General superalgebras of vector type and (γ, δ) -superalgebras

Ivan P. Shestakov¹

Abstract: A general superalgebra of vector type is a superalgebra obtained by a certain double process from an associative and commutative algebra A = with fixed derivation D and elements λ, μ, ν . We prove that any such a superalgebra is a superalgebra of (γ, δ) type. Conversely, any simple = finite dimensional nonassociative (γ, δ) superalgebra with $(\gamma, \delta) \neq (1,1)$ or (-1,0) is isomorphic to a certain general superalgebra of vector type.

Let A be an associative and commutative algebra over a ring of scalars Φ , with fixed nonzero derivation $D \in Der(A)$, and elements $\lambda, \mu, \nu \in A$. Denote by \overline{A} an isomorphic copy of a Φ -module A, with the isomorphism mapping $a \mapsto \overline{a}$. Consider the direct sum of Φ -modules $B = 3DA + \overline{A}$ and define multiplication on it by the rules

$$\begin{array}{lll} a \cdot b &= 3D & ab, \\ a \cdot \overline{b} &= 3D & \overline{a} \cdot b &= 3D \ \overline{ab}, \\ \overline{a} \cdot \overline{b} &= 3D & \lambda \, ab + \mu \, D(a)b + \nu \, aD(b), \end{array}$$

where $a, b \in A$ and ab is the product in A. Define a Z_2 -grading on B by setting $B_0 = 3DA, B_1 = 3D\overline{A}$; then B becomes a superalgebra, which we will denote by $B(A, D, \lambda, \mu, \nu)$ and call = a general superalgebra of vector type.

Various partial cases of this construction have been considered before: the superalgebras B(A, D, 0, 1, -1) are just the Jordan superalgebras = of vector type [4, 5, 7, 8]; the superalgebras $B(A, D, \lambda, 2, 1)$ in = case char $\Phi = 3D3$ are alternative [9], and in case of = arbitrary characteristic are (-1,1) superalgebras [9, 10].

Conversely, it was proved in [9] that any simple nontrivial nonassociative alternative superalgebra of dimension more than six is = isomorphic to a superalgebra $B(A, D, \lambda, 2, 1)$, with A being a D-simple algebra = of characteristic 3. Similarly, any simple nonassociative (-1,1) = superalgebra of positive characteristic p > 3is isomorphic to a superalgebra = $B(A, D, \lambda, 2, 1)$ [10]. In particular, any simple finite dimensional nonassociative = (-1,1) superalgebra always has a positive characteristic and so is isomorphic = to $B(A, D, \lambda, 2, 1)$.

In this paper we give a similar characterization for a general superalgebra of vector type $B(A, D, \lambda, \mu, \nu)$ with $\mu \neq \pm \nu$. We first show = that any such a superalgebra is a so called (γ, δ) superalgebra (see = below), and then we prove that, under certain conditions, a simple = nonassociative (γ, δ) superalgebra is isomorphic to $B(A, D, \lambda, \mu, \nu)$.

Let us start with the definitions. Throughout the paper, if otherwise is not

¹Supported by the RFFI grant 99-01-00499

stating, the word = "(super)algebra" means a (super)algebra over an associative and commutative ring of = scalars Φ with $1/6 \in \Phi$.

An algebra A is called a (γ, δ) algebra if it satisfies the identities:

$$\begin{aligned} &(x, y, z) + \gamma(y, x, z) - \delta(z, x, y) &= 3D \quad 0, \\ &(x, y, z) + (y, z, x) + (z, x, y) &= 3D \quad 0, \end{aligned}$$

where (x, y, z) = 3D(xy)z - x(yz) denotes the associator of elements = x, y, z, and γ, δ are some elements from Φ , satisfying the equality $\gamma^2 - \delta^2 + \delta - 1 = 3D0$.

These algebras were introduced in 1949 by A.Albert [1] in the study = of 2varieties of algebras, that is, the varieties in which for any = ideal I its square I^2 is again an ideal. Together with alternative algebras, = the varieties of (γ, δ) algebras for different γ, δ give all the = possible examples of homogeneous 2-varieties of algebras that contain strictly = the class of associative algebras.

According to the general definition of a superalgebra in a given = homogeneous variety of algebras (see [11]), a superalgebra $R = 3DR_0 + R_1$ is a (γ, δ) superalgebra if and only if it satisfies the = (super)identities:

$$(x, y, z) + = (-1)^{p(x)p(y)}\gamma(y, x, z) - (-1)^{(p(x)+p(y))p(z)}\delta(z, x, y) = 3D \quad 0(1)$$

$$(x, y, z) + = (-1)^{p(x)(p(y)+p(z))}(y, z, x) + (-1)^{(p(x)+p(y))p(z)}(z, x, y) = 3D \quad 0(2)$$

where $x, y, z \in R_0 \cup R_1$ and $p(r) \in \{0, 1\}$ denotes a parity index of a homogeneous element r : p(r) = 3Di if $r \in R_i$.

In the sequel B = 3DA + M will denote a (γ, δ) superalgebra with $= A = 3DB_0$, $M = 3DB_1$. Note that A is a (γ, δ) subalgebra of B, and M is a $(\gamma, \delta) =$ bimodule over A.

It was proved in [2] that any simple (γ, δ) algebra of characteristic $\neq 2, 3$, with $(\gamma, \delta) \neq (1,1), (-1,0)$, is = associative. We will see now that this statement is not true any more in the case of = (γ, δ) superalgebras.

Theorem 1 Any general superalgebra of vector type $B(A, D, \lambda, \mu, \nu)$ with $\mu \neq \pm \nu$ is $a = (\gamma, \delta)$ superalgebra for $\gamma = 3D \frac{-\mu^2 + \mu\nu - \nu^2}{\mu^2 - \nu^2}$, $\delta = 3D \frac{2\mu\nu - \nu^2}{\mu^2 - \nu^2}$. This superalgebra is simple if and = only if the algebra A is D-simple; and if $D(A)A^2 \neq 0$, then $B(A, D, \lambda, \mu, \nu)$ is not associative.

Proof. Since \overline{A} is an associative bimodule over A, it suffices to = consider only the associators that contain at least two elements from \overline{A} . = For any $a, b, c \in A$ we have

$$(a,\bar{b},\bar{c}) = 3D \quad \mu D(a)bc, \tag{3}$$

$$(\bar{a},b,\bar{c}) = 3D \quad (\mu-\nu)aD(b)c, \tag{4}$$

$$(\bar{a}, \bar{b}, c) = 3D - \nu a b D(c), \tag{5}$$

$$(\bar{a},\bar{b},\bar{c}) = 3D \quad \mu = D(a)bc + (\nu - \mu)aD(b)c - \nu abD(c).$$

$$(6)$$

It follows easily from (3)-(6) that the identity (2) = holds in $B(A, D, \lambda, \mu, \nu)$. Furthermore, let

$$\gamma = 3D \frac{-\mu^2 + \mu\nu - \nu^2}{\mu^2 - \nu^2}, \quad \delta = 3D \frac{2\mu\nu - \nu^2}{\mu^2 - \nu^2},$$

then the equality = $\gamma^2 - \delta^2 + \delta - 1 = 3D0$ is straightforward, and we have by (3)–(6)

$$\begin{array}{rcl} (a,b,\bar{c})+\gamma(b,a,\bar{c})-\delta(\bar{c},a,\bar{b})&=&3D\;\mu D(a)bc+\gamma(\mu-\nu)bD(a)c\\ &&-\delta(\mu-\nu)cD(a)b\\ &=&3D(\mu+(\gamma-\delta)(\mu-\nu))D(a)bc=3D0,\\ (\bar{a},b,\bar{c})+\gamma(b,\bar{a},\bar{c})-\delta(\bar{c},\bar{a},b)&=&3D(\mu-\nu)aD(b)c+\gamma\mu D(b)ac+\delta\nu caD(b)\\ &=&3D\;(\mu-\nu+\gamma\mu+\delta\nu)aD(b)c=3D0,\\ (\bar{a},\bar{b},c)-\gamma(\bar{b},\bar{a},c)+\delta(c,\bar{a},\bar{b})&=&3D\;--\nu abD(c)+\gamma\nu baD(c)+\delta\mu D(c)ab\\ &=&3D\;(-\nu+\gamma\nu+\delta\mu)abD(c)=3D0,\\ (\bar{a},\bar{b},\bar{c})-\gamma(\bar{b},\bar{a},\bar{c})+\delta(\bar{c},\bar{a},\equiv b)&=&3D\;\mu\overline{D(a)bc}+(\nu-\mu)\overline{aD(b)c}-\nu\overline{abD(c)}\\ &&-\gamma(\mu\overline{D(b)ac}+(\nu-\mu)\overline{bD(a)c}-\nu\overline{baD(c)})\\ &+&\delta=(\mu\overline{D(c)ab}+(\nu-\mu)\overline{cD(a)b}\\ &&-\nu\overline{caD(b)})=3D0. \end{array}$$

Therefore, (1) holds in $B(A, D, \lambda, \mu, \nu)$ too, and $B(A, D, \lambda, \mu, \nu)$ is a (γ, δ) = superalgebra.

It is clear that for any *D*-ideal *I* of *A* the set $I + \overline{I}$ is an = ideal of $B(A, D, \lambda, \mu, \nu)$, so the *D*-simplicity of *A* is a necessary condition for the = simplicity of $B(A, D, \lambda, \mu, \nu)$. On the other hand, if *A* is *D*-simple, then the Jordan superalgebra of vector type $B(A, D, 0, \alpha, -\alpha)$ is simple for any $0 \neq \alpha \in \Phi$ (see [4, 8]). Therefore, the = supersymmetrized superalgebra $B(A, D, \lambda, \mu, \nu)^+ \cong$ $B(A, D, 0, \mu - \nu, \nu - \mu)$ is simple, which yields immediately the simplicity of $B(A, D, \lambda, \mu, \nu)$. \Box

Let now B = 3DA + M be a (γ, δ) superalgebra with $(\gamma, \delta) \neq (1,1), (-1,0)$. (Note that any (1,1) superalgebra is = antiisomorphic to a (-1,0) superalgebra.)

Lemma 1 If B is simple and not associative, then it satisfies the = superidentity

$$\langle \langle x, y \rangle, z \rangle = 3D0, \tag{7}$$

where x, y, z are homogeneous and $\langle x, y \rangle = 3Dxy - (-1)^{p(x)p(y)}yx$.

Proof. Since B is simple and not associative, it coincides with its = associator ideal D(B). Therefore, it suffices to prove that the associator ideal of any (γ, δ) superalgebra R satisfies (7). Let $G = 3DG_0 + G_1 =$ be a Grassmann algebra, consider the Grassmann envelope = $G(R) = 3DG_0 \otimes R_0 + G_1 \otimes R_1$ of the superalgebra

R. The algebra G(R) is an = ordinary (γ, δ) algebra, with $\gamma - 2\delta + 1 \neq 0$, so by [3] its = associator ideal D(G(R)) satisfies the identity [[x, y], z] = 3D0. From here, by standard arguments on Grassmann envelope, we conclude that D(R) satisfies (7). \Box

The following lemma shows that, in the presence of identity = (7), the study of (γ, δ) (super)algebras is reduced to (-1,1) = (super)algebras. This fact, in the algebra case, was observed by the author in the beginning of seventies (see [6, Proposition 4]); we used the = modification of this fact given in [3, lemma 6].

Lemma 2 Let B be a (γ, δ) superalgebra that satisfies identity = (γ) . For any $\alpha \in \Phi$ denote by $B(\alpha)$ the superalgebra, obtained = from B by introducing the new multiplication

$$x \cdot_{\alpha} y = 3D\alpha xy + (1-\alpha)(-1)^{p(x)p(y)}yx.$$

Then, the superalgebra $B' = 3DB(1 - \gamma - \delta)$ is a (-1,1) superalgebra, and $B = 3DB'(\beta)$ for $\beta = 3D\frac{1-\gamma+\delta}{3}$.

Proof. Consider the Grassmann envelope G(B), which is an ordinary $(\gamma, \delta) =$ algebra. It is easy to check that $G(B)(\alpha) = 3DG(B(\alpha))$ for any $= \alpha \in \Phi$. Therefore, by [3, lemma 6], the algebra $G(B') = 3DG(B)(1 - \gamma - \delta) =$ is a (-1,1) algebra, which proves that B' is a (-1,1) superalgebra. Moreover, by = the same lemma we have the equality $(G(B)(1 - \gamma - \delta))(\beta) = 3DG(B)$ for $\beta = 3D\frac{1-\gamma+\delta}{3}$, which proves that $B'(\beta) = 3DB$. \Box

We can give now the description of simple (γ, δ) superalgebras.

Theorem 2 Let B = 3DA + M be a simple nonassociative (γ, δ) superalgebra of characteristic $\neq 2, 3$, with $(\gamma, \delta) \neq (1, 1), (-1, 0)$. Then (B, A, A) = 3D(A, B, A) = 3D[A, B] = 3D0, and there exist $x_1, \ldots, x_n \in M$ = such that $M = 3DAx_1 + \ldots + Ax_n$ and the product in M is defined by

$$ax_i \cdot bx_j = 3D\lambda_{ij} \cdot = ab + (-\gamma + \delta)D_{ij}(a)b + (-1 - \gamma + \delta)D_{ij}(b)a, \ i, j = 3D1, \dots, n,$$

where $\lambda_{ij} \in A, D_{ij} = 3DD_{ji} \in Der A$. In particular, if n = 3D1 then B is isomorphic to a superalgebra $B(A, D, \lambda, -\gamma + \delta, -1 - \gamma + \delta)$, where A is a (unital) commutative and associative D-simple algebra = with $0 \neq D \in Der A$, $\lambda \in A$.

Proof. Let $\alpha = 3D1 - \gamma - \delta$, $\beta = 3D\frac{1-\gamma+\delta}{3}$, then by lemmas 1 and 2 we = have that $B' = 3DB(\alpha)$ is a (-1,1) superalgebra and $B = 3DB'(\beta)$. It is = obvious that the two-sided ideals of B and B' are the same; hence B' is simple. Furthermore, since B is not associative, neither is B'. Therefore, = by [10], B' has the following properties:

(i) A is a commutative and associative subalgebra of B', and B' = is an associative and commutative A-bimodule;

(ii) there exist $x_1, \ldots, x_n \in M$ such that $M = 3DAx_1 + \ldots + Ax_n$ and the product of odd elements in B' is = defined by

$$ax_i \cdot bx_j = 3D\lambda_{ij} \cdot ab + 2D_{ij}(a)b + D_{ij}(b)a, \ i, j = 3D1, \dots, n.$$

where $\lambda_{ij} \in A, D_{ij} = 3DD_{ji} \in DerA$.

It follows immediately that B also satisfies (i) and the first part of (ii). As for the product of the elements of M in B is concerned, it is given by

$$ax_i \cdot bx_j = 3D(2\beta - 1)\lambda_{ij} \cdot = ab + (3\beta - 1)D_{ij}(a)b + (3\beta - 2)D_{ij}(b)a, \ i, j = 3D1, \dots, n.$$

The theorem now is obvious. \Box

Corollary 1 Let B = 3DA + M be a simple nonassociative (γ, δ) superalgebra of characteristic $\neq 2, 3$, with $(\gamma, \delta) \neq (1, 1), (-1, 0)$. Assume = that one of the following conditions is satisfied:

- (i) B is of positive characteristic;
- (ii) B is finite dimensional;
- (iii) A is a polynomial algebra on a finite number of variables;
- (iv) A is a local algebra.
- Then B is isomorphic to $B(A, D, \lambda, -\gamma + \delta, -1 \gamma + \delta)$.

The proof follows easily from [10] in view of the fact that the = condition n = 3D1 in the theorem is satisfied by B if and only if it is = satisfied by the (-1,1) superalgebra B'. \Box

As in the case of (-1,1) superalgebras [10], we could not find any example of a simple nonassociative (γ, δ) superalgebra which would = not be isomorphic to a superalgebra of the type $B(A, D, \lambda, \mu, \nu)$. So it is still an open = question whether such superalgebras exist. Notice that in case a new simple = (γ, δ) superalgebra B exists, its attached superalgebra B^+ would give a new example of a simple Jordan superalgebra.

References

- [1] A. A. Albert, Almost alternative algebras, Portug. Math., = 8:23-36, 1949.
- [2] I. R. Hentzel, G. M. Piacentini Cattaneo, Simple (γ, δ) algebras are associative, J.Algebra, = 47(1):52–76, 1977.
- [3] A. S. Markovichev, Nil rings of type (γ, δ), = Algebra i Logika, 17(2):181–200, 1978.
- [4] K. McCrimmon, Speciality and non-speciality of two Jordan = superalgebras, J. Algebra, 149(2):326-351, 1992.

- [5] Yu. A. Medvedev and E. I. Zelmanov, Some counter-examples in the = theory of Jordan algebras, In S. González and H.C. Myung, editors, = Nonassociative Algebraic Models, pages 1–16, N.Y., 1992, Nova Science.
- [6] A. A. Nikitin, Almost alternative algebras, Algebra i Logika, 13(5):501-533, 1974.
- [7] I.P. Shestakov, Superalgebras and counterexamples, Sibirsk. = Mat. Zh., 32(6):187-196, 1991.
- [8] I. P. Shestakov, Superalgebras as a building material for constructing = counter examples, In H.C. Myung, editor, *Hadronic Mechanics and = Non*potentional Interactions, pages 53–64, N.Y., 1992, Nova Science.
- [9] I. P. Shestakov, Prime alternative superalgebras of arbitrary = characteristics, *Algebra i Logika*, 36(6):675-716, 1997; English transl.: Algebra and Logic 36(6):389-420, 1997.
- [10] I. P. Shestakov, Simple (-1,1) superalgebras, Algebra i Logika, = 37 (6):721–739; English transl.: Algebra and Logic 37(6):411–422, 1998.
- [11] E. I. Zelmanov and I. P. Shestakov, Prime alternative superalgebras = and nilpotence of the radical of a free alternative algebra, *Izv. = Akad. Nauk SSSR Ser. Mat.*, 54(4):676–693, 1990; English transl.: Math. USSR Izvestiya 37(1):19–36, 1991.

Ivan P. Shestakov Sobolev Institute of Mathematics, Novosibirsk, 630090, shestak@math.nsc.ru RUSSIA