg arg a—ajpy

Proof. The cofactor of f; is K; = az + by + ¢. Then, under the assumptions it
follows that the critical points which are on the cofactor namely (—(by + ¢)/a,
(a10ab — ca® + 2az0 be + VA) /b/(2 az0 b — ayya + a?) and (—(by + ¢)/a, (a0 ab—
ca’+2ay be— \/_A—)/b/{:.’ aggb—ay1a+ ﬂ.z] with A = 02(0192b2+ﬂzc2 +2c%asg b)+
2bca(—aypa + casg)ayy — 2ba?(a® + 2 agp b)agy + 2 ay; a®bayy are weak. There-
fore, My K; = —(2a + a11)z — (b + 2a02)y — (¢ + ap;) is minus the divergence of
system (16). This allows to compute \; and following the CLS Theorem f} is an
integrating factor from which one can deduce the above mentioned first integral
straightforwardly, proving the theorem. =
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