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On large deviations in queuing systems 1 

;. 

Z.H. Li and E.A. Pechersky 

Abstract: The main purpose of the article is to provide 
a simpler and more elementary alternative derivation of the 
large deviation principle for compound Poisson processes de
fined on [0,00) . The original result was obtained in [11) the 
goal of which was to obtain the large deviation principle work
ing from the viewpoint of applications. A new proof may be 
divided into two steps. In the first step, we obtain the large 
deviation principle for the compound Poisson process relative 
to the vague topology from the finite dimensional Cramer's 
theorem by a projective limit argument . The result of this 
step is close to that obtained by Lynch and Set huraman in 
[13) . The difference is that we consider the multi-dimension 
processes under the assumption of not all exponential moment 
existence. The second step is to extend the large deviation 
principle from the vague topology to a new one which was in
troduced in [11) and is called there the uniform-weak. We use 
for this the inverse contraction principle (see [2)) . 

Key words: Large deviation principle, compound Pois
son processes, rate function, uniform-weak topology, exponen
tial tightness, inverse contraction principle. 

1 Introd uction 

The theory of large deviations has found wide applications in queuing systems 
and queuing networks (see [1, 2, 3, 4,5,6] and references there). According to the 
opinion of R. Dobrushin, there are mainly two research directions which can be 
considered as goals of the area. The first one is the investigation of the so-called 
"bottle neck" problems. Typically, this is to establish the fact that, under the 
condition of large delay of a message in the network, a message spent most of 
its time at a single node in the network. The second direction is to find explicit 
solutions of the large deviation problems for specific queuing systems. Those 
solutions can be used then instead of an exact analytical result. As it is well
known, there is no exact analytical results for more or less general networks. Even 
for the tandem queuing systems, the simplest one, there are only very cumbersome 
exact solutions in some particular cases. Therefore, more restricted but explicit 
results on the level of the large deviations would have practical interests. 

Before the discussion, let us recall the definition of the large deviation principle 
(for example, see [2]). Let X be a topological space. Of course, X must possesses 
'good' properties, for example, it is usually a polish space or a Banach space. 
However, we shall neglect this in the definition. Let {Pn , n = 1,2, ... } be a 
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sequence of probability measures on the a-algebra of the Borel subsets of this 
space that converges to a 8-measure concentrated at a point Xo EX, that is 

Let 
I: X -+ [0,00) 

be a non-negative function possibly taking the infinite value. 
One says that the large deviations principle holds for the sequence {Pn } with 

the rate function I if 

liminf.!.lnPn(B) ~ - inf I(x) 
n-+oo n xES· 

and 

lim sup .!:.lnPn(B) ~ - inLI(x) 
n-+oo n xES 

for each Borel set B ~ X. Here and in the sequel, 13 denotes the closure of the set 
Band BO denotes its interior. 

The well-known Cramer's theorem described below is a typical example of the 
large deviations principle. Let X = ~ and let Pn be the distribution of the average 
Sn/n, where Sn = .L~=l ~i is the sum of the independent identically distributed 
random variables {~i}' If EI61 < 00 than Pn =} E6. Assume the exponential 
decay of the distribution tail of ~i' namely, there exist constants (1- < 0 < 6+ 
such that 

"{9 

(1) 

for B E (B _ , B +). The Cramer theorem states that the large deviation principle for 
the Pn is satisfied with the rate function 

I(x) = sup{xB -lncp(B)}. 
() 

We refer the reader to [2, 7, 8, 9) for details. 
In queuing theory we need to consider large deviation principles for stochastic 

processes. Let us illustrate this by considering the classical queuing system having 
only one server and one input flow of messages to the server. Every message has 
a length. The server translates the messages with rate one, hence a message is 
treated by the server in a period of time equal to its length. The server works 
according to the first coming - first service (FCFS) discipline. It is assumed that 
there exists an infinite buffer where messages wait for their services if the server 
is occupied at their arrivals. The input flow can be described by a marked point 
process (71n, ~n), where (71n) is a random configuration of points on ~, which is 
interpreted as the times of message arrivals, and ~n is a mark assigned to the point 
'T/n, which represents the length of the arrived message. In the following we assume 
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that the input flowis a 'Poisson one, that is Tn = TJn+l - TJn has the exponential 
distribution Pr(Tn '> x) = exp{ -AX} for a constant A > 0; the random vectors 
(TJn, ~n) are independent and identically distributed; and the sequences (7]n) and 

. (~n) are independent. We assume further that A(i(O) < 1, so the system has 
a steady state. Let us consider a system in its steady state. The processes of 
interests are the length vet) of a queue and the time delay wet) of a message in the 
system if it arrives to the system at the moment t. The processes vet) and wet) 
are determined by the input flow in a unique way. The large deviation principle 
for those process is not an easy problem. Observe that both vet) and wet) are 
Markov processes if the distribution of 6 is exponential (see, however, [10]). 

It is natural to think that a designer of the queuing systems needs to estimate 
the probabilities 

Pr(v(t) > b) and Pr(w(t) > a) 

at a fixed moment t . Because the system is studied in the steady state we can 
take t = O. It is possible to express the functionals v(O) and w(O) in terms of the 
process (TJn, ~n). For example, 

w(O) = sup{((t) - t} , 
t2:0 

where ((t) is a compound Poisson process in terms of (TJn, ~n) as 

(t) = L ~i' 
i : O~1/i<t 

Therefore, it is enough to have the large deviation principle for the process (t). 
This program was realized in [11). 

Before the work of [11), many works have been devoted to the principles of large 
deviations for processes with independent increments and other similar classes of 
processes (for example, see [12], [13], [14], [15)). However, none of them can be 
applied directly to the above problems. The first difficulty is connected with 
the usually imposed hypothesis that the exponential moment of jumps Ee ll€ of 
the compound Poisson process are finite for all e. This excludes the important 
special case where ~ has an exponential distribution, which corresponds to the 
most important exponential service time queuing system. Including the case where 
Ee ll€ is finite for only small enough e essentially complicates the study of the large 
deviations. In the case when all exponential moments exist a large increment of the 
process can arise only as a result of a cumulative contribution of many small jumps, 
while in the case of exponential distribution such a increment can also arise as a 
result of one big jump. It turns out that the formula for the rate function, which 
is well-known for the case of the processes with all finite exponential moments, 
requires an essential modification in the case of infinite moments. 

The interesting large deviation principle for compound Poisson processes of 
Lynch and Sethuraman [13) includes the case of infinite exponential moments. 
But they only considered scalar-valued processes defined on a finite interval. In 
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the study of queuing systems, we need to consider vector-valued processes defined 
on the half-line. (Observe that w(O) is a functional of the process on the half-line.) 
Although the large deviation principles on finite intervals may be extended to their 
half-line versions using the projective limit arguments, the resulted projective limit 
topology on the trajectory space are too weak for the applications. For example, 
if we consider the event (w(O) > x) for a positive x, then the set of trajectories 
corresponding to this event is 

A = {x(t) : sup{x(t) - t} > x} . 
t~O 

However, it turns out that the closure A of the set A in the projective limit 
topology includes each of the trajectories 

x(t) = at, t E [0,00), 

where a E ]Rl. Indeed , the sequence 

() {
at, 

Xn t = 
2(t - n) + an, 

if t ~ n, 
ifT> n 

from A converges to x(t) = at in the projective limit. Therefore, applications 
of large deviation principles for the projective limit topology only give trivial 
estimates. 

A new topology, the uniform-weStk topology, on the trajectory space was in
troduced in [11], which overcomes the shortcomings mentioned above. (We shall 
review the definition of this topology in the next section.) In [11] a large devi
ation principle was established for vector-valued compound Poisson processes on 
[0,00) relative to the uniform-weak topology. An application of this large devi
ation principle to the simplest network, the tandem system, was given in [5]. It 
was shown there that the bottle neck effect holds in the tandem system on the 
level of large fluctuations of the delay. In [6] the large deviations for the two 
dimensional functional (v(O),w(O)) was obtained. The large deviation principle 
for a two dimensional compound Poisson process with dependent components was 
involved in this investigation. 

Since the proof of the large deviation principle in [11] was sophisticated and 
based on a general large deviation principle on abstract vector spaces, we think 
it is of interest to provide a simpler and more elementary alternative derivation 
of the result from the viewpoint of applications. This is the main purpose of 
the present paper. Since only compound Poisson processes with non-decreasing 
paths are used in the study of queuing systems, we shall restrict to this particular 
type of processes, which simplifies considerably the proof. Our proof may be 
divided into two steps. In the first step, we obtain the large deviation principle 
for the compound Poisson process relative to the vague topology from the finite 
dimensional Cramer's theorem by a projective limit argument. In this step we 
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calculate the rate function. The essential difference with the respect to [13] is the 
fact that we consider the multi-dimension processes having EeO{l finite for small 
enough 181· The second step is to extend the large deviation principle from the 
vague topology to the uniform-weak one using the inverse contraction principle. 
This step enlarges the class of Borel sets keeping the same the rate function. 

2 Large deviation principle for compound 
Poisson processes on [0,(0) 

Now we specialize the three objects introduced in the definition of a large deviation 
principle: the topological space X, the sequence of measures {Pn } and the rate 
function I. 

We start with the space X. Let X be the space offunctions x: (-00,00) ---+ JRr 
with the following three properties: 

1) For any x E X and any t < 0 we have x(t) = O. 
2) All the functions x E X are non-decreasingly monotone. 
3) The functions x E X are right-continuous at each point t E JR, i.e., 

4) The limits 

exist and are finite. 

x(t) = x(t + 0) = limx(u). 
u.J-t 

. x(t) 
vex) = hm -

t-+oo 1 + t 

The condition 1) is rather formal. It is convenient way to include a jump of x 
at O. 

There is a one-to-one correspondence between the functions x E X and positive 
JRr -valued measures J.Lx on [0,00). This correspondence is defined by the relation 

x(t) = J.Lx([O,t]), t ~ O. 

Let <P be the set of all continuous JRr -valued functions ¢(t), t E JR, with compact 
support, i.e. it vanishes out of a finite interval [-T¢, T¢]. For ¢ E <P and x E X 
we let 

J¢(x) = (¢, x) = 1000 
¢(t)x(t) dt. 

Here and in the following ab is the inner product of vectors a, b E JRr. It is clear 
that, for any fixed function ¢ E <P, this defines a linear functional J¢ on the space 
X. To each function ¢ E <P we associate a function 

(/J(t) = 100 
¢(u) duo (2) 
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The function ¢ is continuously differentiable and vanishes for large enough t ~ O. 
Then 

Jq,(X) = 1co 
¢(t)/Lx(dt). 

For any number T ~ 0 we define the shift operator ST by 

ST¢(t) = ¢(t - T), t E ~l, ¢ E ~. 

The topology on X is defined by the system of pseudometrics 

Pq,(x, Y) = ~~~ {I ~ tIJsnq,(x - Y)I}, ¢ E~. 

(3) 

That is, a sequence {XN E X, N = 1,2, .. . } converges to x E X if and only if 

lim Pq,(X,XN) = 0 for all ¢ E~. 
N-4CO 

(4) 

We shall call this topology the uniformly-weak topology . 
Next we describe the probability measures {Pn }. Let us recall a description of 

a compound Poisson process (t). Suppose that 7r be a positive measure on the 
space ~r such that 

r IYI7r(dy) < 00. JR.r (5) 

A probability measure p1r on Borel subsets of the space X is the distribution of 
a compound Poisson process (t) with jump measure 7r if for any function ¢ E ~ 
the characteristic function is 

Ee(¢,() = L exp{iJq,(x)} P7r (dx) = exp {loCO kr (exp{iy¢(t)} -l)7r(dY)dt} 

(6) 

(see the notation (2)). Heuristically this means that we are considering a time
homogeneous Poisson process such that the probability for a jump with size yEA 
to happen in the time interval dt is equal to 7r(A)dt if 7r(A) < 00. It follows from 
the definition (6) that 

v(X) = m , 

with the P1f-probability 1, where 

m = r y7r(dy) 
JR.r 

is the mean value of 7r. For the considered case of non-decreasing paths the 
measure 7r is concentrated in lR+ . 
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Let F n : X -+ X be the transformation 

1 
x(t) -+ xn(t) = -x(nt). 

n 
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(7) 

It is easy to check that the conditions 1) - 4) included in the definition of the 
space X are valid for the function xn(t) if they are valid for x(t). Let P::' be the 
measure on X induced by the transformation F n from the measure p1r. It is easy 
to understand that P::' defines again a compound Poisson process (n (t) with the 
jump measure ' 

7rn (A) = mr(nA). 

Obviously we have 

(8) 

Now let us define the rate function I. Suppose that for some a > 0 we have 

(9) 

This inequality implies the condition (5). Let 

q(O) = r (e(ly - l)7r(dy), 0 E IRr , JRr (10) 

and let 8 1r be the set of points 0 E IRr for which q(O) < 00. It is easy to check 
that q(O) is a convex function of 0 E IRr and so 8 1r is a convex set. 

Let 

Aa(x) = sup {Ox - q(O)}, x E IRr. (11) 
(lEe .. 

The function Aa(x) is called the Legendre transformation of the function q. It is a 
convex function of x with values in [0,00]. (Observe that Ox - q(O) = 0 if 0 = 0.) 
Let 8~ be a set of all inner points of the set 8 1r , which is non-empty because of 
the condition (9). It is clear that q(O) is smooth in the domain 8~. If for some 
x E IRr there exists Ox E 8~ such that the value of the gradient 

\1q(Ox) = x , 

then 
Aa(x) = Oxx - q(Ox) 

(see [16], §26). It is clear that \1q(O) = m and so 

Aa(m) = o. (12) 
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Far an absolutely continuous function Xa E X , Le., 

we set 

(The integral is meaningful because Aa 2: 0.) 
Let 

Then we have 

As(x) = sup Ox. 
BEe" 

As(x) = lim ~Aa(rx), x E IRT. 
'"1-+00 r 

(13) 

(14) 

In order to see this, let U C IRT be the ball centered at 0 with radius 1. If 0 i 011" 
then Ox - q(O) = -00. Therefore 

lim sup ~Aa(rx) 
'"1-+00 r 

$ lim sup [sup {ex - ~e r Y7r(dY)} - ~ r 7r(dY)] = As(x). 
'"1-+00 BEe" r lu r luc 

On the other hand, for any fixed 0 E 0" and x we have 

as r -+ 00 . Therefore 

(15) 

as desired. We note also that As(x) is a convex non-negative function of x E IRT 
(see [16], §13). It is linear on the ray {Ax, 0 $ A < oo} for any X E IRT. Ifr = 1, 
then 

{

XSUP{O:OE011"}' ~f x>O, 
As(x) = 0 If x = 0, 

00, if x < O. 
(16) 

We introduce the system P of all finite partitions IT = {-oo < to < h < 
... < tn < oo}, n = 1,2,.... Let Xs is singular, i.e. a function such that the 
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corresponding measure !lx. is singular with respect to the Lebesgue measure. We 
define 

n 

I;r(xs) = L As(xs(tk) - Xs(tk-J) 
k=l 

then 

Is(xs) = sup {I;r(xs)} . 
IIEP 

(17) 

Any function x E X can be represented in a unique way as 

x = Xa +xs , 

where Xa is an absolutely continuous function, and Xs is singular. The rate function 
I is the sum 

(18) 

We shall say that a partition II' = {t~ < t~ < ... < t~, < oo} is a subpartition 
of the partition II if each point t~ coincides with one of the points tk' It follows from 
non-negativity and sub additivity of the function As that, if II' is a subpartition of 
II, then 

II II' Is (xs) ::; Is (xs). 

Hence we can also interpret Is(xs) as the limit of IJI(xs) with respect to the partial 
ordering of the set P defined by the subpartitions. 

The main theorem of this paper is the following 

Theorem 1 ([11)) If condition (9) is true then the sequence of the probability 
measures {P:,n = 1,2, ... } satisfies the large deviations principle with the rate 
function I defined in (18), (13), and (17). 

3 Proof of the theorem 

As mentioned before, our proof may be divided into two steps. In the first step, we 
obtain the large deviation principle for the process relative to the vague topology 
from the finite dimensional Cramer's theorem by a projective limit argument. The 
second step is to extend the large deviation principle from the vague topology to 
the uniform-weak one using the inverse contraction principle. 

3.1 Large deviation principle for the compound Poisson 
process under vague topology 

Recall that P: denote the distribution on X of the processes (n (see (8». Given 
a partition II = {-oo < to < tl < ... < tm < oo} let 

m 

III(x) = L(ti - ti-dAa([x(ti) - X(ti-l)]/(ti - ti-d)· (19) 
i=l 
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In the next proposition we define the rate function on X by 

I(x) = sup III(x). (20) 
IIEP 

The one-dimensional version of the following large deviation principle was 
proved by Lynch and Sethuraman [13] . 

Proposition 2 The sequence {P;} satisfies the large deviation principle with rate 
function defined by (20) and (19) . 

Proof. The random vector (n(t) - (n(s) is distributed like * L:~=1 (k(t - s), 
where (k(u) k = 1, ... ,n, is a sequence of independent identically distributed 
processes having the distribution coinciding with ((u). 

By Cramer's theorem, the sequence (n(t) - (n(s) satisfies the large deviation 
principle with regular rate function 

(t - s)Aa(xJ(t - s)) = sup {Ox - (t - s)q(O)}, x E IRr. 
8Ee" 

Let II = {-oo < to < ... < tm < oo} be a partition. By the independent 
increments property, the distributions of (x(td - x(to), ... , x(tm) - x(tm-d) 
under P; , n = 1,2, .. . , satisfies the large deviation principle with regular rate 
function 

m 

JII(Xl,'" ,xm) := '2)ti - ti-1)Aa(xi/(t i - t i-d)· 
i=1 

The map IRrm ---+ IRrm, (x(t1 ) - x(h), .. . , x(tm ) - x(tm - 1 )) ---+ (X(t1)' ... , x(tm)) 
is continuous. Therefore we can apply the contraction principle (see [2, Theo
rem 4.2.1]) . By the contraction principle, the distributions of (x(tt}, ... , x(tm)) 
under P:;' , n = 1,2, . .. , satisfies the large deviation principle with regular rate 
function III defined by (19). Since the pointwise convergence in X implies the 
vague convergence, the desired large deviation principle follows by the large de
viation principle for the projective limits. (see e.g. [17] or [2, Theorem 4.7.1]) . 
o 

Proposition 3 Let B[O , T] be the set of bounded Borel functions on [0, T] taking 
values from B7r • Then for any x E XT we have 

I(x) = sup {r f(t)P,x(dt) - r q(f(t))dt} . (21) 
/EB[O ,T] J[O,Tj J[O ,Tj 

The equality remains true when B[O , T] is replaced by C[O , T] or D[O, TJ, where 
C[O, T] = {continuous functions in B[O, T]} and D[O, T] = {piecewise constant 
functions in B[O , T]} . 
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Proof. Let pro, TJ he the set of partitions of the interval [0, TJ, and let II = . 
{o ~ h, ... , tm ~ T} E prO, TJ. DIT is the subset of D[O, T] consisting offunctions 
which is constant on each partition interval of II. Then we have clearly from (19) 

IIT(x) = sup {r [J(t)xIT(t) - q(J(t))]dt} , 
JEDIT J[O,T] 

(22) 

where 

It follows from (20) that 

lex) = sup sup {r [J(t)xIT(t) - q(J(t)))dt} . (23) 
JED[O,T] ITEP[O,T] J[O,T] 

For any f E D[O, T] we have f E DIT for some II E prO, TJ, so 

r f(t)J.1.x(dt) = r f(t)xIT(t)dt. 
J[O,T] J[O ,T] 

(24) 

By (23) and (24) we have 

lex) ~ sup {r f(t)J.1.x(dt) - r q(J(t))dt}. (25) 
JED[O ,T] J[O,T] J[O,T] 

Using a monotone class argument one sees that D[O, T] is dense in B[O, T) by 
pointwise convergence. Therefore, (25) yields 

lex) ~ sup {r f(t)jtx(dt) - r q(J(t))dt}. (26) 
JEB[O,T] J[O,T] J[O,T] 

On the other hand, by (20) for any 'T} < lex) there is IT E pro, T] satisfying 
'T} < IIT(x). By (22) , we can find f E DIT such that 

'T} < r [J(t)xIT(t) - q(J(t)))dt = r f(t)jtx(dt) - r q(J(t))dt . 
J[O,T] J[O,T] J[O ,T] 

It follows that 

lex) ~ sup {r f(t)jtx(dt) - r q(J(t))dt}. 
JED[O,T] J[O,T] J[O ,T) 

Since each f E D[O, T] can be approximated by a sequence {In} ~ C[O, TJ, the 
inequality also holds when D[O, T) is replaced by C[O, T). These and (26) yield 
the desired equalities. 0 
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Proposition 4 Let I be defined by (20) and (19). Then for any x E X we have 

I(x) = sup { ('0 f(t)/-Lx(dt) _ roo Q(f(t))dt}, 
fEB Jo Jo 

(27) 

where B is the set of bounded Borel functions on [0,00) taking its values in 01\" . 

Proof follows from Proposition 3 by the projective limit arguments. 

Proposition 5 For any x = Xa + Xs E X we have 

where 

L(xs ) = sup { roo f(t)/-LXs(dt)}. 
fEB Jo 

Proof. By Proposition 4 we at least have 

By Proposition 3 we can choose a sequence {f n} ~ B such that 

as n ~ 00. Similarly, by (29) there is {gn} ~ B such that 

100 
9n(t)/-Lxs(dt) ~ L(xs) 

o 

(28) 

(29) 

(30) 

as n ~ 00. Let F C [0,00] be of zero Lebesgue measure and /-Lx.(F) = /-Lx. [0, 00]. 
Define the sequence {hn } ~ B by 

It is easy to see that 

Then (28) follows from (27) and (30). o 
It is simply to check that 

Now we have obtained the desired large deviation principle under the vague 
topology. 
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3.2 Inverse contraction principle 

Suppose that {Pn } is a sequence ofthe probability measures on a topological space 
y such that Pn ::} 8", for x E y. We say {Pn } is exponentially tight if for any 
e > 0 there is a compact set Key such that Pn(KC) ~ en. 

To extend the large deviation principle to the uniform-weak topology we appeal 
to the following 

Theorem 6 ([2, Corollary 4.2.10]) Let a set X be equipped with two Hausdorff 
topologies 71 and 72, where 72 is coarser than 71. Assume that a sequence of 
probability measures {Pn } satisfies the large deviation principle with mte function 
I: X -t [0,00] under the topology 72. If {Pn } is exponentially tight with respect 
to the topology 71, then the large deviation principle holds for {Pn } with the same 
rate function I relative to 71. 

Since the uniform-weak topology is finer than the vague topology, in order to 
finish the proof of Theorem 1 we need only to show that {P;;'} (see the section 2) is 
exponentially tight in the uniform-weak topology. In the following two subsections, 
we shall give a description of a class of compact subsets of X and use it to prove 
the exponential tightness. 

3.2.1 Compact sets 

In this subsections, we describe a class of compact subsets of X. 

Lemma 7 If Xn -t x in X in the uniform weak topology, then we have 

lim (xn' ¢) = (x, ¢), ¢ E <I>, 
n--too 

and 

lim v(xn) = vex). 
n--too 

Under the additional condition 

lim sup IXn(t) - V(Xn)1 = 0, 
t--too n 1 + t 

(31) 

(32) 

(33) 

in order that Xn -t x in the uniform weak topology it is necessary and sufficient 
that (31) and (32) hold. 

Proof. First observe that for any ¢ E <I> and x E X we have 

lim I (x, Sk¢) - vex) 100 ¢(t)dtl = o. 
k--too 1 + k -00 

(34) 
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Suppose that Xn --t x in X in the uniform weak topology. The relation (31) follows 
from (4) in an evident way. By (34), we have 

1 JOO lim --(xn - x, Sk¢) = (v(xn) - v(x)) ¢(t)dt. 
k-+ oo 1 + k -00 

From this and the definition of PrJ> it follows that 

Since limn-+ooPrJ>(xn,x) = 0 for all ¢ E 4.>, we get (32). 
Now we assume that the conditions (31), (32) and (33) are satisfied. Observe 

that 

Both terms on the right hand side of (35) goes to zero uniformly in n = 1,2, . . . 
as k --t 00. Then we have proved that 

lim sup I (x;' S~¢) - V(Xn) roo ¢(t)dtl = o. 
k-+oo n + ) -00 

(36) 

It follows from (34) and (36) that for any c > 0 there exists a value N = N(c, ¢) 
such that 

I (xn ~ :,:k¢) I ~ c + !v(xn) - v(x)! i: !¢(t)!dt 

for all n ~ 1 and k ~ N. The condition (32) permits us to state 

I (xn - x, Sk¢) I < 2 
sup 1 k _ c 
k?,N + 

for large enough n ~ O. Then we see that the conditions (31), (32) and (33) imply 
the convergence Xn --t x in the uniform weak topology. 0 

Lemma 8 Let C and D be right continuous, nonnegative functions on [0,00). 
Suppose that C is increasing, D is decreasing and D(t) --t 0 as t --t 00. Let 
/( = /((C, D) be the set of functions x E X such that x(t) ~ C(t) and 

I ;~)t - V(X)I ~ D(t) (37) 

for all t E [0,00). Then /( is a metrizable, compact subset of X. 
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Proof. Let d be a metric on X that agrees with the vague topology and let 

p(X, y) = d(x, y) + Iv(x) - v(y)l, x, y E K. 

By Lemma 7 one may see that p is a metric on K that agrees with the uniform 
weak topology, that is, K is a metrizable space. Consequently, we need only to 
show that K is closed and sequentially compact. Consider a sequence {xn } ~ K 
such that Xn --* x in the uniform weak topology in X. By Lemma 7 we have 
v(xn) --* vex) and Xn --* x vaguely. Then xn(t) --* x(t) for all continuity points 
t :::: 0 of x. It follows that x(t) ~ C(t), first for continuity points of x and then for 
all t :::: 0 by the right continuity. Similarly we get (37) . Therefore, K is a closed 
subset of X. 

Now let {xn } ~ K. Then the sequence {xn(t)} is bounded for each t :::: o. By 
the definition of K we have Iv(xn)1 ~ C(O) + D(O). It follows that the sequence 
{v(Xn )} is also bounded. Using a diagonal procedure we can find a subsequence 
{nk} such that V(Xnk) --* some v E [0,00) and Xnk --* some x E X vaguely as 
k --* 00. Then (37) holds clearly. Therefore, x E X and K is sequentially compact. 
o 

3.2.2 Exponential tightness 

We prove in this subsection the exponential tightness for the processes (n (see (8)) 
having the probability distribution {P;}, from which the main theorem follows. 

Proposition 9 For any € > 0 there exists a compact K.(€) C X such that for any 
n the probability 

Proof follows from the following lemmas. o 

Lemma 10 For any c > 0 there exists a right continuous, nonnegative, increasing 
function Co on [0,00) such that 

(38) 

for all n = 1,2, .... 

Proof. Let 1] > 0 be the constant such that 1] ~ a (see (9)). By Chebyshev's 
inequality, for l > 0 we have 

Pr{((nt) > nl} ~ exp{ntq(1], ... ,1]) - n1]l} . (39) 

For any K :::: 0 there is a value a = a(K) so large that q(1], ... ,1]) - a1] ~ -K. 
Letting l = at in (39) we see that 

Pr{ (n(t) > at} ~ exp{ -nKt}. 
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Loo exp{ -nK} 
Pr{(n(k) > ak} :-:; 1 {K}' - exp -n 

k=l 

( 40) 

But the path of (n(t) : t 2: 0 is non-decreasing, so (n(t) > a(t + 1) for some t 2: 0 
implies (n(k) > ak for some integer k 2: 1. By (40) it follows that 

exp{-nK} 
Pr {(n(t) > a(K)(t + 1) for some t 2: o} :-:; 1 {K}' (41) - exp -n 

For any c > 0 we choose the value K = K(c) 2: 0 such that e-K :-:; min{lj2, cf4} 
and let Cc(t) = a(K)(t + 1). Then we get (38) from (41). 0 

Lemma 11 For any integers n , p 2: 1 we have 

(42) 

Proof The inequality follows as we observe 

and compute the value on the right side. o 

Lemma 12 For any c > 0 there exists a decreasing sequence {ld such that lk --+ 0 
as k --+ 00 and 

{ I
(n(k) I . } en Pr 1 + k - m > lk for some mteger k 2: 0 :-:;"4 

for all n = 1,2, ... . 

Proof. Let 0> 0 be a constant such that (9) holds whenever a:-:; o. Let {(~(t)} 
denote the i-th component of the process {(n(t)}. By Chebyshev's inequality, for 
I 2: 0 and 11]1 :-:; 0 we have 

Pr{(~(s) > l} :-:; exp{nsqi(1]) - n1]l}, (43) 

where qi(1]) = q(fJl, . . . ,ad) with ai = 1] and aj = 0 for j f:. i. Recall that 
E(t) = mt for t 2: O. Let mi denote the i-th component of m. By the assumption 
(9) we have 
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Consequently, there are constants ai > 0 and 81 > 0 such that 

qi(TJ) - TJmi ::; aiTJ2 
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whenever ITJI ::; 81 . Then for any 1 > 0 we can find a constant TJ = TJ(l) > 0 such 
that 

qi(TJ) - TJmi - TJl < O. (44) 

By (43) and (44), for some constant et(l) > 0 we have 

Pr{ (~(s) > sl + mi s} ::; exp{ -nsct(l)}. (45) 

In a similar way, we find the constant ei (l) > 0 such that 

Pr{(~(s) < -sl +mis)}::; exp{-nsei(l)}. (46) 

Summing up the inequalities (45) and (46) over i = 1, ... ,d we see that for any 
1 > 0 there exists a constant e(l) > 0 such that 

Pr{l(n(s) - sml > sl} ::; 2dexp{ -nse(l)} 

for all s ~ O. Of course, we have eel) -t 0 as 1 -t O. Nevertheless we can choose a . 
monotone sequence {ld such that ke(lk) ~ v'k and lk -t 0 as k -t 00. It follows 
that 

Pr{l(n(k) - kml > klk} ::; 2dexp {-n..Jk} . 

Using the inequality (42) we can find sufficiently large p = pee) so that 

00 n 

L Pr{l(n(k) - kml > klk} ::; e8 . 
k=p 

This implies that 

en 
Pr{l(n(k) - kml ::; klk for all integers k ~ p} ~ 1 - 8' 

and hence 

Pr {I (n(k) - ml < lk + EL for all integers k > p} > 1 _ "n, (47) 
l+k - l+k - - 8 

iU,From Lemma 10 we derive that 

Pr { I ~n l k k - m I ::; R for all integers 0 ::; k < p} ~ 1 - "8
n 

. ( 48) 

for large enough constant R = R(e). Now the desired result follows from (47) and 
(48). 0 
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Lemma 13 For any c > 0 there exists a decreasing sequence {dd such that 
dk -t 0 as k -t 00 and 

Pr {I(n(k + 1) - (n(k)1 > d for some integer k > o} < cn . (49) 
l+k - k - - 4 

for alln = 1,2, .. .. 

Proof. Let T} :::; a (see(9)). By Chebyshev's inequality, for l > 0 we have 

Pr{l(n(k + 1) - (n(k)1 > l} :::; exp{ -nT}l + nq(T}, ... , T}n. (50) 

We take a constant A > 0 and let 

1 
dk = (k + 1)T) [q(T} , . .. , T}) + A + 2ln(k + 1)]. (51) 

It follows from (50) and (51) that 

~ Pr {I(n(k + 1) - (n(k)1 > d } < e-nA ~ 1 . 
~ l+k k - ~ (k+1)2 
k=O k=O 

Then for any c > 0 we can choose A = A(c) so large that (49) holds for all 
n = 1,2,.... 0 

Lemma 14 For any c > 0 there exists a right continuous, nonnegative, decreasing 
function DE on [0,00) such that DE(t) -t 0 as t -t 00 and 

Pr {I fnlt~ - ml > DE(t) for some t ~ o} :::; c2
n (52) 

for all n = 1,2, ... . 

Proof. Let the sequences {lk} and {dd be provided by Lemmas 12 and 13, and 
let DE(k) = 2lk + dk + Iml/(k + 1). Then {DE(kn is decreasing and DE(k) -t 0 as 
k -t 00. Let DE(t) = DE ([t]), where [t] denotes the integer part of t ~ O. Observe 
that for k :::; S < k + 1 we have 

1 
(n(s) - ml < 1 (n(k) _ ml + I(n(s) - (n(k)1 + l(n(k)l(s - k) 
l+s - l+k l+s (l+k)(l+s) 

< 1 (n(k) - ml + I(n(s) - (n(k)1 + _1_1 (n(k) - ml + M 
- l+k l+k l+s l+k l+s 

< 21 (n(k) _ ml + I(n(s) - (n(k)1 + M. 
- l+k l+k l+k 

Then (52) follows immediately from the Lemmas 12 and 13. o 
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