Perfect simulation of spatial processes

Nancy L. Garcia

Abstract: This work presents a review of some of the schemes used to perfect sample from spatial processes. As examples, the area-interaction point process, Strauss process, penetrable sphere model, Peierls contours of the Ising model and continuous loss networks are studied under Coupling from The Past Algorithm (CFTP), Acceptance and Rejection Algorithm (ARA) and Backward-Forward Algorithm (BFA).

Key words: Perfect simulation, Spatial birth and death processes, Loss networks, Peierls contours, Area-interaction point processes, Strauss model.

1 Introduction

Usually Monte Carlo Markov Chain methods have been used to generate samples from spatial point processes, for a detailed review see Møller (1999). One of the most common approaches is to identify the point process as the invariant measure of a spatial birth and death chain and run the corresponding chain for a long time until the distribution of the chain is close to equilibrium, see Kelly and Ripley (1976), Preston (1977), Møller (1989), Baddeley and Møller (1989), Clifford and Nicholls (1994) for examples. The problem here is to assess how long the chain should run in order to achieve the desired approximation. In finite state Markov chains, this is related to mixing times and cut-off phenomena [see, Aldous and Fill (1999)]. For spatial point processes, the state space is uncountable and usually these techniques cannot be applied.

However, after the pioneer work of Propp and Wilson (1996) we can reach a much more ambitious goal: to simulate perfectly from the invariant distribution.

Perfect simulations or exact sampling are labels for a recently developed set of techniques designed to produce output whose distribution is guaranteed to follow a given probability law. These techniques are particularly useful in relation with Markov Chain Monte Carlo, and their range of applicability is rapidly growing (see Green and Murdoch (1999), Section 1.3, and Mira, Møller and Roberts (1999) and Møller and Nicholls (1999) and references therein, or visit the site http://dimacs.rutgers.edu/~dbwilson/exact).

Several techniques have been suggested recently in the literature. The outbreak of these subject come with the work of Propp and Wilson (1996) where they suggest a practical method of achieving a perfect sample of a Markov chain with finite state space. Their Coupling from the Past (CFTP) algorithm to be applied for infinite (or huge) state spaces require a monotonicity property: there must exist a "maximal" and a "minimal" state and a coupling such that the coalescence of trajectories starting from these two states imply the coalescence of all other...
trajectories ("monotone coupling"). Examples of processes with this property include Glauber dynamics of spin systems with the FKG property (Propp and Wilson (1996)) and attractive point processes (Kendall, 1997; Kendall, 1998). In fact, through a minor modification the algorithm is also applicable to repulsive point processes (Kendall, 1998; Häggström and Nelander, 1998).

One of the biggest problems with CFTP technique is that it has the so called impatient-user bias. Fill (1998) introduced a technique, free of the impatient-user bias, based on the well-known Acceptance-Rejection Algorithm (ARA) for generating independent random samples. Fill’s algorithm applies to Markov processes whose time-reversed process has a monotonicity property. Thus its range of applicability overlaps with that of the CFTP algorithm at reversible monotone processes like Glauber dynamics of attractive automata or ferromagnetic spin systems and attractive point processes (Fill, 1998; Thönnes, 1999).

Fernández, Ferrari and Garcia (2000) introduce yet a different perfect simulation scheme, Backward-Forward Algorithm (BFA), applicable, in principle, to any process that can be sampled from the invariant measure of a spatial birth and death process and is continuous with respect to a Poisson point process. This perfect simulation scheme allows to simulate the distribution of the infinite-volume invariant measure \(\mu \) in a finite region, or window, \(A \). For example, area-interaction point processes (Baddeley and van Lieshout, 1995), Strauss processes (Strauss, 1975), fixed-routing loss networks (Kelly, 1991) and Peierls contours of low-temperature Ising model (Fernández, Ferrari and Garcia, 1998). Some of these processes have been subjected to other perfect simulation methods. For instance, attractive point processes can be simulated using CFTP or ARA methods, if the models can be sandwiched between a "maximal" and a "minimal" weighted Boolean model (Fill, 1998; Kendall, 1998; Thönnes, 1999). The CFTP algorithm can be applied to repulsive point processes as well (Kendall, 1998). Nevertheless, these treatments consider processes in a finite window with fixed boundary conditions. From the statistical mechanical point of view it is important to consider finite windows of an infinite-volume distribution. The only mention to this is by Kendall (1997), who points out a scheme valid when the underlying Boolean model does not exhibit (unoriented) percolation. In this case, the CFTP method can be extended by looking at \([-T, 0] \times [-K, K]^d\) for ever increasing \(T \) and \(K \). The lack of percolation ensures that eventually the area-interaction process will not be affected by whatever boundary conditions are imposed outside \([-K, K]^d\).

On the other hand, Häggström, van Lieshout and Möller (1999) (first appeared in 1996 as a research report) combine ideas from CFTP method with two component Gibbs sampler to deal with infinite area-interaction point processes. This paper together with Kendall (1998) (which also appeared as a technical report in 1996) are among the very first papers on perfect simulation of point processes.

BFA has distinctive features: there is no coupling involved, consequently the scheme is insensitive to the presence of monotonicity; it directly samples a finite window of the equilibrium measure in infinite-volume without further limit procedures; it relies on a graphical construction that has the added value of be-
Perfect simulation of spatial processes

...ing a proven theoretical tool for the analysis of properties of the target measure (Fernández et al., 1998; Fernández, Ferrari and García, 1999) obtain mixing properties, finite-volume corrections and asymptotic (in temperature) distribution of "defects" of the low-temperature Ising translation-invariant extremal measures.

All of the three algorithms, CFTP, ARA and BFA algorithm are based on the construction of the underlying (marked) Poisson process where objects are born.

The outline of this paper is as follows. Section 2 describes several point processes of interest beginning with the Poisson process which will be the basis for all of the other processes studied. These processes are distributed as the invariant measures of spatial birth-and-death processes, Section 3 describes a graphical construction for the birth-and-death processes that can be used as a theoretical tool to prove probabilistic properties and also used as a basis for a simulation scheme. Section 4 describe the three above mentioned methods for simulating point processes, applying them to the processes described in Section 2.

2 Point processes

A point process models the random distribution of indistinguishable points in some space, for concreteness we take this space to be \mathbb{R}^d or \mathbb{Z}^d. We identify a point process N with the counting measure N given by assigning unit mass to each point, that is, $N(A)$ is the number of points in a set A. The latter assumption implies that such a process N is determined by the probability distribution of the random variables $N(A) = \text{number of points in } A \in \mathcal{B}(\mathbb{R}^d)$, the bounded subsets of \mathbb{Z}^d. For a more general discussion, see Daley and Vere-Jones (1988). From now on, unless noted, we are going to consider only orderly processes, that is, processes that have at most one point per site.

2.1 Poisson point processes

The Poisson point process is one of the most popular models for counting problems. Besides being a good description of many natural phenomena, it is very simple from the computational point of view. Furthermore, or perhaps relatedly, it is used as a reference measure to define other types of processes. Its general definition is as follows.

Definition 2.1 Let ν be a Radon measure on \mathbb{R}^d. A point process N_ν on \mathbb{R}^d is a Poisson process with mean measure ν if its state space is $\mathcal{N} = \{N \in \{0, 1\}^{\mathbb{R}^d} : N(x) = 1 \text{ for only a countable number of } x \in \mathbb{R}^d\}$, and defining $N_\nu(A) = \nu(A) = \int_A N_\nu(dx)$,

(i) For any disjoint $A_1, A_2, \ldots, A_k \in \mathcal{B}(\mathbb{R}^d)$ the random variables $N_\nu(A_1), N_\nu(A_2), \ldots, N_\nu(A_k)$ are independent, and
(ii) For each $A \in B(\mathbb{R}^d)$ and $k \geq 0$

$$
\mathbb{P}[N_\nu(A) = k] = \frac{e^{-\nu(A)}\nu(A)^k}{k!}.
$$

We can think the process N_ν either as a random counting measure $N_\nu = \sum \delta_\xi$, or as the random set of points $N_\nu = \{x \in \mathbb{R}^d : N_\nu(x) = 1\} = \{\xi_1, \xi_2, \ldots\}$.

A κ-homogeneous Poisson process is a process with $\nu = \kappa m_d$, where κ is a constant and m_d the Lebesgue measure on \mathbb{R}^d.

Algorithm 2.3 The simulation of a κ-homogeneous Poisson process is simple:

- For each finite window W, generate $R \sim \text{Poisson}\left(\kappa m_d(W)\right)$;
- Given $R = r$ generate U_1, \ldots, U_r independently distributed according to the uniform distribution in W.
- Repeat independently for disjoint windows.

More general Poisson processes in which ν is absolutely continuous with respect to the Lebesgue measure in \mathbb{R}^d with density w, can be simulated using the projection method described by Garcia (1995). Consider the set

$$
C_w = \left\{ (x, s) : x \in \mathbb{R}^d, s \in \mathbb{R}, 0 \leq s \leq w(x) \right\},
$$

and the Poisson process $N_{m_{d+1}}$ on \mathbb{R}^{d+1} with Lebesgue mean measure m_{d+1}. Then the process N_w on \mathbb{R}^d defined by

$$
N_w(A) = N_{m_{d+1}}\left(C_w \cap (A \times \mathbb{R}) \right)
$$

is Poisson with mean ν. In words, it is enough to simulate $N_{m_{d+1}}$ as above, and then take the points that lie in C_w and project them onto \mathbb{R}^d. More generally, this scheme can be used for Poisson processes whose measure ν has the form

$$
\nu(A) = m_{d+1}\left(C \cap (A \times \mathbb{R}) \right)
$$

for some $C \in \mathbb{R}^{d+1}$.

Doubly stochastic point processes or Cox processes If μ is a random Radon-measure on \mathbb{R}^d independent of $N_{m_{d+1}}$ such that

$$
\mu(B) = \int_B w(x) \, dx.
$$

then, denoting N_μ the process (2.5),

$$
\mathbb{E}[N_\mu(A)] = \mu(A).
$$
That is, conditional on μ, N_μ is a Poisson process with mean measure μ.

Finite total rate. For future purposes we consider the case $\nu(\mathbb{R}^d \times \mathbb{R}^+) < \infty$; we interpret the last coordinate as time. One can compute the distribution of the (not necessarily finite) time τ_1, the smaller time-coordinate of the points (if any) of the process. Indeed, calling N the point Poisson process with rate ν, for $0 \leq t \leq \infty$,

$$\mathbb{P}(\tau_1 > t) = \mathbb{P}(N(\mathbb{R}^d \times [0,t)) = 0) = 1 - \exp(\nu(\mathbb{R}^d \times [0,t)).$$

(2.7)

In the case of one-dimensional processes ($d = 0$) the above reads

$$\mathbb{P}(\tau_1 > t) = \mathbb{P}(N([0,t)) = 0) = 1 - \exp(-\nu([0,t)).$$

(2.8)

2.2 Marked Poisson processes

Sometimes it is convenient to allow each point of the process to have a mark belonging to a set \mathcal{M}. That is, a **marked point process** is a point process M on $\mathbb{R}^d \times \mathcal{M}$ such that the marginal process of locations $M(\cdot \times \mathcal{M})$ is a point process on \mathbb{R}^d.

Notice that not all point processes on a product space are marked point processes, for example a κ-homogeneous Poisson process on \mathbb{R}^2 cannot be represented as a marked point process on $\mathbb{R} \times \mathbb{R}$.

An important example is the **completely independent marked point process**. Let N be a marked point process on $\mathbb{R}^d \times \mathcal{M}$ with the property that the n random variables of the set

$$\{N(A_i \times B_i) : \text{bounded } A_i \in \mathcal{B}_{\mathbb{R}^d}, B_i \in \mathcal{B}_\mathcal{M}, i = 1, 2, \ldots, n\}$$

(2.9)

are mutually independent whenever A_i are disjoint. It is easy to see (Daley and Vere-Jones, 1988) that a marked point process with the complete independence property is fully specified by two components:

(i) a Poisson process of locations $N(\cdot \times \mathcal{M})$; and

(ii) a family of probability distributions $\{P(\cdot | x) : x \in \mathbb{R}^d\}$ giving the distribution of the mark in \mathcal{M}.

A very important example of a completely independent marked point process is the so called Boolean model. Let N be a κ-homogeneous Poisson point process in \mathbb{R}^d, represent it by the location of its points as

$$N = \{\xi_1, \xi_2, \ldots\}.$$

(2.10)

Let S_1, S_2, \ldots be a collection of independent $\mathcal{B}_{\mathbb{R}^d}$-valued random variables. That is, S_i is a random Borel set on \mathbb{R}^d and construct the marked point process

$$M = \{(\xi_1, S_1), (\xi_2, S_2), \ldots\}$$

(2.11)
or represent it as a coverage process (Hall, 1988) on \mathbb{R}^d given by

$$C = \{\xi_i + S_i, i = 1, 2, \ldots\}$$

(2.12)

where $\xi + S = \{\xi + z; z \in S\}$. Boolean models have the property that the number of sets $C \in C$ that cover a fixed point $x \in \mathbb{R}^d$ is a Poisson random variable with mean $\kappa \mathbb{E}(\text{vol}(S))$.

2.3 Interacting spatial processes

The independence property characterizes the Poisson process. Most of the applications deal with point processes having interaction between points. In this work, we are going to consider a particular case, point processes with probability law (restricted to a finite box $\Lambda \subset \mathbb{R}^d$) which are absolutely continuous to the probability law of a homogeneous Poisson point process. In fact, if we call μ^0_Λ the law of the unit-homogeneous Poisson process, their distribution is characterized by the Radon-Nikodym derivative (or Gibbs measure) given by

$$\mu_\Lambda(dN) = \frac{1}{Z_\Lambda} e^{-H(N, \Lambda)} \mu^0_\Lambda(dN)$$

(2.13)

where $H(N, \Lambda)$ is the energy function, Z_Λ is a normalizing constant.

A question of interest in the study of these processes is about the existence of limits of these measures as $\Lambda \to \mathbb{R}^d$. That is, is there a well-defined counting measure μ such that $\mu_\Lambda \to \mu$? In what sense? How rapidly? How to simulate from these infinite-volume measures?

2.3.1 Area-interaction point processes

In these processes, introduced by Baddeley and van Lieshout (1995), each point (=germ) has associated a grain formed by a copy of a fixed compact (and usually convex) set $G \subset \mathbb{R}^d$. The intersections of these grains determine a weight that corrects the otherwise Poissonian distribution of the germs. In this case, the Gibbs measure (2.13) is given by

$$\mu_\Lambda(dN) = \frac{\kappa^{N(\Lambda)} \phi^{-m_d(N \oplus G)}}{Z_\Lambda(\kappa, \phi)} \mu^0_\Lambda(dN),$$

(2.14)

where κ and ϕ are positive parameters, $Z_\Lambda(\kappa, \phi)$ is a normalizing constant and $N \oplus G$ is the coverage process given by

$$N \oplus G := \bigcup_{x \in N} \{x + G\}.$$

(2.15)

Note that when N is Poisson process, this coverage process is a Boolean model. Hence the area-interacting process defined by (2.14) can be thought as a “weighted
Boolean model" with weights depending exponentially on the area of the covered region.

The parameter ϕ controls the area-interaction between the points of N: the process is *attractive* if $\phi > 1$ and *repulsive* otherwise. If $\phi = 1$ the process is just the (unweighted) Boolean model with grain G and Poissonian rate κ. The case $\phi > 1$ is related to the *penetrable sphere model* introduced by Widow and Rowlinson (1970) and described in Section 2.3.3. The case of *area-exclusion* corresponds to a suitable limit $\phi \to 0$.

Baddeley and van Lieshout (1995) established basic existence and extension properties. For dimensions $d \geq 2$ and ϕ sufficiently small there is a phase transition (Lebowitz and Gallavotti, 1971; Ruelle, 1971), in the sense that limits of bounded-window distributions lead to several infinite-volume measures, depending on the boundary conditions chosen. Purely probabilistic literature focus rather on free boundary conditions, in which case there is a unique, well defined infinite-volume process.

2.3.2 Strauss Processes

A related process to the area-interaction point is the so-called Strauss process. In this case, the unit Poisson process is weighted according to an exponential of the number of pairs of points closer than a fixed threshold r. In this case, the Gibbs measure (2.13) is defined by

$$\mu_{\Lambda}(dN) = \frac{1}{Z_{\Lambda}} e^{\beta_1 N(\Lambda) + \beta_2 S(\Lambda)} \mu^0_{\Lambda}(dN)$$

where $S(\Lambda)$ is the number of unordered pairs such that $||x_i - x_j|| < r$. The case $\beta_2 > 0$ was introduced by Strauss (1975) to model the clustering of Californian red wood seedlings around older stumps, however in this case (2.16) is not integrable, see Kelly and Ripley (1976).

2.3.3 Penetrable spheres mixture model

The penetrable sphere model was introduced by Widow and Rowlinson (1970) to study liquid-vapor phase transitions. It is a point process with two types of points, therefore it can be seen as a bi-dimensional point process (N, M) in the product space $N \times N$ which is absolutely continuous with respect to the product of two independent unit Poisson processes and Radon-Nikodym derivative given by

$$\tilde{\mu}_{\Lambda}(dN, dM) = \frac{1}{Z_{\Lambda}} \beta_1^{N(\Lambda)} \beta_2^{M(\Lambda)} 1_{d(N, M) > R} \left(\mu^0_{\Lambda} \times \mu^0_{\Lambda} \right)(dN, dM)$$

where $d(N, M) = \min\{d(x, y); x \in N, y \in M\}$ is the shortest distance between a point of N and M. That is, in this model points of different type cannot be at a distance shorter than R.
Marginal and conditional distributions:

It is easy to see that the conditional distribution of \(N \) given \(M \) is a homogeneous Poisson process with intensity \(\beta_1 \) on \(\Lambda \setminus (M \oplus G) \), where \(G \) is a sphere of radius \(R \). Similarly, the conditional distribution of \(M \) given \(N \) is a homogeneous Poisson process with intensity \(\beta_2 \) on \(\Lambda \setminus (N \oplus G) \).

The marginal distribution of \(N \) is an area-interaction point process with \(\kappa = \beta_1 \) and \(\phi = e^{\beta_2} \). Similarly, the marginal distribution of \(M \) is an area-interaction point process with \(\kappa = \beta_2 \) and \(\phi = e^{\beta_1} \).

2.3.4 Simulation procedures

The measures defined by (2.14), (2.16) and (2.17) cannot be simulated so easily as in the Poissonian case. On the one hand, disjoint regions are no longer independent, due to the coverage, and, on the other hand, the normalizations \(Z_W \) are difficult to estimate. The usual approach is to obtain them as the invariant measures of spatial birth-and-death processes as discussed below (Section 3). Whereas for the measure defined by (2.17) we can use the fact that the conditional distributions are homogeneous Poisson processes which are easy to simulate.

2.4 Statistical mechanics models

Spin systems, on a finite set \(\Lambda \subset \mathbb{Z}^d \), model random configurations \(\sigma \in \{-1, +1\}^\Lambda \). We can identify \(\sigma \) with a point process on \(\Lambda \) viewing

\[
\sigma(B) = \sum_{i \in B} 1(\sigma(i) = 1).
\]

A Gibbs measure in this case, is the distribution of the system in equilibrium

\[
\mu_\Lambda(\sigma) = \frac{1}{Z_\Lambda} e^{-H(\sigma, \Lambda)/kT} \tag{2.18}
\]

where \(H(\sigma, \Lambda) \) is the energy function, \(T \) is the absolute temperature and \(k \) is the Boltzmann constant. Usually, \(\beta = 1/kT \) is used in (2.18).

We can partially order the set of configurations by declaring \(\sigma \leq \tau \) whenever \(\sigma(i) \leq \tau(i) \) for all \(i \in \Lambda \) and we say that \(\mu_\Lambda \) is attractive if the conditional probability of \(\sigma(i) = +1 \) is an increasing function of \(\sigma(j) \) for \(j \neq i \). Formally, fix \(i \in V \) given \(\sigma \in \{+1, -1\}^V \) and define \(\sigma_\pm^{(i)} \) as

\[
\sigma_\pm^{(i)}(j) = \begin{cases}
\pm 1, & j = i; \\
\sigma(j), & j \neq i
\end{cases}
\]

We say that \(\mu_\Lambda \) is monotone if

\[
\frac{\mu_\Lambda(\sigma_\pm^{(i)})}{\mu_\Lambda(\sigma_\pm^{(i)})} \geq \frac{\mu_\Lambda(\tau_\pm^{(i)})}{\mu_\Lambda(\tau_\pm^{(i)})}
\]
Perfect simulation of spatial processes

There are several dynamics that have \(\mu_\Lambda \) as their invariant measure, for monotone measures one of the most used is the heat-bath algorithm, which is a procedure that visits all sites (deterministically or randomly that guarantees an infinite number of visits per site almost surely) and updates the value at site \(i \) according to the conditional probability for \(\mu_\Lambda \). For example, the uniformly random heat-bath algorithm can be update at time \(n \) as

\[
\phi(\sigma, U_n, V_n) = \begin{cases}
\sigma_n^- & \text{if } U_n < \mu_\Lambda(\sigma_n^-)/(\mu_\Lambda(\sigma_n^+) + \mu_\Lambda(\sigma_n^-)), \\
\sigma_n^+ & \text{if } U_n > \mu_\Lambda(\sigma_n^-)/(\mu_\Lambda(\sigma_n^+) + \mu_\Lambda(\sigma_n^-)),
\end{cases}
\]

(2.19)

where \(\{U_n, n \geq 1\} \) are independently and identically distributed \(U(0,1) \) random variables, \(\{V_n, n \geq 1\} \) are independently and identically distributed \(U\{\pm 1\} \) and \(\sigma \) is the configuration at time \(n - 1 \).

2.4.1 Low-temperature Ising model

The Ising model is a particular case of spin systems with

\[
H(\sigma, \Lambda) = -\sum_{i < j \in \Lambda} \alpha_{ij} \sigma(i) \sigma(j) - \sum_{i \in \Lambda} B_i \sigma(i)
\]

(2.20)

where \(B_i \) is the strength of the external field at site \(i \) and \(\alpha_{ij} \) models the interaction strength between sites \(i \) and \(j \). We are going to concentrate in the case where there is no external field (\(B_i = 0 \) for all \(i \)) and \(\alpha_{ij} = 1 \) if \(i \) and \(j \) are neighbors, that is \(|i - j| = 1 \) and \(\alpha_{ij} = 0 \) otherwise, for a more complete discussion see Liggett (1985). In this case, a very important question is of phase transition.

It is immediate to see that when \(\Lambda \) is finite the Gibbs measure (state) given by

\[
\mu_\Lambda(\sigma) = \frac{1}{Z_\Lambda} e^{-\beta \sum_{i,j \in \Lambda, |i-j|=1} \sigma(i) \sigma(j)},
\]

(2.21)

where \(\beta \) is (up to constant) the inverse of the temperature, is well defined. However, when we want to consider the Ising model on a countable space \(S \), we cannot apply (2.21) directly with \(\Lambda \) replaced by \(S \). In this case, the Gibbs state is defined for configurations on finite subsets \(\Lambda \subset S \) and then passed to the limit. Formally, let \(\Lambda \subset S \) be a finite set, \(\Lambda^c = S \setminus \Lambda \) and \(\xi \in \{-1,+1\}^{\Lambda^c} \). Let \(\mu_{\Lambda, \xi} \) be the probability measure on \(\{-1,+1\}^\Lambda \) given by

\[
\mu_{\Lambda, \xi}(\sigma) = \frac{1}{Z_{\Lambda, \xi}} \exp\left\{-\beta \left(\sum_{i,j \in \Lambda, |i-j|=1} \sigma(i) \sigma(j) + \sum_{i \in \Lambda^c, |i-j|=1} \sigma(i) \xi(j) \right) \right\}
\]

(2.22)
where again $Z_{\Lambda,\xi}$ is a normalizing constant. In this case, $\mu_{\Lambda,\xi}$ is called the Gibbs state with boundary condition ξ. Let

$$G = \{ \mu; \mu \text{ is a weak limit of } \mu_{\Lambda,\xi} \text{ for any } \Lambda \to S \text{ and boundary conditions } \xi \text{ (which can depend on } \Lambda) \}.$$ (2.23)

Notice that definition (2.23) only makes sense if all μ_{Λ} are defined in the same probability space, but this can be accomplished by extending the $\mu_{\Lambda,\xi}$ to measures in the full space $\{-1, +1\}^{S}$ in the natural way, namely acting as the delta measure on ξ for events outside Λ.

Definition 2.24 We say that the model exhibits a phase transition if G contains more than one element.

Let $\mu_{\Lambda,+}$ and $\mu_{\Lambda,-}$ be defined by (2.22) with $\xi \equiv +1$ and $\xi \equiv -1$ respectively. It can be proved that

(i) $\mu_+ = \lim_{\Lambda \to S} \mu_{\Lambda,+}$ and $\mu_- = \lim_{\Lambda \to S} \mu_{\Lambda,-}$ exist;

(ii) phase transition occurs if, and only if, $\mu_+ \neq \mu_-;

(iii) phase transition does not occur if, and only if,

$$\mu_+ \{ \sigma; \sigma(x) = +1 \} = \mu_- \{ \sigma; \sigma(x) = +1 \};$$ (2.25)

(iv) For all $x \in S$,

$$\mu_+ \{ \sigma; \sigma(x) = +1 \} + \mu_- \{ \sigma; \sigma(x) = +1 \} = 1.$$ (2.26)

For the case, $S = \mathbb{Z}^d$ $d \geq 2$, there is phase transition for β sufficiently large. The proof of this affirmation can be found in Liggett (1985) and it uses the well-known Peierls contours which allows to map the measures $\mu_{\Lambda,+}$ and $\mu_{\Lambda,-}$ of the ferromagnetic Ising model at low temperature into an ensemble of objects—the contours—interacting only by perimeter-exclusion. See, for instance, Section 5B of Dobrushin (1996), for a concise and rigorous account of this mapping. Contours are hyper-surfaces formed by a finite number of $(d - 1)$-dimensional unit cubes—links for $d = 2$, plaquettes for higher dimensions—centered at points of \mathbb{Z}^d and perpendicular to the edges of the dual lattice $\mathbb{Z}^d + (\frac{1}{2}, \ldots, \frac{1}{2})$. To formalize their definition, let us call two plaquettes adjacent if they share a $(d - 2)$-dimensional face. A set of plaquettes, γ, is connected if for any two plaquettes in γ there exists a sequence of adjacent plaquettes in γ joining them. The set γ is closed if every $(d - 2)$-dimensional face is covered by an even number of plaquettes in γ. Contours are connected and closed sets of plaquettes. For example, in two dimensions contours are closed polygonals. In this work we are going to study the construction and simulation of the measure μ_+ for values of β where there exists phase-transition.
Two contours γ and θ are said compatible and denoted by $\gamma \sim \theta$ if no plaquette of γ is adjacent to a plaquette of θ. In two dimensions, therefore, contours are compatible if and only if they do not share the endpoint of a link. In three dimensions two compatible contours can share vertices, but not sides of plaquettes. Ising spin configurations in a bounded region with "+" (or "-") boundary condition are in one-to-one correspondence with families of pairwise compatible contours.

The probability distribution for the set of contours in a bounded window Λ is absolutely continuous respect to the counting measure, and it assigns to each configuration $\xi \in \{0,1\}^G(\Lambda)$, where $G(\Lambda)$ is the set of all possible contours inside Λ probability weight

$$\mu_\Lambda(\xi) = \frac{1}{Z_\Lambda} e^{-\beta \sum_{\gamma, \xi(\gamma) = 1} |\gamma|} \quad (2.27)$$

where $|\gamma|$ is the number of plaquettes comprising γ. [For simplicity we are absorbing in β a factor of 2]. Notice that

$$\mu_\Lambda(\xi) = \frac{1}{Z_\Lambda} \left(\prod_{\gamma, \theta \in \xi} 1(\gamma \sim \theta)\right) \mu_\Lambda^0(\xi) \quad (2.28)$$

(here Z_Λ is not necessarily the same as in (2.27)) where μ_Λ^0 is the product of Poisson random variables with mean $e^{-\beta |\gamma|}$ for $\gamma \in G(\Lambda)$. The state-space of μ_Λ is contained in $\{0,1\}^G$, the one of μ_Λ^0 is contained in \mathbb{N}^G, where G is the set of all possible contours.

Contour ensembles can therefore be considered extreme cases of perimeter-interacting point processes (in a discretized space). They are extreme on two counts: (1) they involve perimeter-repulsion, i.e. a limit $\sigma \to 0$, and (2) they correspond to an infinite (but countable) family of grains of arbitrarily large size.

An important issue for these contour ensembles is the extension of (2.27) to a well defined infinite-volume process. Traditionally this problem has been tackled via cluster expansions. Our alternative approach, besides yielding the perfect simulation scheme discussed in Section 4.4, allowed us to prove that such an extension is possible and unique as long as

$$\alpha := \sup_{\gamma} \frac{1}{|\gamma|} \sum_{\theta \not\in \gamma} |\theta| e^{-\beta |\theta|} < 1. \quad (2.29)$$

(Fernández et al., 1999). This is a weaker condition than the one obtained by usual expansions (for instance in Lebowitz and Mazel (1998)). A condition of this sort is unavoidable because the contour description certainly can not remain valid at the Ising critical temperature, in fact at high enough dimension it breaks down at a temperature strictly below criticality (Aizenman and Lebowitz, 1987).

2.5 Loss networks with fixed routing

A loss network models, for instance, the occurrence of calls in a communication network. The network is formed by a countable family of links (e.g. Σ^d), and each
link j comprises a number $C_j \in \mathbb{Z}_+$ of circuits joining its boundaries. A call is characterized by a route γ and a holding period. There is a countable family, G, of routes, each one defined by the numbers $A_{j\gamma}$ of circuits used from each link j. Calls requesting a route γ arrive as Poisson streams of rate $w(\gamma)$ and as γ varies it indexes independent Poisson streams. The call is lost if on any link j there are fewer than $A_{j\gamma}$ circuits free. Otherwise, the call is connected and simultaneously holds $A_{j\gamma}$ circuits from each link j for the holding period of the call. Holding periods are independent, and independent of earlier arrival times and holding periods. For a survey on loss networks, see Kelly (1991). The state space of a loss network is either $\{0, 1\}^G$ if no more than one call per route is allowed or \mathbb{N}^G when more than one call can use the same route at the same time. The notation $\xi_t(\gamma)$ indicates the number of calls occupying route γ at time t.

This type of loss networks is labelled fixed-routing, as opposed to the alternative-routing networks in which calls that are blocked on a route can search for another route. The latter are not addressed in the following. The main issues in the theory of loss networks are:

(i) To establish conditions granting the existence of the (infinite-volume) process, for finite time-intervals. This means, conditions precluding the occurrence of an “explosion” in a finite time.

(ii) To establish conditions for the existence of the process(es) for unbounded time-intervals, that is, conditions ensuring that the process have well defined limits for $t \to \pm\infty$.

(iii) To prove existence of invariant measures and to determine the regime in which there is uniqueness.

(iv) To analyze the properties of this(ese) measure(s), for instance mixing properties, finite-volume corrections and validity of the central limit theorem.

(v) To determine, or find bounds for, the speed of convergence to the invariant measure.

In Section 3 we will see the results of Fernández et al. (1998, 1999) which give an answer to all these questions. In fact, the technique of analysis employed there leads to a perfect simulation scheme (Section 4.4).

2.5.1 Continuous unbounded one-dimensional loss network

A natural generalization of the preceding setting is to consider continuous loss networks, that is, networks with routes in a continuous, as opposed to discrete, space. The simplest of these models is the loss network in \mathbb{R} introduced by Kelly (1991). Callers of this network are arranged along an infinitely long cable and each call between two points $s_1, s_2 \in \mathbb{R}$ on the cable involves just the segment between them. The cable has the capacity to carry simultaneously up to C calls
past any point along its length. Hence, a call attempt between \(s_1 \) and \(s_2 \in \mathbb{R} \), \(s_1 < s_2 \), is lost if past any point of the interval \([s_1, s_2]\) the cable is already carrying \(C \) calls. Calls are attempted with initial (leftmost) point following a homogeneous space-time Poisson process with rate density (i.e. time rate per unit length) \(\kappa \), and (space) lengths given by a distribution \(\pi \), independent of its leftmost point, with finite mean \(\rho \). The holding time of a call has exponential distribution with mean one. The location of a call, its length and its duration are independent.

Ferrari and Garcia (1998) used a continuous (non-oriented) percolation argument to prove that this model has a unique invariant measure whenever \(\pi \) has finite third moment and the arrival rate \(\kappa \) is sufficiently small. The argument also shows that the process is ergodic, that is, converges to a unique invariant measure whatever the initial distribution.

Let \(N = \{\xi_1, \xi_2, \ldots\} \) be a \(\kappa \)-homogeneous Poisson process on \(\mathbb{R} \times [0, \infty) \), \(H_1, H_2, \ldots \) be i.i.d. random variables with \(\mathbb{E}[H_1] = 1 \) and \(W_1, W_2, \ldots \) i.i.d. random variables with common distribution \(\pi \), the variables \(H \)'s, \(W \)'s and the Poisson process being independent. Consider the random rectangles
\[
R_i = \{(x, y) ; \xi_{i1} \leq x \leq \xi_{i1} + W_i, \xi_{i2} \leq y \leq \xi_{i2} + H_i\},
\]
then \(\{R_i, i \geq 1\} = \{\xi_i + S_i, i \geq 1\} \) is a boolean model in the continuum \(\mathbb{R} \times [0, \infty) \) (Hall, 1988, p.43) where \(S_i = [0, W_i] \times [0, H_i] \) and it represents the independent process of attempted calls. Fix \((x, y) \in \mathbb{R} \times [0, \infty)\), then
\[
\mathbb{P}((x, y) \text{ is not covered}) = \mathbb{P}(\text{ for all } i, (x, y) \notin R_i) = e^{-\kappa \mu^{-1}}.
\]

Let \(v(S_i) \) the content of the largest sphere contained in \(S_i \) and \(V(S_i) \) the content of the smallest sphere containing \(S_i \), then
\[
v(S_i) = \pi \left(\frac{W_i}{2} \wedge \frac{H_i}{2} \right)^2 \quad \text{and} \quad V(S_i) = \pi \left(\frac{W_i}{2} \vee \frac{H_i}{2} \right)^2
\]
since \(\mathbb{E}[v(S_i)] > 0 \), if we assume \(\mathbb{E}\left[\left(\frac{W_i}{2} \vee \frac{H_i}{2} \right)^3 \right] < \infty \), there exists a critical value \(\kappa_c \) such that there is no continuum percolation (Hall, 1988, Theorem 4.11). That is, the number of rectangles in each clump is finite with probability 1. In this case, each \((s, t) \in \mathbb{R} \times [0, \infty)\) belongs to a finite number of random rectangles \(R_i \) and the loss network process can be constructed from the independent process by "erasing" the rectangles which lead to more than \(C \) calls. When \(H \) corresponds to an exponential distribution it has all moments. Hence, for this argument it is sufficient to ask that the random variable \(W \) with distribution \(\pi \) have a third moment finite. A refinement of the above argument shows that this condition can be weakened to \(2 \kappa \rho < 1 \). This construction is heart of the graphical representation of spatial birth and death processes defined in Section 3 that leads to the backward-forward perfect simulation scheme.

This invariant measure can be considered a generalized point process where the germs are the leftmost points of a call and the grains are randomly chosen segments. It can be generalized to any dimension, just substituting the segments by curves or arbitrary bounded sets.
3 Spatial birth-and-death processes

The common feature linking all the spatial processes described in Section 2.1 is that all these distributions can be realized as invariant measures of spatial interacting birth-and-death processes.

3.1 Spatial birth-and-death processes

Consider a spatial pure birth process in \(\mathbb{R}^d \) with birth rate depending on the configuration of the process and constant death rate 1. We specify this process in terms of a nonnegative function \(\lambda : \mathbb{R}^d \times \mathcal{N} \rightarrow [0, \infty) \). The meaning of \(\lambda \) is that if the point configuration at time \(t \) is \(n \in \mathcal{N} \), then the probability that a point is added to the configuration in a neighborhood of the point \(x \) having area \(\Delta A \) in the next interval of length \(\Delta t \) is approximately \(\lambda(x, n) \Delta A \Delta t \).

The above process has generator given by

\[
Af(\eta) = \int (f(\eta + \delta_x) - f(\eta)) \lambda(x, \eta) dx + \int (f(\eta - \delta_x) - f(\eta)) \eta(dx)
\]

for "suitable" functions \(f \).

Consider first a finite range birth rate, that is, there exists a compact set \(G \) such that if \(\eta_1 = \eta_2 \) inside \(x + G \) then \(\lambda(x, \eta_1) = \lambda(x, \eta_2) \) satisfying

\[
\bar{\lambda} = \sup_{x, \eta} \lambda(x, \eta) < \infty.
\]

We are going to use a oriented percolation argument to show the existence of the (infinite-volume) process, for finite-time intervals. More restrictive conditions in \(\bar{\lambda} \) will ensure ergodicity and exponential rate of convergence.

Graphical construction

In order to get a graphical construction for the process with generator (3.1), we begin with a \(\bar{\lambda} \)-homogeneous Poisson point process on \(\mathbb{R}^d \times \mathbb{R} \). Denote it by \(N = \{(\xi, T_i), (\xi_2, T_2), \ldots \} \). For each point \((\xi_i, T_i) \), associate two independent marks \(S_i \sim \exp(1) \) and \(Z_i \sim U(0, 1) \).

We can see the marked point process \(C = \{\{\xi_i, T_i, S_i, Z_i\}, i = 1, 2, \ldots \} \) as the graphical representation of a birth and death process with constant birth rate \(\bar{\lambda} \) and constant death rate 1 (call this free process \(\alpha \)) and \(Z_i \) will be used as the indicator of "allowed" births.

From now on, a marked point \((\xi_i, T_i, S_i, Z_i) \) will be identified with a marked cylinder \(((\xi_i + G) \times [T_i, T_i + S_i], Z_i) \) with basis \(\xi_i \), birth time \(T_i \), lifetime \(S_i \) and flag \(Z_i \). Calling \(C = (\xi, t, s, z) \), we use the notation

\[
\text{Basis}(C) = \xi, \quad \text{Birth}(C) = t, \quad \text{Life}(C) = [t, t + s], \quad \text{Flag}(C) = z.
\]
Define incompatibility between cylinders C and C' by
\[
C' \not\sim C \quad \text{if and only if} \quad \text{Basis}(C) + G \cap \text{Basis}(C') + G \neq \emptyset \\
\text{and} \quad \text{Life}(C) \cap \text{Life}(C') \neq \emptyset,
\]
(3.4)
otherwise $C' \sim C$ (compatible).

3.1.1 Finite-volume construction

The construction of the spatial birth and death process in a finite box Λ with an initial configuration $\eta_0 = \{\varphi_1, \varphi_2, \ldots\}$ using the Poisson processes is straightforward. We use only the finite set \{(ξ_i, T_i, S_i, Z_i) : $\xi_i \in \Lambda, T_i > 0$\}. Let $C^\Lambda = \{C \in C : \text{Basis}(C) \cap \Lambda \neq \emptyset, \text{Birth}(C) > 0\}$. To each point φ_j present in the initial configuration η_0 we independently associate an exponential time $\bar{\xi}_j$ and a cylinder $(\varphi_j, 0, \bar{S}_j, 0)$. The collection of initial cylinders is called C_0^Λ. We realize the dynamics η_t^Λ as a (deterministic) function of C^Λ and C_0^Λ. Let
\[
C^\Lambda[0, t] = \{(\xi, s, l, z) \in C^\Lambda \cup C_0^\Lambda : 0 \leq s + l, s \leq t\}.
\]
(3.5)

Consider $0 < t_1 < t_2 < \ldots < t_N$ as the birth and death marks T_i, S_i lying in the set $[0, t]$. By the properties of the Poisson process all of these times are distinct, that is
\[
\{t_1, \ldots, t_N\} = [0, t] \cap \{s, s + l; (\xi, s, l, z) \in C^\Lambda[0, t]\}.
\]
(3.6)

We construct the process η_t^Λ inductively as follows:

FV.1. Suppose that η_s^Λ is already defined, and that $t_{i-1} \leq u < t_i$. We set
\[
\eta_u^\Lambda = \eta_s^\Lambda, \quad \text{for all} \quad u \leq s < t_i.
\]
(3.7)

If $u \geq t_N$ then
\[
\eta_u^\Lambda = \eta_s^\Lambda, \quad \text{for all} \quad u \leq s.
\]
(3.8)

FV.2. If t_i is a death time, that is, $t_i = s + l$ for some $(\xi, s, l, z) \in C^\Lambda[0, t]$ then we delete the point ξ: we set
\[
\eta_{t_i}^\Lambda = \eta_{t_i-}^\Lambda \setminus \{\xi\}.
\]
(3.9)

Go back to **FV.1**.

FV.3. If t_i is a birth time, that is, $t_i = s$ for some $(\xi, s, l, z) \in C^\Lambda[0, t]$ then we do not add the point ξ if $z > \lambda(\xi, \eta_{t_i-}^\Lambda)$: we set
\[
\eta_{t_i}^\Lambda = \eta_{t_i-}^\Lambda.
\]
(3.10)

Otherwise the point ξ is added: we set
\[
\eta_{t_i}^\Lambda = \eta_{t_i-}^\Lambda \cup \{\xi\}.
\]
(3.11)

In either case, go back to **FV.1**.
It is tedious but easy to show that η^A_t has generator A^Λ defined as in (3.1) restricting the sums to the configurations contained in A. It is easy to find an invariant measure μ_A for this process (through the equation $\int A \mu_A(\eta) = 0$). Some regeneration argument should show that η^A_t converges in distribution to μ^A for any initial configuration η. This, in particular, implies that μ^A is the unique invariant measure for η^A_t.

Using the same Poisson marks for η^A_t and α_t (the process with constant birth rate λ and constant death rate 1), we have

$$\eta^A_t(A) \leq \alpha_t(A),$$

for all $A \subseteq \Lambda$ because in the process α_t all cylinders are kept. This implies

$$\mu^A\{\eta : \eta(A) = 0\} \geq \mathbb{P}\{\alpha : \alpha(A) = 0\}. \quad (3.13)$$

3.1.2 Infinite-volume construction

If we try to perform an analogous construction in infinite volume we are confronted with the problem that there is not a first mark. However, notice that the free process α_t always exist. The goal, is to find conditions under which the process α_t can be thinned by the finite-volume construction.

Consider the total order \prec in the set of cylinders induced by the birth times. That is $C \prec C'$ if and only if $\text{Birth}(C) \leq \text{Birth}(C')$.

For an arbitrary space-time point (x, t) define the set

$$A^x_t = \{C \in \mathcal{C} : x \in \text{Basis}(C), \text{Life}(C) \geq t\} \quad (3.14)$$

the set of cylinders containing the point (x, t).

For any cylinder C define the set of ancestors of C as the set

$$A^C_1 = \{C' \in \mathcal{C} : C' \prec C, C' \neq C\} \quad (3.15)$$

Notice that the definition of ancestor does not depend on the lifetime of C. Recursively for $n \geq 1$, the nth generation of ancestors are defined as

$$A^{x,t}_n = \{C'' : C'' \in A^C_{n-1}\}$$

and for a given cylinder C,

$$A^n = \{C'' : C'' \in A^C_{n-1}\}. \quad (3.17)$$

We say that there is backward oriented percolation in \mathcal{C} if there exists a space-time point (x, t) such that $A^{x,t}_n \neq \emptyset$ for all n, that is, there exists a point with infinitely many generations of ancestors. Let the clan of the space-time point (x, t) be the union of its ancestors:

$$A^{x,t} = \bigcup_{n \geq 1} A^{x,t}_n \quad (3.18)$$
and \(C[0,t] = \{ C \in \mathbb{C} : \text{Birth}(C) \in [0,t] \} \).

In the next theorem we give a sufficient condition for the existence of the infinite-volume process in any finite time interval in terms of backwards percolation.

Theorem 3.19 If with probability one \(A_{\mathbb{R}^d} \cap C[0,t] \) is finite for any \(x, \in \mathbb{R}^d \) and \(t \geq 0 \), then for any box \(\Lambda \subset \mathbb{R}^d \), the process with generator \(A^\Lambda \) is well defined and has at least one invariant measure \(\mu^\Lambda \).

Proof. We construct the process for \(\Lambda = \mathbb{R}^d \). The construction for other \(\Lambda \) is analogous. The initial distribution is denoted \(\eta_0 = \{ \varphi_1, \varphi_2, \ldots \} \). For each \(\varphi_j \in \eta_0 \) let \(S_j \) be an independent exponentially distributed random time of mean 1. The time \(S_j \) represents the lifetime of the cylinder with basis \(\varphi_j \), birth time 0 and flag 0. We call \(C(0) \) the set of cylinders \(\{(\varphi_j, 0, S_j, 0); \varphi_j \in \eta_0 \} \). Since the cylinders in \(C(0) \) have no ancestors in \(C[0,t] \), under the hypothesis of the theorem, every cylinder in \(C(0) \cup C[0,t] \) has a finite number of ancestors in \(C[0,t] \).

It is easy to see that we can represent the constant birth and death process \(\alpha_t \) as

\[
\alpha_t = \{ \text{Basis}(C); C \in C(0) \cup C[0,t], \text{Life}(C) \ni t \}. \tag{3.20}
\]

We will construct \(\eta_t \) as a thinning of the constant birth and death process \(\alpha_t \), for this consider \(C \in C(0) \cup C[0,t] \) such that \(\text{Life}(C) \ni t \), then \(\text{Basis}(C) \in \alpha_t \), to decide if \(\text{Basis}(C) \in \eta_t \) we need to look at \(C(0) \cup \bigcup_{n \geq 1} A^n \), which is finite by hypothesis. In this case, we can perform the mark-by-mark construction defined in the previous section and it can be accomplished in a finite number of steps.

It is possible to show that \(\eta_t \) has generator \(A \) given by (3.1). \(\square \)

The lack of percolation allows us to construct \(\eta_t \) as a thinning of \(\alpha_t \) for times in the whole real line. Since the construction is time-translation invariant, the distribution of \(\eta_t \) will be invariant.

Theorem 3.21 If with probability one there is no backwards oriented percolation in \(C \), then the process with generator \(A \) can be constructed in \((\mathbb{R}^d, \mathbb{N})\) in such a way that the marginal distribution of \(\eta_t \) is invariant.

Definition 3.22 The distribution of \(\eta_t \) is called \(\mu \).

Remark: A consequence of Theorem 3.21 is that the spatial birth and death process in a finite box \(\Lambda \) can be constructed for all \(t \in \mathbb{R} \).
3.1.3 Time ergodicity

The main theorem in this section shows that all that is needed for exponential convergence to a unique invariant measure is the absence of backwards and non-oriented percolation. The key to prove this fact is a domination by a branching process which will be sub-critical under the condition $\bar{\lambda} \leq 1/m^d(G)$.

Note that the collection of cylinders

$$
C = \{(\text{Basis (C)} + G) \times \text{Life (C)}; C \in C\}
$$

(3.23)

is a boolean model (Hall, 1988) and for any $x \in \mathbb{R}^d$ and $t \geq 0$ we have that the number of hypercubes that cover (x, t) is Poisson distributed with mean $m^d(G)\bar{\lambda}$. In fact,

$$
\mathbb{P}((x, t) \text{ not covered}) =
\mathbb{P}((x, t) \notin (\text{Basis (C)} + G) \times \text{Life (C)} \text{ for any } C \in C)
= e^{-m^d(G)\bar{\lambda}}.
$$

(3.24)

Notice that the process of ancestors is not a Galton-Watson process, a cylinder in the first generation can also be in the second generation of a cylinder. However, we can define a Galton-Watson branching process $B_n \in \mathbb{N}$ such that the offspring distribution of a cylinder C has the same (marginal) law as the distribution of A^C, but the branches behave independently. The key point is to fix a way to distribute common ancestors. Let Y_i^n be i.i.d. non negative integer valued random variables with Poisson distribution with mean $m^d(G)\bar{\lambda}$. Define $B_0 = 1$ and

$$
B_{n+1} = \sum_{i=1}^{B_n} Y_i^n
$$

(with the convention $\sum_{i=1}^{0} Y_i^n = 0$). It is possible to couple the BO-cluster $A^{x,t}$ and $(B_n)_{n \geq 0}$ in such a way that the number of ancestors in the nth generation of (x, t) is less than or equal to B_n. The total number of ancestors of (x, t) is bounded by

$$
||A^{x,t}|| \leq \sum_{n \geq 0} B_n.
$$

(3.26)

Therefore, there is no backward oriented percolation if the process is sub-critical, that is,

$$
\bar{\lambda} < (m^d(G))^{-1}.
$$

(3.27)

Defining the time-length and the space-width of the family of cylinders $A^{x,t}$ be respectively

$$
\text{TL} (A^{x,t}) = t - \sup\{s : \text{Life (C)} \ni s, \text{ for some } C \in A^{x,t}\},
$$

(3.28)

$$
\text{SW} (A^{x,t}) = m^d(\cup_{C \in A^{x,t}} \text{Basis (C)} + G),
$$

(3.29)
we get

\[\text{SW}(A^{x,0}) \leq m^d(G)B \]
\[(3.30)\]

\[\text{TL}(A^{x,0}) \leq \sum_{i=1}^{B} \hat{S}_i \]
\[(3.31)\]

where

\[B = \sum_{n \geq 0} B_n \]
\[(3.32)\]

and \(\hat{S}_i, i \geq 1 \) are i.i.d. exponentially distributed random variables with mean 1.

Since

\[\mathbb{E}[B] = \frac{1}{1 - m^d(G)\lambda} \]
\[(3.33)\]

we have

\[\mathbb{E}[\text{SW}(A^{x,0})] \leq \frac{1}{m^d(G)^{-1} - \lambda} \]
\[(3.34)\]

\[\mathbb{E}[\text{TL}(A^{x,0})] \leq \frac{1}{1 - m^d(G)\lambda}. \]
\[(3.35)\]

Moreover, the moment generating function of \(\text{TL}(A^{x,0}) \) is given by

\[\mathbb{E}[a^{\text{TL}(A^{x,0})}] = F[(1 - \log a)^{-1}] \]
\[(3.36)\]

where \(F(b) \) is the generating function of \(Z \) and consequently,

\[\mathbb{P}[\text{TL}(A^{x,0}) > bt] \leq F_B(b)e^{-bt}. \]
\[(3.37)\]

3.1.4 Time convergence and uniqueness

We say that two sets of cylinders \(A \) and \(A' \) are incompatible if there is a cylinder in \(A \) incompatible with a cylinder in \(A' \):

\[A \not\sim A' \text{ if and only if } C \not\sim C' \text{ for some } C \in A \text{ and } C' \in A'. \]
\[(3.38)\]

Theorem 3.39 Assume that there is no backwards oriented percolation with probability one. Then,

1. Uniqueness. The measure \(\mu \) is the unique invariant measure for the process \(\eta_t \).

2. Time convergence. For any compact set \(A \),

\[\lim_{t \to \infty} \sup_{A} |\mathbb{E}_{\eta_t}^n(A) - \mathbb{E}(A)| = 0. \]
\[(3.40)\]
Furthermore,

\[
\sup_{A} |\mathbb{E}\eta(A) - \mathbb{E}\eta_t^n(A)| \leq \mathbb{P}(\cup_{x \in A} \{A^{x,t} \neq C(0) \text{ or } TL(A^{x,t}) > t\}) \leq \left(\mathbb{P}(\cup_{x \in A} TL(A^{x,0}) > bt) + e^{-(1-b)t} \mathbb{E}(SW(A^{x,0})) \right)
\]

for any \(b \in (0, 1) \).

3. Space convergence. As \(\Lambda \to \mathbb{R}^d \), \(\mu^\Lambda \) converges weakly to \(\mu \). More precisely, if \(A \) is a finite set contained in \(\mathbb{R}^d \), then

\[
|\mu(A) - \mu^\Lambda(A)| \leq \mathbb{P}(A^\Lambda \neq A^A) \tag{3.42}
\]

where \(A^\Lambda(A^A) \) is the clan of ancestors of \(A \) in the infinite (finite)-volume construction.

Moreover, by construction we have that the invariant measure \(\mu \) is space-invariant. That is, we have spatial ergodicity of the stationary distribution.

Proof. Existence of \(\mu \) has been proven in Theorem 3.21.

In order to prove uniqueness of the invariant measure we use the same Poisson marks to construct simultaneously the stationary process \(\eta_t \) and a process starting at time zero with an arbitrary initial configuration \(\eta \). The second process is called \(\eta_t^n \), where \(\eta_0^n = \eta \). The process \(\eta_t^n \) ignores the cylinders in \(C \) with birth times less than 0 and considers \(C(0) = \{(\varphi_j, 0, S_j, 0) : \varphi_j \in \eta\} \), the set of cylinders with basis given by the initial configuration \(\eta \) and birth time zero — the times \(S_j \) are exponentially distributed with mean 1 and independent of everything.

It is enough to prove that

\[
\sup_{A} \mathbb{P}(|\eta_t(A) - \eta_t^n(A)| > 0) \to 0 \tag{3.43}
\]

as \(t \to \infty \).

Since we are using \(C \) to construct \(\eta_t \) and \(C[0, t] \cup C(0) \) to construct \(\eta_t^n \), it follows

\[
|\eta_t^n(A) - \eta_t(A)| \leq \sum_{x \in A} 1\left\{ \left(A^{x,t} \neq C(0) \text{ or } TL(A^{x,t}) > t \right) \right\} \tag{3.44}
\]

Note that \(A^{x,t} \neq \emptyset \) for finitely many \(x \in A \). The proof of the above results is done similarly as in Fernández et al. (1998). The estimates for the moments of \(TL(A^{x,t}) \) and \(SW(A^{x,t}) \) are given by (3.34), (3.35) and (3.36).

The arguments prove that the process converges, uniformly in the initial configuration, to the invariant measure \(\mu \). An immediate consequence is that \(\mu \) is the unique invariant measure. Moreover, it is easy to see that the velocity of convergence is exponential.
3.2 More general birth-and-death processes

3.2.1 Peierls contours of the Ising model

In this case, we are considering a birth-and-death process where the individuals are contours in G, a birth rate depending on the configuration of contours already present and unit death rate. Specify this process in terms of a non-negative function $\lambda : G \times \{0,1\} \rightarrow [0,1]$ given by

$$\lambda(\gamma, \eta) = e^{-\beta|\gamma|} \mathbf{1}(\gamma \sim \eta).$$

The above process has generator given by

$$Af(\eta) = \sum_{\gamma \in G} e^{-\beta|\gamma|} \mathbf{1}(\eta^+ \gamma \in \{0,1\}^G) [f(\eta^+ \gamma) - f(\eta)]$$

$$+ \sum_{\gamma \in G} \eta(\gamma) [f(\eta^{-\gamma}) - f(\eta)]$$

where f is a cylindrical function and

$$\eta^{\pm \gamma} = \eta \pm \delta_\gamma.$$

A construction similar to Section 3 shows that a sufficient condition for existence of the process is

$$\alpha := \sup_{\gamma} \frac{1}{|\gamma|} \sum_{\theta \neq \gamma} |\theta| e^{-\beta|\theta|} < \infty$$

where as ergodicity is obtained under the condition (2.29) ($\alpha < 1$). In this case, consider the origin of a contour to be the first point in lexicographic order and define

$$\lambda_\beta := \sum_{\gamma : \text{ori}(\gamma) = 0} e^{-\beta|\gamma|}.$$

Begin with λ_β-independent Poisson streams $\{N_x; x \in \mathbb{Z}^d\}$. Denote

$$N_x = \{T_1(x), T_2(x), \ldots\}$$

and to each point $T_i(x)$ assign independent marks:

- $\gamma_i(x) = \gamma$ chosen from $\{\gamma : \text{ori}(\gamma) = x\}$ with probability $\exp(-\beta|\gamma|)/\lambda_\beta$;
- $S_i(x) \sim \exp(1)$.

Consider the set of marked cylinders:

$$\mathcal{C}\{((\gamma_i(x), T_i(x), S_i(x)); x \in \mathbb{Z}^d, i \geq 1) \equiv$$

$$\{\gamma_i(x) \times [T_i(x), T_i(x) + S_i(x)]; x \in \mathbb{Z}^d, i \geq 1\}$$
and as before for \(C = (\gamma, t, s) \), we use the notation

\[
\text{Basis}(C) = \gamma, \quad \text{Birth}(C) = t, \quad \text{Life}(C) = [t, t+s].
\]

(3.52)

Define incompatibility between cylinders \(C \) and \(C' \) by

\[
C' \not\sim C \quad \text{if and only if} \quad \text{Basis}(C) \not\sim \text{Basis}(C')
\]

and \(\text{Life}(C) \cap \text{Life}(C') \neq \emptyset \),

otherwise \(C' \sim C \) (compatible), where compatibility between contours was defined in Section 2.4.1.

The construction follows as Section 3.1.1 and 3.1.2, except that here we erase all incompatible cylinders (we do not need to check the flag). Conditions for lack of backward percolation and velocity of convergence are obtained through a domination by a multi-type branching process \(b_n \), where the types are the contours and \(b_n(\theta) \) denotes the number of cylinders of basis \(\theta \) in the \(n \)th generation of a cylinder \(C \) with basis \(\gamma \). In this case,

\[
\sum_{\theta} b_n(\theta) \geq ||A^C_n||.
\]

(3.54)

It is easy to see that the mean number of descendents type \(\theta \) from a mother type \(\gamma \) is given by

\[
m(\gamma, \theta) = e^{-\beta|\theta|} 1(\gamma \not\sim \theta)
\]

(3.55)

and

\[
\sum_{\theta} m^n(\gamma, \theta) \leq \sum_{\theta} |\theta| m^n(\gamma, \theta) \leq |\gamma| \alpha^n
\]

(3.56)

where \(\alpha \) is defined by (2.29) and the process is sub-critical if \(\alpha < 1 \). Detailed calculations can be found in Fernández et al. (1998, 1999).

3.2.2 Loss networks

They can be associated to point processes with grains stochastically chosen (possibly with sizes forming an unbounded set). For instance, for the continuous loss network of Section 2.5.1, the germs are the leftmost points of calls and the grains are segments with random lengths. In this case, the domination is done through a multi-type branching process with uncountable many types. Assume, in general, that the leftmost points of calls appear with rate \(f(x) \) and that call lengths are given by a distribution \(\pi \) independent of \(x \). We only require the latter to have a finite mean \(\rho \). Consider a germ sitting at the origin, that is a call stretching from the origin to the right, born at time zero. Its ancestors correspond to cylinders with sufficient lifetime and with bases given by either calls starting at negative sites and passing through the origin, or calls of arbitrary length originating within
the sites occupied by the initial call. Therefore, the sub-criticality parameter has two contributions:

$$\int_{-\infty}^{0} dx f(x) \pi(\{L > x\}) + \int_{0}^{\infty} \pi(dL) \int_{0}^{L} dx f(x).$$ \hspace{1cm} (3.57)

[We have omitted a factor 1 corresponding to the lifetime of the ancestors.] If the rate f is constant, say equal to κ, each contribution in (3.57) is equal to $\kappa \rho$. The finite-time process therefore exists as long as $\rho < \infty$ and the ergodic stationary process if

$$2 \kappa \rho < 1. \hspace{1cm} (3.58)$$

4 Perfect Simulation

4.1 General definition

Let us start with an abstract definition embodying the three exact simulation algorithms, Coupling from the Past (CFTP), Acceptance-Rejection Algorithm (ARA) and Backward-Forward Algorithm (BFA) described in the Introduction.

Definition 4.1 A perfect simulation (or exact sampling) scheme for a probability space $(X, \Omega, \mathcal{F}, \mu)$ consists in:

(i) A process $V = (V_t)_{t \geq 0}$.

(ii) A $\{G_t\}$-stopping-time, $\tau = \tau(V)$, where $G_t = \sigma(V_s, 0 \leq s \leq t)$, such that

$$\Pr(\tau(V) < \infty) = 1, \hspace{1cm} (4.2)$$

(iii) A random function $\Phi_{V} : \mathbb{R} \rightarrow X$ such that

$$\Pr(\Phi_{V}(\tau) \in A) = \mu(A). \hspace{1cm} (4.3)$$

The definition is completely general: V is some underlying process and \Pr is a probability measure defined in a sufficiently large space encompassing X and the state-space of the process V. In fact, in CFTP and our algorithm, the set up is such that

$$\Pr(\Phi_{V}(t) \in A) = \mu(A) \hspace{1cm} \forall t \geq \tau. \hspace{1cm} (4.4)$$

This is not so in the ARA algorithm. Property (4.4) stems from the fact that in CFTP and in our case, the algorithm "looks into the past", and the process V is related to *past history* or *ancestry* of what happens at a *fixed* time, say time zero. The ARA algorithm, instead, is constructed on the basis of the forward evolution but incorporates a time-reversed trajectory for the acceptance-rejection procedure.
4.2 Coupling from the past

The coupling from the past algorithm (CFTP) was the first feasible algorithm for a perfect simulation scheme. It was introduced by Propp and Wilson (1996) and after this paper was made available, there was a sequence of articles applying the method to several different situations. We are going to describe the application to some situations ranging from the simplest (discrete-time finite state Markov chain) to more complicated problems (area-interaction point process and Strauss processes).

4.2.1 Discrete-time

Consider the problem of generating a random sample from a distribution \(\mu \) on a finite set \(S \) which is the unique invariant measure of a discrete-time aperiodic, irreducible, positive recurrent Markov chain with state space \(S \). Let \(P \) denote the transition matrix.

In this case, the ingredients of the algorithm are:

- A discrete-time backwards process defined by a sequence \((U_i)_{i \leq 0}\) of independent random variables uniformly distributed in \([0, 1]\). The forward process \(X \) is simply defined as its time-inversion: \(V_i = U_{-i} \).

- A function \(F : X \times [0, 1] \to X \) such that the Markov chain constructed by setting \(X_n = F(X_{n-1}, V_n) \) has \(\mu \) as unique invariant measure.

The definition of \(\tau \) and \(\Phi_V \) is based on iterations of \(F \):

\[
F_{[k,k']}(x,V) = F(F_{[k',k'-1]}(x,V),V_{k'})
\]

for \(k' \geq k \), where \(F_{[k,k]}(x,V) = F(x,V_k) \). Notice that \(F_{[k,k']}(x,V) \) depends only on \((V_k, \ldots, V_{k'})\). Now,

\[
\tau = \min \left\{ n : F_{[-n,0]}(x,V) \text{ does not depend on } x \right\}
\]

and

\[
\Phi_V(t) = F_{[-t,0]}(x,V) = F_{[-\tau,0]}(x,V)
\]

for any \(x \in X \) and \(t \geq \tau \). For \(t < \tau \) the value of \(\Phi_V \) is arbitrary.

In words, the process is simulated from time \(-t\) to time 0, using the same realization \(u_{-t}, \ldots, u_{-1} \) of the random variables \((U_i)_{-t \leq i \leq -1}\) for all possible initial states \(X_{-t} = x \). If all the resulting trajectories coalesce at or before time 0, the value of \(X_0 \) is taken to be a sample of \(\mu \). If not, the simulation is started some other time \(t' > t \), using, for the period \([-t, 0]\), the previous realization \(u_{-t}, \ldots, u_{-1} \) of the independent random variables. This (backwards) iteration is continued until all trajectories are seen to coalesce before time 0. The key points of this prescription are: (i) the use of the same random numbers to generate trajectories for different initial states (coupling), (ii) the keeping of a given realization of random numbers
Perfect simulation of spatial processes

for a given period in all iterations, and (iii) the use of a fixed time—called time 0—to register the sample.

The efficiency of the algorithm depends on the choice of the function F. A badly designed coupling can lead to extremely large values of τ. As an example of this, consider a process with $X = \{0, 1\}$ and with probability $1/2$ of jumping from any state to any other. Here $\mu(0) = \mu(1) = 1/2$. If one chooses $F(0, v) = 1 - F(1, v) = 1\{v < 1/2\}$, the resulting coupling time τ is infinite with probability one. The construction of “good” couplings requires the maximization of $\min_{x, y} \mathbb{P}(F(x, V_n) = F(y, V_n))$. This condition is strongly model-dependent. Every homogeneous ergodic Markov process admits an F yielding a finite coalescence time, e.g. the Vaserstein coupling used by Dobrushin (1965).

For completeness, let us see why the algorithm performs as stated. By definition of F,

$$
\mu(x) = \lim_{T \rightarrow -\infty} \mathbb{P}\left(F_{[-T, 0]}(a, V) = x\right)
$$

and by definition of τ,

$$
\mathbb{P}\left(F_{[-T, 0]}(a, V) = x, \tau \leq T\right) = \mathbb{P}\left(\Phi_V(t) = x\right) \quad \forall t \geq \tau.
$$

On the other hand, if F is well chosen, τ is finite with probability one, hence

$$
\mathbb{P}\left(F_{[-T, 0]}(a, V) = x, \tau > T\right) \leq \mathbb{P}(\tau > T \mid X_{-T} = a)
$$

$$
= \mathbb{P}(\tau > T) \xrightarrow{T \rightarrow \infty} 0.
$$

This shows property (4.3).

While it is true that trajectories also coalesce when looked forward in time, an algorithm based on this fact does not lead to a perfect simulation scheme. Indeed, if τ^* is the forward coalescing time, the analogous of (4.8) holds,

$$
\mu(x) = \lim_{T \rightarrow \infty} \mathbb{P}(F_{[0, T]}(a, V) = x)
$$

$$
= \lim_{T \rightarrow \infty} \left[\mathbb{P}(F_{[0, T]}(a, V) = x, \tau^* \leq T) + \mathbb{P}(F_{[0, T]}(a, V) = x, \tau^* > T)\right],
$$

but in general

$$
\lim_{T \rightarrow \infty} \mathbb{P}\left(F_{[0, T]}(a, V) = x, \tau^* \leq T\right) \neq \mathbb{P}\left(\Phi_V(\tau^*) = x\right)
$$

(in fact, the limit may not even exist).

Example 4.13
Let's consider a very simple example, take the random walk on \(\{0, 1, 2, 3, 4\} \) with transition probabilities

\[
P(i, i + 1) = P(i + 1, i) = 1/2, \text{ for } i = 1, 2, 3:
\]

\[
P(0, 0) = P(0, 1) = P(4, 4) = P(4, 3) = 1/2.
\]

\[
\pi = (1/5, 1/5, 1/5, 1/5, 1/5, 1/5)
\]

In this case we have a stochastic flow defined as: if \(X_0 = i \) then \(X_n = F_{0,n}(i) \)

The usual MCMC approach is to run the chain \(X_n = F_{0,n}(i) \) for \(n \) large.

Define

\[
Y_n(i) := F_{-n,0}(i) \overset{\mathsf{d}}{=} X_n \text{ given } X_0 = i.
\]

Notice that \(\{Y_n, n \geq 0\} \) is not a Markov chain. Define

\[
T_c := \inf\{n; Y_n(i) \text{ do not depend on } i\}.
\]

Then, it is easy to see that

\[
Y_\infty = \lim_{n \to \infty} Y_n(i) = Y_{T_c}(i) \sim \pi.
\]

We have that \(T_c \) is coalescence time and it is a stopping time in the reverse filtration:

\[
T_c = \inf\{n; F_{-n,0} \text{ is constant}\}
\]

and \(F_{-n,0}(i) = Y_\infty \) has the desired distribution \(\pi \).

In the example, showed in Figure 4.2.1 \(T_c = 10 \) and \(F_{-10,0}(i) = 1 \) is an unbiased sample from \(\pi \).
CFTP for the symmetric random walk in Example 4.13

Let \(\ldots, U_{-3}, U_{-2}, U_{-1}, U_0 \) be independent identically distributed random variables and \(\phi(\cdot, \cdot) \) a deterministic function such that

\[
\mathbb{P}[\phi(i, U_0) = j] = P_{i, j}
\]

for all \(i, j \in S \). Define

\[
F_{m, n} = \phi(\phi(\ldots, U_{-m}), U_{-m+1}), \ldots, U_{-n})
\]

If, with probability one, there exists a \(T \) such that \(F_{T, 0} \) is constant, which value we denote by \(\phi(\ldots, U_{-2}, U_{-1}, U_0) \), then

\[
\phi(\ldots, U_{-2}, U_{-1}, U_0) \sim \pi.
\]

The algorithm has been used for state space \(X \) finite or with a maximal and a minimal state in some partial ordering. In this last case, the chain \(X_n \) must be order-preserving, so only the extremal states need to be followed. In actual simulations \(\tau \) is not really computed. In general \(F_{[-n,0]}(x, V) \) is computed for all \(x \) and for different—but not all—values of \(n \) (for instance powers of 2) up to the first time \(F_{[-n,0]} \) is constant in \(x \).

4.2.2 Jump processes in continuous-time

The previous algorithm can be trivially adapted for invariant measures of Markov jump processes with an embedded ergodic Markov chain. Let \((Y_t) \) be a process of this type, with finite state space \(X \), rates \(Q(x, y) \), \(x, y \in X \), and (unique) invariant measure \(\pi \). It is convenient to consider another process, with rescaled transition times, having the same invariant measure. The new process has transition times given by a Poisson process \(N(t) \) of rate \(\lambda = \max_x \sum_y Q(x, y) \) and transitions determined by an skeleton Markov chain \(X \) with transition probabilities

\[
P(x, y) = \begin{cases}
\lambda^{-1} Q(x, y) & \text{if } y \neq x \\
1 - \lambda^{-1} \sum_{z \neq x} Q(x, z) & \text{if } y = x
\end{cases}
\]

(4.14)
We have that
\[Y_t \overset{D}{=} X_{N(t)}. \] (4.15)

Therefore, the invariant measure for \(X \) coincides with that of the original process \((Y_t) \). It is therefore enough to proceed as in the discrete-time case.

4.2.3 Point processes

Kendall (1997, 1998) has applied CFTP to simulations of processes that can be obtained as weighted Boolean models using quermass integrals. These include the area-interaction processes considered by Baddeley and van Lieshout (1995) described in Section 2.3.1, where the point process is produced by the germs of a Boolean model \(\Theta \) under the weighting
\[\gamma \text{-area}(\Theta). \]

Its Radon-Nikodym derivative (restricted to a bounded window \(\Lambda \)) is given by (cf. (2.16))
\[\mu_\Lambda(dN) = \frac{\kappa^{N(\Lambda)} \cdot m_d[N \oplus G]}{Z_\Lambda(\kappa, \phi)} \mu^0_\Lambda(dN), \] (4.16)
where \(\kappa \) and \(\phi \) are positive parameters. \(Z_\Lambda(\kappa, \phi) \) is a normalizing constant and \(N \oplus G \) is the coverage process given by
\[N \oplus G := \bigcup_{x \in N} \{x + G\}. \] (4.17)

The attractive processes can be simulated using CFTP methods in the presence of monotonicity, when models can be sandwiched between a “maximal” and a “minimal” weighted Boolean models. In fact, through a minor modification the algorithm is also applicable to repulsive point processes (Kendall, 1997). We describe his scheme.

Consider the space-time Boolean model of cylinders constructed in Section 3.

Finite-volume construction

Now, fix \(-T < 0\); for \(t \in [-T, 0] \) we are going to follow the evolution of three processes: \(\eta_{-T}^{\max} \), \(\eta_{-T}^{\min} \) and \(\eta_{-T}(t) \) on \(\Lambda \). Each process will have initial configuration \(\eta_{-T}^{\min}(-T) \subseteq \eta_{-T}(-T) \subseteq \eta_{-T}^{\max}(-T) \) and they will use the finite set of marked cylinders
\[C_{-T}^\Lambda = \{ C \in \mathcal{C}; \text{Basis}(C) \in \Lambda, \text{Life}(C) \cap [-T, 0] \neq \emptyset \}. \] (4.18)

The initial "maximal" and "minimal" configurations are defined by
\[\eta_{-T}^{\max}(-T) = \{ \text{Basis}(C); C \in C_{-T}^\Lambda, \text{Life}(C) \ni -T \}; \] (4.19)
\[\eta_{-T}^{\min}(-T) = \{ \text{Basis}(C); C \in C_{-T}^\Lambda, \text{Life}(C) \ni -T, \text{Flag}(C) \leq \phi^{-m_d(G)} \}. \] (4.20)
Perfect simulation of spatial processes

while $\eta_{-T}(-T)$ can be any arbitrary subset of $\eta_{-T}^{\text{max}}(-T)$ and superset of $\eta_{-T}^{\text{min}}(-T)$.

Using the graphical construction defined in Section 3.1.1, it is possible to couple monotonically the trajectories $\eta_{-T}^{\text{max}}(t)$ and $\eta_{-T}^{\text{min}}(t)$ for all $-T \leq t \leq 0$ until the coalescence time

$$T_C := \min\{T; \eta_{-T}^{\text{max}}(0) = \eta_{-T}^{\text{min}}(0)\}. \quad (4.21)$$

In general, the algorithm is run for fixed times $T_1 < T_2 < T_3 < \ldots$ with $T_N = \varepsilon^N$.

The modification needed for the repulsive case, is that in FV.3 (Section 3.1.1),

- a point ξ is added to $\eta_{-T}^{\text{max}}(t)$ if the mark
 $$z > \phi^{m_d(G)} - m_d((\xi+G) \setminus (\eta_{-T}^{\text{max}}(t-\phi G)))$$

- a point ξ is added $\eta_{-T}^{\text{min}}(t)$ if the mark
 $$z > \phi^{m_d(G)} - m_d((\xi+G) \setminus (\eta_{-T}^{\text{min}}(t-\phi G)))$$

The above references analyze processes in a finite window with fixed boundary conditions. On the other hand, it seems interesting to consider finite windows of an infinite-volume distribution. The only mention to this is by Kendall (1997), who points out a scheme that requires that the underlying Boolean model do not exhibit percolation in space-time. In this case, the CFTP method can be extended by looking at $[-T, 0] \times [-K, K]^d$ for ever increasing T and K. The lack of percolation ensures that eventually the area-interaction process will not be affected by whatever boundary conditions are imposed at time $-T$ and outside $[-K, K]^2$. This lack of percolation argument is the same used in Section 2.5.1 for continuous unbounded loss networks, as before an oriented-percolation argument can lead to a scheme that can be applied to a broad regimen.

4.2.4 User Impatience Bias.

The coupling from the past algorithm possesses the impatient-user bias. That is, it has a running time which is not independent of the state sampled, thus if the user aborts a long run of the algorithm a bias is introduced. The following simple example is presented in Thönnes (1999). Consider the Markov chain X with state space $\{0, 1, 2\}$ and transition matrix

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \\ 1/2 & 0 & 1/2 \end{pmatrix}.$$
The stationary distribution is given by \(\pi = (2/5, 1/5, 2/5) \). We can simulate \(X \) using the following rule:

\[
\phi(x, U) = \begin{cases}
0, & \text{for } x = 0, 2 \text{ and } U \leq 1/2 \\
\min\{x + 1, 2\}, & \text{for } x = 0, 2 \text{ and } U > 1/2 \\
2, & \text{for } x = 1
\end{cases}
\]

where \(U \) is a \(U(0, 1) \) random variable. Notice that this rule is not monotone and to run CFTP we need to follow the simulation for all 3 states.

Denote by

\[
\phi(x, U_0, U_1, \ldots, U_T) = \phi(\phi(\ldots \phi(\phi(x, U_0), U_1), \ldots), U_T).
\]

the state of the chain at time 0 starting the chain at time \(-T\) in state \(x \).

Suppose now that the user always terminates a run of CFTP after \(I \) iterations without obtaining coalescence. In this case, if coalescence is attained at time \(T \) we are sampling from the distribution defined by

\[
P(\phi(x, U_1, \ldots, U_T) \in A | T < I)
\]

which is different from \(\pi \) since

\[
\mathbb{P}(\phi(x, U_1, \ldots, U_T) = r | T < I) = \frac{\mathbb{P}(T < I \text{ and } \phi(x, U_1, \ldots, U_T) = r)}{\mathbb{P}(T < I)}.
\]

Let \(N = 2^{I-1} \), then by combinatorial arguments we can show that

\[
\mathbb{P}(\phi(x, U_1, \ldots, U_T) = r | T < I) = \sum_{k=2}^{N} \frac{1}{2} (1/2)^{k-1} \frac{1/2 \mathbb{P}(r = k) + 1/2 \mathbb{P}(r = N-k)}{1 - (1/2)^{N-1}}
\]

where \(\mathbb{P}(r) \) is the \(k \)-step transition matrix. Therefore, for \(I \geq 3 \) we have

\[
\mathbb{P}(\phi(x, U_1, \ldots, U_T) = 0 | T < I) = \frac{2}{5} \left[\frac{1 - 2^{-N}}{1 - 2^{-N+1}} \right]
\]
\[
\mathbb{P}(\phi(x, U_1, \ldots, U_T) = 1 | T < I) = \frac{1}{5} \left[\frac{1 - 2^{-N}}{1 - 2^{-N+1}} \right]
\]
\[
\mathbb{P}(\phi(x, U_1, \ldots, U_T) = 2 | T < I) = 1 - \frac{3}{5} \left[\frac{1 - 2^{-N}}{1 - 2^{-N+1}} \right]
\]

Although the bias decreases with \(I \) as expected, the sample will always be biased.

4.3 Fill’s interruptible algorithm

Fill (1998) describes a perfect sampling scheme based on a rejection sampling method, which protects against the user impatience bias. Consider a Markov chain on a partially ordered finite state space \((S, \preceq)\) with stationary distribution

...
μ. Suppose that the state space has a maximum element 1 and a minimal element 0. The transition matrix P is such that its time reversal \(\hat{P} \) defined by

\[
\hat{P}(x, y) = \frac{\mu(y)P(y, x)}{\mu(x)} \tag{4.26}
\]

for \(x \) such that \(\mu(x) > 0 \) is monotone with respect to \(\leq \). As \(\hat{P} \) is monotone, it is well-known, e.g. Theorem 1 in Kamae, Krengel and O'Brien (1977), that there exists an upward kernel \(K_{(x, y)}(\cdot, \cdot) \) such that

\[
\hat{P}(y, y') = \sum_{x' \in \mathcal{S}} \hat{P}(x, x')K_{(x, y)}(x', y') \tag{4.27}
\]

for all \(y \in \mathcal{S} \).

It is assumed that it is possible to sample from the measure \(K_{(x, y)}(x', \cdot) \) whenever \(x \leq y \) and \(\hat{P}(x, x') > 0 \).

Definition 4.28 A monotone transition rule for a transition matrix \(\hat{P} \) on a partially ordered space \((\mathcal{S}, \leq)\) is a measurable function \(\hat{f} : \mathcal{S} \times \mathcal{U} \rightarrow \mathcal{S} \) together with a random variable \(U \) taking values in an arbitrary probability space \(\mathcal{U} \) such that:

(i) \(\hat{f}(x, u) \leq \hat{f}(y, u) \) for all \(u \in \mathcal{U} \) whenever \(x \leq y \);

(ii) \(\mathbb{P}(\hat{f}(x, U) = \cdot) = \hat{P}(x, \cdot) \) for all \(x \in \mathcal{S} \).

If \(\hat{P} \) has a monotone transition rule \(\hat{f} \) then we can take as upward kernel

\[
K_{(x, y)}(x', y') := \mathbb{P}(\hat{f}(y, U) = y' \mid \hat{f}(x, U) = x'), \tag{4.29}
\]

for all \(y' \in \mathcal{S} \) when \(x \leq y \) and \(\hat{P}(x, x') > 0 \).

Algorithm 4.30 Fill's algorithm consists in three steps:

1. Start \(X \) in \(\hat{0} \) and runs it for \(t \) steps. Record the obtained trajectory \((X_0 = \hat{0}, X_1, \ldots, X_t = z)\).

2. Reverse the obtained trajectory in time leading to the time-reversed trajectory (which is regarded as a \(\hat{P} \) trajectory conditioned to start at \(z \) and to end at \(\hat{0} \))

\[
(\bar{X}_0 = z, \bar{X}_1, \ldots, \bar{X}_t = \hat{0}) = (X_t = z, X_{t-1}, \ldots, X_0 = \hat{0}).
\]

3. A second Markov chain \(\tilde{Y} \) is simulated for \(t \) steps using the upward kernels \(K_{(x, y)}(\cdot, \cdot) \) together with the time-reversed trajectory. The initial state of \(\tilde{Y} \) is set to be \(\hat{1} \). Then \(\tilde{Y}_k \) for \(k = 1, \ldots, t \) is simulated according to the kernel

\[
K_{(\bar{X}_{k-1}, \tilde{Y}_{k-1})}(\bar{X}_k, \cdot).
\]

If \(\tilde{Y}_t = \hat{0} \) the proposed sample \(z \) is accepted.
4. If the sample is not accepted, reinitiate the process with \(t + 1 \) independently.

Notice that this algorithm is based on the well-known acceptance-rejection algorithm for sampling, see Ripley (1987).

(a) Generate an observation from \(P^t(\hat{0}, \cdot) \);

(b) Find a constant \(c \) such that

\[
 c > \frac{\pi(z)}{P^t(0, z)}, \quad \text{for all } z \in S \text{ such that } P^t(\hat{0}, z) > 0.
\]

(c) Accepts \(z \) as an observation from \(\pi \) with probability \(c^{-1} \pi(z)/P^t(\hat{0}, z) \).

Notice that for this algorithm to work there is a couple of questions to be answered.

- How to choose \(c \)? By definition of \(\tilde{P} \) we know that

\[
 \frac{\pi(z)}{P^t(0, z)} = \frac{\pi(0)}{\tilde{P}^t(z, 0)} \quad \text{(4.31)}
\]

and by the monotonicity of \(\tilde{P} \), we can choose

\[
 c = \frac{\pi(0)}{\tilde{P}^t(1, 0)}. \quad \text{(4.32)}
\]

Thus, step (c) says to accept \(z \) as an observation from \(\pi \) with probability

\[
 \frac{\tilde{P}^t(\hat{1}, \hat{0})}{\pi(0)} \times \frac{\pi(z)}{P^t(0, z)} = \frac{\tilde{P}^t(1, 0)}{\pi(0)} \times \frac{\pi(0)}{\tilde{P}^t(z, 0)} = \frac{\tilde{P}^t(1, 0)}{\tilde{P}^t(z, 0)} \quad \text{(4.33)}
\]

- How to design a coin-flip with probability of heads equals to \(\tilde{P}^t(\hat{1}, \hat{0})/\tilde{P}^t(z, \hat{0}) \)? Running the coupled-reversed chain starting at \(\hat{1} \) for \(t \) steps, if the \(\tilde{Y}_t = \hat{0} \), the coin flips head. In fact,

\[
 \mathbb{P}(\tilde{Y}_t = \hat{0} \mid \tilde{X}_0 = z, \tilde{X}_t = \hat{0}, \tilde{Y}_0 = \hat{1}) = \frac{\tilde{P}^t(1, \hat{0})}{\tilde{P}^t(z, \hat{0})}. \quad \text{(4.34)}
\]

In this case we can construct the process \(\tilde{V} = (\tilde{V}_t, t \geq 1) \) where \(\tilde{V}_t = ((X_0, \ldots, X_t), (\tilde{Y}_0, \ldots, \tilde{Y}_t)) \) are independently generated by the rejection algorithm described above.

\[
 \tau = \min\{t; \tilde{Y}_t = \hat{0}\} \quad \text{(4.35)}
\]

and

\[
 \Phi_{\tilde{V}}(t) = X_t. \quad \text{(4.36)}
\]

Fill suggests the the algorithm should be run using \(t \) as powers of 2 similarly to CFTP.
4.3.1 Application to attractive spin systems

Consider an attractive spin system with attractive equilibrium measure π. Consider the Gibbs sampler (heat-bath algorithm) with uniform random update for attractive spins systems as described in Section 2.4. In this case, the chain is reversible with $\tilde{P} = P$ which is monotone since the system is attractive, then (2.19) gives us a monotone transition rule $\phi = \tilde{f}$. ARA algorithm becomes:

1. Start the chain σ at $\sigma_{\min} = -1$ and run it for t steps using ϕ as an updating rule. We obtain
 $$(\sigma_0 = -1, \sigma_1, \ldots, \sigma_{t-1}, \sigma_t = \zeta).$$

2. Construct the time-reversed trajectory
 $$(\tilde{\sigma}_0 = \zeta, \tilde{\sigma}_1 = \sigma_{t-1}, \ldots, \tilde{\sigma}_t = -1).$$

3. Simulate a second Markov chain $\tilde{\eta}$ for t steps starting at $\tilde{\eta}_0 = +1$ using the following rule:

 (a) When $\tilde{\sigma}_{n-1} \neq \tilde{\sigma}_n$ (they disagree at a unique site i),
 - If $\tilde{\sigma}_{n-1}(i) = -1$ and $\tilde{\sigma}_n(i) = +1$ then set $\tilde{\eta}_n(i) = +1$;
 - If $\tilde{\sigma}_{n-1}(i) = +1$ and $\tilde{\sigma}_n(i) = -1$ then set
 $$\tilde{\eta}_n(i) = \begin{cases} -1, & \text{with probability } \frac{\pi(\tilde{\eta}_{n-1})}{\pi(\tilde{\eta}_{n-1}) + \pi(\tilde{\eta}_n)} \frac{\pi(\tilde{\sigma}_{n-1}) + \pi(\tilde{\sigma}_n)}{\pi(\tilde{\sigma}_n)} \\ +1, & \text{with probability } 1 - \frac{\pi(\tilde{\eta}_{n-1})}{\pi(\tilde{\eta}_{n-1}) + \pi(\tilde{\eta}_n)} \frac{\pi(\tilde{\sigma}_{n-1}) + \pi(\tilde{\sigma}_n)}{\pi(\tilde{\sigma}_n)} \end{cases}$$

 (b) $\tilde{\sigma}_{n-1} = \tilde{\sigma}_n = \tilde{\sigma}^*$, then the computation of the conditional probability is a little messy, but we can overcome this problem by noticing that $\tilde{\sigma}_n = \sigma_{t-n}$ and $\tilde{\sigma}_{n-1} = \sigma_{t-n+1}$ and this transition was produced in step 1 by generating $U \sim U(0, 1)$ and $V \sim U(\Lambda)$ independent and updating
 $$\tilde{\sigma}^* = \phi(\tilde{\sigma}^*, U, V).$$

 So we can store (U, V) and use it to set
 $$\tilde{\eta}_n = \phi(\tilde{\eta}_{n-1}, U, V).$$

4. If $\tilde{\eta}_t = -1$ then the proposed sample ζ is accepted, if not reinitiate the process at Step 1.

4.3.2 Point processes

Thönnes (1999) uses ARA algorithm to simulate from penetrable sphere model without impatient user bias. Her argument follows Fill's interruptible algorithm and uses a forward construction and a backward checking.
The objective is to simulate from the bi-dimensional point process \((N, M) \in \mathcal{N} \times \mathcal{N}\) described in Section 2.3.3. The crucial observation is that under the model \((2.17)\), the conditional distribution of \(N\) given \(M\) is a homogeneous Poisson process with intensity \(\beta_1\) on \(\Lambda \setminus (M \oplus G)\), where \(G\) is a sphere of radius \(R\). Similarly, the conditional distribution of \(M\) given \(N\) is a homogeneous Poisson process with intensity \(\beta_2\) on \(\Lambda \setminus (N \oplus G)\).

In this case, a convenient Markov chain to be used is the Gibbs sampler. Given the configuration of the process at time \(t\) to be \((n_t, m_t)\), then in the next step

\[
m_{t+1} \sim \beta_2 \text{ Poisson on } \Lambda \setminus (n_t \oplus G) \tag{4.37}
\]

\[
n_{t+1} \sim \beta_1 \text{ Poisson on } \Lambda \setminus (m_{t+1} \oplus G). \tag{4.38}
\]

Notice that, this Markov chain has an uncountable state space. We can partially order this space by considering

\[(n, m) \leq (n', m') \quad \text{if} \quad n \subseteq n' \quad \text{and} \quad m \supseteq m'.\]

It is easy to check that the Gibbs sampler defined by \((4.37)\) and \((4.38)\) defines a monotone transition rule \(I\) given by

\[
f(n, m, V_1, V_2) = (n', m') \tag{4.39}
\]

where \(V_1\) and \(V_2\) are independent Poisson point processes on \(\Lambda\) with rates \(\beta_1\) and \(\beta_2\) respectively and \(n' = V_1 \setminus (m \oplus G)\) and \(m' = V_2 \setminus (n' \oplus G)\). Notice that

\[
f(n, m, V_1, V_2) \leq f(n', m', V_1, V_2) \quad \text{whenever} \quad (n, m) \leq (n', m'). \tag{4.40}
\]

In fact, if \((n_1, m_1) = f(n, m, V_1, V_2)\), and \((n'_1, m'_1) = f(n', m', V_1, V_2)\). then

\[
m_1 = V_1 \setminus (n \oplus G) \supseteq m'_1 = V_1 \setminus (n' \oplus G), \quad \text{since} \quad n \oplus G \subseteq n' \oplus G
\]

and

\[
n_1 = V_2 \setminus (m_1 \oplus G) \subseteq n'_1 = V_2 \setminus (m'_1 \oplus G), \quad \text{since} \quad m_1 \oplus G \supseteq m'_1 \oplus G.
\]

However, the state space \(\mathcal{N} \times \mathcal{N}\) does not have a maximal or minimal element. Instead, Häggström et al. (1999) call an element \((n, m)\) quasimaximal if

\[
\Lambda \subseteq n \oplus G \quad \text{and} \quad m = \emptyset. \tag{4.41}
\]

Similarly, the element \((n, m)\) is quasiminimal if

\[
n = \emptyset \quad \text{and} \quad \Lambda \subseteq m \oplus G. \tag{4.42}
\]

It is easy to check that if \((n^0, m^0)\) is a minimal state and \((n^1, m^1)\) is a maximal state, then for an arbitrary configuration \((n, m)\), if we call \((N^0, M^0), (N, M)\) and
(\(N^1, M^1\)) the Markov chains obtained with initial states \((N^0, M^0) = (n_0, m_0)\), \((N_0, M_0) = (n, m)\) and \((N^1, M^1) = (n_1, m_1)\) respectively, we have

\[
(N_n^0, M_n^0) \leq (N_n, M_n) \leq (N_n^1, M_n^1) \text{ for all } n \geq 1.
\]

(4.43)

In fact, if \((N^0, M^0_1) = f(n^0, m^0, V_1, V_2), (N_1, M_1) = f(n, m, V_1, V_2)\) and \((N^1_1, M^1_1) = f(n^1, m^1, V_1, V_2)\), then

\[
M_1^0 = V_1 \text{ and } N_1^0 = V_2 \setminus (V_1 \oplus G)
\]

\[
M_1 = V_1 \setminus (n \oplus G) \text{ and } N_1 = V_2 \setminus (M_1 \oplus G)
\]

and

\[
M_1^1 = V_1 \setminus \Lambda = \emptyset \text{ and } N_1^1 = V_2
\]

Then,

\[
M_1^0 \supset M_1 \supset M_1^1 \text{ and } N_1^0 \subset N_1 \subset N_1^1.
\]

This proves (4.43) for \(n = 1\), for \(n > 1\) it is a consequence of the monotonicity of \(f\).

Notice that, the Markov chain defined by the monotone rule \(f\) defined by (4.39), is reversible. However, the two-step rule (4.37) and (4.38) is not reversible. The two-step rule for the reversed chain is:

\[
\hat{m}_{t+1} \sim \beta_1 \text{ Poisson on } \Lambda \setminus (\hat{m}_t \oplus G)
\]

\[
\hat{n}_{t+1} \sim \beta_2 \text{ Poisson on } \Lambda \setminus (\hat{n}_{t+1} \oplus G).
\]

(4.44)

(4.45)

Fill's algorithm

1. Start the chain \((n, m)\) at a quasiminimal point \((n^0, m^0)\) and run it for \(t\) steps using (4.37) and 4.38 as a two-step update rule. We obtain

\[
((n_0, m_0) = (n^0, m^0), (n_1, m_1), \ldots, (n_{t-1}, m_{t-1}), (n_t, m_t) = (n^*, m^*))
\]

2. Construct the time-reversed trajectory

\[
((\hat{n}_0, \hat{m}_0) = (n^*, m^*), (\hat{n}_1, \hat{m}_1) = (n_{t-1}, m_{t-1}), \ldots, (\hat{n}_t, \hat{m}_t) = (n^0, m^0))
\]

3. Simulate a second Markov chain \((\tilde{v}, \tilde{w})\) for \(t\) steps starting at a quasimaximal state using the following rule:

- If at time \(n\) we have the following transitions on the time-reversed chain

\[
(\hat{n}_{n-1}, \hat{m}_{n-1}) \rightarrow (\hat{n}_{n-1}, \hat{m}_n) \rightarrow (\hat{n}_n, \hat{m}_n)
\]

then let

\[
v_n \sim \beta_1 \text{ Poisson on } \hat{m}_{n-1} \oplus G
\]

\[
\tilde{v}_n \leftarrow [\hat{n}_n \cup v_n] \setminus [\hat{v}_{n-1} \oplus G]
\]

\[
\tilde{w}_n \leftarrow \hat{m}_n \setminus [\hat{v}_n \oplus G].
\]

(4.46)

(4.47)

(4.48)

4. If \((\tilde{v}_t, \tilde{w}_t)\) is quasiminimal then the proposed sample \(\zeta\) is accepted, if not reinitiate the process at Step 1.
4.4 Backward-Forward Algorithm

4.4.1 Spatial point processes

Consider first the case of the simulation of the invariant measure of a spatial birth and death process on \mathbb{R}^d as described in Section 3 with finite birth rate λ such that

$$\bar{\lambda} = \sup_{x,\eta} \lambda(x, \eta) < \infty$$

and unit death rate.

Moreover, suppose that λ is G-local, that is, there exists a compact convex set G such that $\lambda(x, n_1) = \lambda(x, n_2)$ if n_1 and n_2 coincide inside G. Then, by (3.27) we know that condition $\bar{\lambda} < (\text{md}(G))^{-1}$ is sufficient for the birth and death process to be ergodic and its invariant measure μ is absolutely continuous with respect to the law of a λ-homogeneous Poisson process on \mathbb{R}^d. In the case of the area-interaction point process described in Section 2.3.1, G is a compact convex set and $\lambda = K$. For the attractive case, $\lambda(x, \eta) = \kappa \phi^{-\text{md}(x+G)\eta(G)}$ and for the repulsive case $\lambda(x, \eta) = \kappa \phi^{-\text{md}(x+G)\eta(G)}$. For the Strauss process, G is the ball centered at the origin with radius r, $\bar{\lambda} = \epsilon^{\beta_1}$ and $\lambda(x, \eta) = \epsilon^{\beta_1} \epsilon^{\beta_2} \eta(x+G)$.

The objective is to simulate from μ restricted to a finite-box Λ. The outline of the scheme is:

1. Generate the free process α as a $\bar{\lambda}$-homogeneous Poisson process on λ according to Algorithm 2.3.

2. Construct the clan of ancestors of all points of α.

3. Apply the deterministic finite-volume “cleaning procedure” described in Section 3.1.1 to decide which points of α are going to be kept.

Algorithm 4.50 Construction of the clan of ancestors

(i) Generate the free process $\alpha_0 = \{x_1, x_2, \ldots, x_R\}$ as a $\bar{\lambda}$-homogeneous Poisson process on λ according to Algorithm 2.3.

(ii) Generate S_1^0, \ldots, S_R^0 independent mean one exponential random variables and construct the following cylinders:

$$C_0 = \{(x_i + G) \times [-S_i^0, 0]; i = 1, 2, \ldots, R\}.$$ \hspace{1cm} (4.51)

(iii) Consider the following fattening of C_0, a subset of $\mathbb{R}^d \times (-\infty, 0]$

$$\Lambda_0 = \cup_{C \in C_0} (\text{Basis}(C) + G) \times \text{Life}(C)$$

where $\text{Basis}(C) + G = \{x + y; x \in \text{Basis}(C), y \in G\}$. \hspace{1cm} (4.52)
(iv) Set \(\ell = 1 \). Generate a \(\lambda \)-homogeneous Poisson process \(\{ \xi^1_i, \xi^2_i, \ldots, \xi^R_i \} \) on \(\Lambda_0 \) according to Algorithm 2.3.

(v) Generate \(S^1_i, \ldots, S^R_i \), independent mean one exponential random variables and construct the following cylinders:
\[
C_i = \{(\xi^i_i + G) \times [-S^i_i, 0]; i = 1, 2, \ldots, R\}. \tag{4.53}
\]

(vi) Consider the following fattening of \(C_\ell \), a subset of \(\mathbb{R}^d \times (-\infty, 0] \)
\[
\Lambda_\ell = \bigcup_{C \in C_\ell} (\text{Basis}(C) + G) \times \text{Life}(C) \tag{4.54}
\]

(vii) Generate a \(\lambda \)-homogeneous Poisson process \(\{(\xi^1_{i+1}, T^1_{i+1}), (\xi^2_{i+1}, T^2_{i+1}), \ldots, (\xi^R_{i+1}, T^R_{i+1})\} \) on \(\Lambda_\ell \setminus \Lambda_{\ell-1} \) according to Algorithm 2.3.

(viii) • If \(R_{\ell+1} = 0 \), set the clan of ancestors of \(\alpha \)
\[
A^\alpha := \bigcup_{i=1}^{\ell+1} C_i \tag{4.55}
\]
and stop.

• If not, set \(\ell = \ell + 1 \). Generate \(S^1_i, \ldots, S^R_i \), independent mean one exponential random variables and construct the following cylinders:
\[
C_\ell = \{(\xi^i_\ell + G) \times [-S^i_\ell, T^i_\ell]; i = 1, 2, \ldots, R\}. \tag{4.56}
\]
and go back to (vi).

A slight modification of the algorithm allows to simulate the penetrable sphere model described in Section 2.3.3.

1. Generate the free process \(\alpha \) as a marked point process on \(\Lambda \) according to Section 2.2 where the location process is a \((\beta_1 + \beta_2) \)-homogeneous Poisson process and the marks are independent with
\[
P(1) = \frac{\beta_1}{\beta_1 + \beta_2} \quad \text{and} \quad P(2) = \frac{\beta_2}{\beta_1 + \beta_2}.
\]

2. Construct the clan of ancestors of all points of \(\alpha \).

3. Apply a modification of the deterministic finite-volume "cleaning procedure" described in Section 3.1.1 to decide which points of \(\alpha \) are going to be kept.

FV.3a. If \(t_i \) is a birth time, that is, \(t_i = s \) for some \((\xi, s, l, z) \in C^\Lambda[0, t] \) then we do not add the point \((\xi, z) \) if \(z = 1 \) and \(d(\xi, \eta_{t,-}(\cdot, 1)) \leq R \) or if \(z = 2 \) and \(d(\xi, \eta_{t,-}(\cdot, 2)) \leq R \): we set
\[
\eta_{t_i}^\Lambda = \eta_{t,-}^\Lambda. \tag{4.57}
\]
Otherwise the point \((\xi, z) \) is added: we set
\[
\eta_{t_i}^\Lambda = \eta_{t,-}^\Lambda \cup \{(\xi, z)\}. \tag{4.58}
\]
4.4.2 Peierls contours of the ferromagnetic Ising model

The above algorithm do not translate immediately to the Ising model because the fattening of the cylinders cannot be done before the generation of the contours. In fact, practical limitations prevent even the inclusion of all possible sizes in the simulation, in fact the mere enumeration of the possible contours is beyond reach when more than a few dozens of links are involved. Also, this scheme suffers from the user impatient bias as described for the CFTP. In this case, we do have a simulation scheme from the distribution μ conditioned on two events. Letting $K = \text{"maximum perimeter of bases of cylinders in the clan"}$, we sample from (using the notation of Definition 4.1)

$$\mathbb{P}\left(\Phi_L(\tau) \in A \mid \{K < k\} \cap \{\tau < S\}\right) \quad (4.59)$$

where $k = 30$ and $S = \text{"the maximum time left in order to have the results ready for the next congress"}$, for instance.

In fact, our approach also admits a joint realization (η, ξ) with the right marginal distributions such that $\eta = \xi$ if $K < k$ and $\tau < S$, and such that $\mathbb{P}(\{K \geq k\} \cap \{\tau > S\})$ goes to zero exponentially fast in S and in the cutoff of the length of the contours (30 in our example). Slightly more precisely,

$$\mathbb{P}\left(\{K \geq k\} \cap \{\tau > S\}\right) \leq O\left(\alpha^\tau \times \sup_x \pi_x(K > k)\right). \quad (4.60)$$

This follows from the sub-criticality of the majorizing branching process. For the Ising model, for instance, $\pi_x(K > k) = O(e^{-\beta k})$.

Fernández, Ferrari and García (2000) propose a non-homogeneous time-backwards construction of these clans based on a result proven in Section 4.5.1 of Fernández et al. (1999). It is shown there that the clan of ancestors of a family of cylinders can be obtained combing back in time and generating births of ancestors with an appropriate rate. In fact, this rate is equal to the rate density of the free process multiplied by an exponential time factor ensuring that the ancestor has a lifespan large enough to actually be an ancestor. This time factor involves the time-distance to the birth of existing cylinders, which can be expressed through the following function. For a finite region Λ and a finite set of cylinders H, let the set of basis of the potential ancestors of H and $\Lambda \times \{0\}$ be defined by

$$G(H, \Lambda) := \left\{\theta \in G : \text{Basis}(C') \neq \emptyset, \text{ for some } C' \in H\right\} \cup \left\{\theta \in G : \theta \cap \Lambda \neq \emptyset\right\} \quad (4.61)$$

and for a given individual $\theta \in G(H, \Lambda)$,

$$TL(H, \Lambda, \theta) = \min\left\{\text{Birth}(C') : C' \in H, \text{Basis}(C') \neq \emptyset\right\} \quad (4.62)$$

with the convention $\min\emptyset = 0$. By definition, $\text{TL}(H, \Lambda, \theta) \leq 0$.

The outline of the scheme is:
1. Generate in Λ the "free process" of contours ξ with distribution μ_{Λ}^0, product of Poisson random variables with mean $e^{-\beta|\gamma|}$ for $\gamma \in G$ such that $|\gamma| \leq K$ and $\gamma \cap \Lambda \neq \emptyset$ (cf. (2.28)). Let $\xi = \{\gamma_1, \gamma_2, \ldots, \gamma_R\}$.

2. Construct the clan of ancestors of all contours of ξ.

3. Beginning with the first ancestor (the one first born), erase all incompatible contours.

Algorithm 4.63 An algorithm to construct the backwards clan of a finite region

The combination of (4.61)/(4.62) can be translated into the following explicit algorithm. We do it first for the case of countable number of individuals and indicate at the end of this section how to proceed in the continuous case. To generate $A^{\Lambda,0}$:

BFA.1. Set $\ell = 0$ and $\tau_0 = 0$. Generate $S^0_1, S^0_2, \ldots, S^0_R$ independent mean one exponential random variables.

Set

$$C_0 = \{(\gamma_i, 0, S^0_i); i = 1, 2, \ldots, R\}. \quad (4.64)$$

BFA.2. For each $\gamma \in G(C_\ell, \Lambda)$ generate an independent random variable $\tau(\gamma)$ such that

$$\mathbb{P}(\tau(\gamma) > t) = 1 - \exp(-\nu(\gamma))$$

where

$$\nu(\gamma) = e^{-\beta|\gamma|}e^{-s + TI(C_\ell, \Gamma, \gamma)}1\{s > \tau_\ell\}. \quad (4.66)$$

Notice that $\tau(\gamma)$ may be infinity.

BFA.3. Let $\ell = \ell + 1$ and $\tau_\ell = \inf\{\tau(\gamma); \gamma \in G(C_\ell, \Lambda)\}$.

- If $\tau_\ell < \infty$, call $\tilde{\gamma}$ be such that $\tau_\ell = \tau(\tilde{\gamma})$. Let

$$C_\ell = C_{\ell-1} \cup \{(\tilde{\gamma}, -\tau_\ell, \tau_\ell + TI(C_{\ell-1}, \Lambda, \tilde{\gamma}) + S^\ell)\} \quad (4.67)$$

where S^ℓ is an exponentially distributed mean one random variable generated independently of everything else. Go back to BFA.2.

- If $\tau_\ell = \infty$, let the clan of ancestors of ξ be defined as

$$A^\xi := C_\ell \quad (4.68)$$

and stop.
The above algorithm can be improved by removing the generation of the free process and beginning with the empty configuration. The algorithm will generate the cylinders and we can find which ones survive at time zero. See Section 4.2 (Step 1) of Fernández, Ferrari and Garcia (2000).

In the continuous loss network described in Section 2.5.1, time and space cannot be in general separated. Instead of steps BFA.2 and BFA.3 above we must consider a random sample \(w \) of \(\pi \) and the events \((x, s)\) of a Poisson process with rate

\[
\nu(x, s) = \kappa e^{-s+T_l(C_t, \Lambda, \gamma)} \mathbf{1}\{s > \tau_t\} \mathbf{1}\{\gamma \in G(C_t, \Lambda)\}
\]

where \(\gamma = (x, x + w) \).

For a finite window \(\Lambda \) the total rate is finite, hence these events can be well ordered by looking to the time coordinate. If the set of these events is not empty, we take \(\tau_t \) to be the minimal time coordinate (it is strictly positive with probability one) and denote \(\gamma \) the associated interval \((x, x + w)\). If the Poisson process with rate density (4.69) yields no event we take \(\tau_t = \infty \). We then continue as in BFA.3.

5 Conclusion

There are several different approaches to perfect simulation of spatial point processes, every week a new procedure is proposed either improving old ones or suggesting new ideas. As it can be seen from the examples given above, none of them is better than the others in absolute terms. For example, as pointed by Möller (personal communication), CFTP is much more efficient than BFA for the Strauss process in a finite region. First, it can be applied to a much more broad regimen. Second, exploring the structure of a model such as the repulsive behavior in the Strauss process and using upper and lower processes as described in Kendall and Möller (1999) give a lower coalescence time than the stopping time needed for BFA. However, for infinite-volume regions, it is less efficient since it involves a coupling for maximal and minimal configurations and also a limit procedure in time and space. Fill’s ARA has the advantage of having no “user impatient bias”, however it requires monotonicity of the reversed process. In fact, we can think as all of the methods to be, in some sense, complementary to each other. Simulations based on CFTP and ARA can be applied to much broader class of processes. Nevertheless, they need specific conditions such as finite volume or monotonicity. On the other hand, although BFA has a much smaller range of validity it has the advantage of its generality. Moreover, it is a powerful theoretical tool. Probabilistic arguments (successive dominations by oriented percolation, life-and-death and branching processes) yield all the properties obtained via usual cluster expansions —except analyticity— in a larger region and in a more intuitive and concrete way: convergence of the series is replaced by sub-criticality of a branching process, mixing and central-limit properties are a consequence of lack of percolation.
Perfect simulation of spatial processes

Acknowledgments The author wish to thank Jesper Møller for supplying many comments and references on the subject and Pablo Ferrari and Roberto Fernández for many insightful discussions. This paper was written while the author was a visiting scholar at the Statistics Department of the University of California at Berkeley. This work was partially supported by FAPESP 99/00260-3 and FINEP (Núcleo de Excelência “Fenômenos críticos em probabilidade e processos estocásticos” PRONEX-177/96).

References

Nancy L. Garcia
IMECC, UNICAMP, Caixa Postal 6065,
13081-970 - Campinas SP
nancy@ime.unicamp.br
http://www.ime.unicamp.br/~nancy
Brasil