
Resenhas IME-USP 2000 , Vol. 4 , No . 3 , 283 - 325 . 

Perfect simulation of spatial processes 
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Abstract: This work presents a review of some of the 
schemes used to perfect sample from spatial processes. As 
examples. the area-interaction point process. Strauss process. 
penetrable sphere model, Peierls contours of the Ising model 
and continuous loss networks are studied under Coupling 
from The Past Algorithm (eFTP). Acceptance and Re­
jection Algorithm (ARA) and Backward-Forward Algo­
rithm (BFA). 
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1 Introduction 

Usually Monte Carlo Markov Chain methods have been used to generate samples 
from spatial point processes. for a detailed review see M0ller (1999) . One of the 
most common approaches is to identify the point process as the invariant measure 
of a spatial birth and death chain and run the corresponding chain for a long time 
until the distribution of the chain is close to equilibrium, see Kelly and Ripley 
(1976), Preston (1977), M0ller (1989). Baddeley and M0ller (1989) , Clifford and 
Nicholls (1994) for examples. The problem here is to assess how long the chain 
should run in order to achieve the desired approximation. In finite state Markov 
chains, this is related to mixing times and cut-off phenomena [see. Aldous and Fill 
(1999)]. For spatial point processes , the state space is uncountable and usually 
these techniques cannot be applied. 

However, after the pioneer work of Propp and Wilson (1996) we can reach a 
much more ambitious goal: to simulate perfectly from the invariant distribution. 

Perfect simulations or exact sampling are labels for a recently developed set 
of techniques designed to produce output whose distribution is guaranteed to fol­
Iowa given probability law. These techniques are particularly useful in relation 
with Markov Chain Monte Carlo, and their range of applicability is rapidly grow­
ing (see Green and Murdoch (1999), Section 1.3, and Mira, M011er and Roberts 
(1999) and MjiSller and Nicholls (1999) and references therein , or visit the site 
http://dimacs.rutgers.edu/-dbwilson/exact). 

Several techniques have been suggested recently in the literature. The outbreak 
of these subject come with the work of Propp and Wilson (1996) where they 
suggest a practical method of achieving a perfect sample of a Markov chain with 
finite state space, Their Coupling from the Past (CFTP) algorithm to be applied 
for infinite (or huge) state spaces require a monotonicity property : there must exist 
a "maximal" and a "minimal" state and a coupling such that the coalescence 
of trajectories starting from these two states imply the coalescence of all other 
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trajectories ("monotone coupling") . Examples of processes with this property 
include Glauber dynamics of spin systems with the FKG property (Propp and 
Wilson (1996)) and attractive point processes (Kendall , 1997; Kendall , 1998) . In 
fact, through a minor modification the algorithm is also applicable to repulsive 
point processes (Kendall, 1998; Haggstrom and Nelander, 1998). 

One of the biggest problem with CFTP technique is that it has the so called 
impatient-user bias. Fill (1998) introduced a technique, free of the impatient­
user bias, based on the well-known Acceptance-Rejection Algorithm (ARA) for 
generating independent random samples. Fill's algorithm applies to Markov pro­
cesses whose time-reversed process has a monotonicity property. Thus its range 
of applicability overlaps with that of the CFTP algorithm at reversible monotone 
processes like Glauber dynamics of attractive automata or ferromagnetic spin sys­
tems and attractive point processes (Fill , 1998; Thonnes, 1999) . 

Fernandez , Ferrari and Garcia (2000) introduce yet a different perfect simu­
lation scheme, Backward-Forward Algorithm (BFA). applicable , in principle, to 
any process that can be sampled from the invariant measure of a spatial birth 
and death process and is continuous with respect to a Poisson point process. 
This perfect simulation scheme allows to simulate the distribution of the infinite­
volume invariant measure J.l in a finite region, or window , A. For example , area­
interaction point processes (Baddeley and van Lieshout, 1995), Strauss processes 
(Strauss, 1975), fixed-routing loss networks (Kelly, 1991) and Peierls contours 
of low-temperature Ising model (Fernandez , Ferrari and Garcia, 1998). Some of 
these processes have been subjected to other perfect simulation methods . For in­
stance, attractive point processes can be simulated using CFTP or ARA methods, 
if the models can be sandwiched between a "maximal" and a "minimal" weighted 
Boolean model (Fill, 1998; Kendall , 1998; Thonnes, 1999). The CFTP algorithm 
can be applied to repulsive point processes as well (Kendall, 1998). Nevertheless , 
these treatments consider processes in a finite window with fixed boundary con­
ditions. From the statistical mechanical point of view it is important to consider 
finite windows of an infinite-volume distribution. The only mention to this is 
by Kendall (1997), who points out a scheme valid when the underlying Boolean 
model does not exhibit (unoriented) percolation. In this case, the CFTP method 
can be extended by looking at [-T, 0] x [-K,K]d for ever increasing T and K . 
The lack of percolation ensures that eventually the area-interaction process will 
not be affected by whatever boundary conditions are imposed outside [-K, K]d . 
On the other hand, Haggstrom, van Lieshout and M0ller (1999) (first appeared in 
1996 as a research report) combine ideas from CFTP method with two component 
Gibbs sampler to deal with infinite area-interaction point processes. This paper 
together with Kendall (1998) (which also appeared as a technical report in 1996) 
are among the very first papers on perfect simulation of point processes. 

BFA has distinctive features: there is no coupling involved, consequently the 
scheme is insensitive to the presence of monotonicity; it directly samples a fi­
nite window of the equilibrium measure in infinite-volume without further limit 
procedures; it relies on a graphical construction that has the added value of be-
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ing a proven theoretical tool for the analysis of properties of the target measure 
(Fernandez et al., 1998; Fernandez , Ferrari and Garcia, 1999) obtain mixing prop­
erties, finite-volume corrections and asymptotic (in temperature) distribution of 
"defects" of the low-temperature Ising translation-invariant extremal measures) . 

All of the three algorithms, CFTP, ARA and BFA algorithm are based on the 
construction of the underlying (marked) Poisson process where objects are born. 

The outline of this paper is as follows. Section 2 describes several point pro­
cesses of interest beginning with the Poisson process which will be the basis for 
all of the other processes studied. These processes are distributed as the invari­
ant measures of spatial birth-and-death processes, Section 3 describes a graphical 
construction for the birth-and-death processes that can be used as a theoretical 
tool to prove probabilistic properties and also used as a basis for a simulation 
scheme. Section 4 describe the three above mentioned methods for simulating 
point processes, applying them to the processes described in Section 2. 

2 Point processes 

A point process models the random distribution of indistinguishable points in 
some space, for concreteness we take this space to be lR d or ~d. We identify a 
point process N with the counting measure N given by assigning unit mass to each 
point , that is, N(A) is the number of points in a set A. The latter assumption 
implies that such a process N is determined by the probability distribution of the 
random variables N(A) = number of points in A E B(JR d), the bounded subsets 
of ? d. For a more general discussion , see Daley and Vere-Jones (1988). From now 
on, unless noted, we are going to consider only orderly processes, that is, processes 
that have at most one point per site. 

2.1 Poisson point processes 

The Poisson point process is one of the most popular models for counting problems. 
Besides being a good description of many natural phenomena, it is very simple 
from the computational point of view. Furthermore, or perhaps relatedly, it is used 
as a reference measure to define other types of processes. Its general definition is 
as follows. 

Definition 2.1 Let 1/ be a Radon measure on ]Rd. A point process N" on ]Rd is 
a Poisson process with mean measure 1/ if its state space is N = {N E {O, 1 }Rd : 
S (x) = 1 for only a countable number of x E lR d}, and defining N" (A) 
fA N,,(dx), 

(i) FOr any disjoint A l , A 2 , . . . , Ak E B(]Rd) the random variables N,,(A1l , 
N,,(A 2 ), . . . , N,,(Ak) are independent, and 
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(ii) For each A E B(IR d) and k 2: 0 

e-v(A)v(A)k 

k! 
(2.2) 

We can think the process Nv either as a random counting measure NI/ = L:o 
(, 

or as the random set of points NI/ = {x E]Rd : Nv(x) = I} = {~! ,6,·· .}. 
A Ii-homogeneous Poisson process is a process with v = ,,; md, where K, is a 

constant and md the Lebesgue measure on ]Rd. 

Algorithm 2.3 The simulation of a Ii-homogeneous Poisson process is simple: 

• For each finite window l{:, gmerate R "-' Poisson ( Ii ffid (W) ) ; 

• Given R = l' generate [11, ... . Ur independently distributed according to the 
the uniform distribution in II·. 

• Repeat independently for disjoint windows. 

More general Poisson processes in which v is absolutely continuous with re­
spect to the Lebesgue measure in :. d with density w, can be simulated using the 
projection method described by Garcia (1995). Consider the set 

Cw = {(X,S) :.rE lR d, SE]R,O::;S::;W(X)} , (2.4) 

and the Poisson process Nmd+1 on : :d+! with Lebesgue mean measure md+l. Then 
the process N w on ]R d defined by 

(2.5) 

is Poisson with mean v. In words. it is enough to simulate N md+1 as above , and 
then take the points that lie in Cu· and project them onto ]Rd. More generally, 
this scheme can be used for Poisson processes whose measure v has the form 

(2.6) 

Doubly stochastic point processes or Cox processes If J-l is a random Radon­
measure on lR d independent of N md + 1 such that 

J-l(B) = L w(x) dx. 

then, denoting NJ.l the process (2.5), 

lE{.YJ.l (A)] = J-l(A). 
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That is, conditional on Jl., N IJ is a Poisson process with mean measure Jl.. 

Finite total rate. For future purposes we consider the case v(JP: d x ~ +) < 00 ; 
we interpret the last coordinate as time. One can compute the distribution of 
the (not necessarily finite) time T1, the smaller time-coordinate of the points (if 
any) of the process. Indeed, calling N the point Poisson process with rate v , for 

° :S t :S 00, 

/P'(T1 > t) = /P'(N(IRd x [O,t)) = 0) = 1- exp(v(IRd x [O,f)) . (2.7) 

In the case of one-dimensional processes (d = 0) the above reads 

fiJ'(T1 > t) = IP'(N([O,t)) = 0) = 1- exp(-v[O,t)). (2 .8) 

2.2 Marked Poisson processes 

Sometimes it is convenient to allow each point of the process to have a mark 
belonging to a set M. That is , a marked point process is a point process M on 
IR d x M such that the marginal process of locations M (. x M) is a point process 
on ]Rd . 

Notice that not all point processes on a product space are marked point pro­
cesses, for example a ,,-homogeneous Poisson process on w. 2 cannot be represented 
as a marked point process on lR x lP'. . 

An important example is the completely independent marked point process. Let 
N be a marked point process on lP'. d x M with the property that the n random 
variables of the set 

{N(Ai x Bi): bounded Ai E BRd, Bi E BM, i = 1, 2, . . .. n} (2.9) 

are mutually independent whenever Ai are disjoint . It is easy to see (Daley and 
Vere-Jones, 1988) that a marked point process with the complete independence 

. property is fully specified by two components: 
(i) a Poisson process of locations N (- x M); and 
(ii) a family of probability distributions {P(- I x)x E IRd} giving the distribution 
of the mark in M . 

A very important example of a completely independent marked point process 
is the so called Boolean model. Let N be a ,,-homogeneous Poisson point process 
in IR d, represent it by the location of its points as 

(2.10) 

Let 5 1 ,52 , .. . be a collection of independent BIRd-valued random variables. 
That is, 5i is a random Borel set on IRd and construct the marked point process 

(2.11) 
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or represent it as a coverage process (Hall, 1988) on ]Rd given by 

c= {~j+Sj,i = 1,2, ... } (2 .12) 

where ~ + 5 = {~+ z; z E S}. Boolean models have the property that the number 
of sets C E C that cover a fixed point x E lR d is a Poisson random variable with 
mean KJE(vol(S)). 

2.3 Interacting spatial processes 

The independence property characterizes the Poisson process. Most of the ap­
plications deal with point processes having int.eraction between points. In this 
work , we are going to consider a particular case, point processes with probability 
law (restricted to a finite box A C lR d) which are absolutely continuous to the 
probability law of a homogeneous Poisson point process. In fact, if we call11-~ the 
law of the unit-homogeneous Poisson process , their distribution is charact.erized 
by the Radon-Nikodym derivative ( or Gibbs measure) given by 

(2 .13) 

where H(N, A) is the energy function, Z/\ is a normalizing constant. 
A question of interest in the study of these processes is about the existence 

of limits of these measures as A -+ ]R d. That is , is there a well-defined counting 
measure p such that 11-/\ -+ p? In what sense? How rapidly? How to simulate 
from these infinite-volume measures? 

2.3.1 Area-interaction point processes 

In these processes, introduced by Baddeley and van Lieshout (1995), each point 
(=germ) has associated a grain formed by a copy of a fixed compact (and usually 
convex) set G C ]Rd. The intersections of these grains determine a weight that. 
corrects the otherwise Poissonian distribution of the germs. In this case, the Gibbs 
measure (2.13) is given by 

(2 .14) 

where Ii: and ¢ are positive parameters, Z/\(Ii:, ¢) is a normalizing constant and 
N EB G is the coverage process given by 

N EB G := U {x + G} . (2.15) 
rEN 

Note that when N is Poisson process , this coverage process is a Boolean model. 
Hence the area-interacting process defined by (2.14) can be thought as a "weighted 
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Boolean model" with weights depending exponentially on the area of the covered 
region . 

The parameter dJ cont rols the area-interaction between the point.s of N: the 
process is attractiv€ if q; > I and repulsive otherwise. If q; = I the process is just 
the (unweighted) Boolean model with grain G and Poisson ian rate K. The case dJ > 
1 is related to the penetrable sphere model introduced by Widow and Rowlinson 
(1970) and described in Section 2.3.3. The case of area-exclusion corresponds to 
a suitable limit 0 -+ O. 

Baddeley and van Lieshout. (1995) established basic existence and ext.ension 
properties. For dimensions d ~ 2 and dJ sufficiently small there is a phase transition 
(Lebo\vitz and Gallavotti . 1971: Ruelle. 1971), in the sense that limits of bounded­
window distributions lead t.o several infinite-volume measures , depending on the 
boundary conditions chosen . Purely probabilist.ic literature focus rather on free 
boundary conditions , in which case there is a unique, well defined infinite-volume 
process. 

2.3.2 Strauss Processes 

A related process to the area-interaction point is the so-called Strauss process. In 
this case , the unit Poisson process is weighted according to an exponential of the 
number of pairs of points closer than a fixed threshold 1' . In this case, the Gibbs 
measure (2.13) is defined by 

(2 .16) 

where S(N,A) is the number of unordered pairs such that.llxj-xjll < r. The case 
{32 > 0 was introduced by Strauss (1975) to model the clustering of Californian red 
wood seedlings around older stumps, however in this case (2.16) is not integrable, 
see Kelly and Ripley (1976) . 

2.3.3 Penetrable spheres mixture model 

The penetrable sphere model was introduced by Widow and Rowlinson (1970) to 
study liquid-vapor phase transitions. It is a point process with two types of points , 
therefore it can be seen a a bi-dimensional point process (N, M) in the product 
space N x N which is absolutely continuous with respect to the product of two 
independent unit Poisson processes and Radon-Nikodym derivative given by 

- (d d 1 aN (A){3M(A) (0 0 )(d d 
J-lA N , M) = ZA 01 2 l(d(N.M » R} J-lA x J-lA N , M) (2 .17) 

where d(N,M) = min{d(x,y) ;x E N , y EM} is the shortest distance between a 
point of Nand :\1 . That is , in this model points of different type cannot be at a 
distance shorter than R . 
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Marginal and conditional distributions: 

It is easy to see that the conditional distribution of N given M is a homoge­
neous Poisson process with intensity ."1 on A \ (J/ -ft e), where e is a sphere of 
radius R. Similarly, the conditional distribution of M given N is a homogeneous 
Poisson process with intensity /32 on A \ (N EB e). 

The marginal distribution of N is an area-interaction point process with K. == /31 
and ¢ == eP2 . Similarly, the marginal distribution of M is an area-interaction point 
process with K. = /32 and ¢; = ef31 . 

2.3.4 Simulation procedures 

The measures defined by (2.14), (2.16) and (2.17) cannot be simulated so easily 
as in the Poissonian case. On the one hand, disjoint regions are no longer in­
dependent , due to the coverage, and, on the other hand, the normalizations Zw 
are difficult to estimate . The usual approach is to obtain them as the invari­
ant measures of spatial birth-and-death processes as discussed below (Section 3) . 
Whereas for the measure defined by (2.17) we can use the fact that the conditional 
distributions are homogeneous Poisson processes which are easy to simulate. 

2.4 Statistical mechanics models 

Spin systems, on a finite set A C ~ d, model random configurations u E {-I , + I}A. 
We can identify u with a point process on A viewing 

u(B) = L l{u(i) == I} . 
iEB 

A Gibbs measure in this case, is the distribution of the system in equilibrium 

J.lA(U) = ; e-H(u.Aj/kT 
A 

(2.18) 

where H(u, A) is the energy function, T is the absolute temperature and k is the 
Boltzmann constant. Usually, /3 = l/kT is used in (2.18). 

We can partially order the set of configurations by declaring u :S r whenever 
u( i) :S r( i) for all i E A and we say that J.lA is attractive if the conditional 
probability of u( i) = + 1 is an increasing function of u(j) for j #- i . Formally, fix 
i E V given u E {+1, -l}v and define u~) and u~ ) as 

u~)(j) = {±1, j = i; 
uU), j#-i 

We say that /-LA is monotone if 

J.lA(U~)) > /-LA(r~' !) 
J.lA(U~)) - J.lA(T~!) 
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or. equivalently, 

PA (er~) )PA (T~i») ~ PA (er~) )PA (T~j») 

for all configurations er ~ T and all iE". 

291 

There are several dynamics that have PA as their invariant measure. for mono­
tone measures one of the most IJsed is the heat-bath algorithm, which is a proce­
dure that visits all sites (deterministically or randomly that guarantees an infinite 
number of visits per site almost surely) and updates the value at site i according to 
the conditional probability for PA. For example , the uniformly random heat-bath 
algorithm can be update at time n as 

(2.19) 

where {Un , n ~ I} are independently and identically distributed U (0 , 1) random 
variables, {Vn, n ~ l} are independently and identically distributed U {.\} and (J' 
is the configuration at. time n - 1. 

2.4.1 Low-temperature Ising model 

The Ising model is a particular case of spin systems with 

H(er, A) = - L Qij(J'(i)er(j) - L Bj(J'(i) (2.20 ) 
i<jEA iEA 

where Bj is the strength of the external field at site i and 0ij models the interaction 
strength between sites i and j. We are going to concentrate in the case where there 
is no external field (Bj = 0 for all i) and Ojj = 1 if i and j are neighbors . that 
is Ii - jl = 1 and 0ij = 0 otherwise, for a more complete discussion see Liggett 
(1985). In this case, a very important question is of phase transition. 

It is immediate to see that when A is finite the Gibbs measure (state) given 
by 

PA(er) = _l_e- f3 2:',iEA,I'_il=l<7(i)<7(j), 

ZA 
(2.21 ) 

where /3 is (up to constant) the inverse of the temperature, is well defined. How­
ever . when we want to consider the Ising model on a countable space 5 , we cannot 
apply (2.21) directly with A replaced by S. In this case, the Gibbs state is defined 
for configurations on finite subsets A C 5 and then passed to the limit. Formally. 
let A C 5 be a finite set , AC = 5 \ A and ~ E {-I , +l}Ac. Let PA,{ be the 
probability measure on {-I , + l}A given by 

PA,der) = Z~ , { exp{"':'(3 { .~. er(i)er(j) + 'E~AC. er(i)~(j)} } (2.22) 

li-jl=1 li-jl=1 
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where again ZA ,(. is a normalizing constant. In this case, J-IA,(. is called the Gibbs 
state with boundary condition ~. Let 

9 = {J-I; J-I is a weak limit of J-IA ,(. for any A -7 S and boundary conditions ~ 

(which can depend on A)}. (2 .23) 

Notice that definition (2.23) only makes sense if all J-IA are defined in the same 
probability space, but this can be accomplished by extending the J-IA,(. to measures 
in the full space { -1, + I}S in the natural way, namely acting as the delta measure 
on ~ for events outside A. 

Definition 2.24 We say that the model exhibits a phase transition if 9 contains 
more than one element , 

Let J-IA ,+ and J-IA ,- be defined by (2.22) with ~ == +1 and ~ == -1 respectively. 
It can be proved that 

(i) J-I+ = limA),s J-IA,+ and 11- = limA),s /1A ,- exist ; 

(ii) phase transition occurs if, and only if, /1+ =F /1-; 

(iii) phase transition does not occur if, and only if, 

/1+{U;U(X) = +1} = /1-{u;u(x) = +1} ; 

(iv) For all xES, 

/1+{U; u(x) = +1} + /1-{u; u(x) = +1} = 1. 

(2 .25) 

(2 .26) 

For the case, S = ;;Zd d 2: 2. there is phase transition for j3 sufficiently large. 
The proof of this affirmation can be found in Liggett (1985) and it uses the well­
known Peierls contours which allows to map the measures /1A,+ and /1A,- of the 
ferromagnetic Ising model at low temperature into an ensemble of objects - the 
contours- interacting only by perimeter-exclusion. See, for instance, Section 5B 
of Dobrushin (1996), for a concise and rigorous account of this mapping. Contours 
are hyper-surfaces formed by a finite number of (d - I)-dimensional unit cubes 
- links for d = 2, plaquettes for higher dimensions- centered at points of ;;Z d and 
perpendicular to the edges of the dual lattice ;;Z d + (~ , .. " ~). To formalize their 
definition , let us call two plaquettes adjacent if they share a (d - 2)-dimensional 
face. A set of plaquettes, " is connected if for any two plaquettes in , there 
exists a sequence of adjacent plaquettes in , joining them. The set 1 is closed 
if every (d - 2)-dimensional face is covered by an even number of plaquettes in 
l ' Contours are connected and closed sets of plaquettes. For example, in two 
dimensions contours are closed polygonals. In this work we are going to study the 
construction and simulation of the measure J.L+ for values of j3 where there exists 
phase-transition . 
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Two contours, and 0 are said compatible and denoted by ; '" 0 if no plaque­
t((· of') is adjacent to a plaquette of B. In two dimensions. therefore. contours 
are compatible if and only if they do not. share the endpoint of a link . In three 
dimensions two compatible contours can share vertices , but not sides of plaque­
tt.es . Ising spin configurat.ions in a bounded region with "+" (or "- " ) boundary 
condition are in one-ta-one correspondence wit.h families of pairwise com patible 
cont.ours. 

The probability distribution for the set. of contours in a bounded window A 
is absolutely continuous respect. to t.he counting measure . and it assigns to each 
configuration ~ E {O t l}G(A ). where G(A) is th e set of all possible contours inside 
A probability weight 

(2 .27) 

where 1,1 is the number of plaquet.tes comprising ,.[For simplicity we are absorbing 
in ;3 a factor of 2]. Notice that 

IlA(~ ) = f- ( II 1("'( ~ 0)) Il~ (~) 
A -y. 8H 

(2.28) 

(here ZA is not necessarily the same as in (2 .27)) where ,/\ is the product of 
Poisson random variables with mean e- I'hl for I E G(A). The state-space of JiA 
is contained in {O t I}G, the one of Ji~ is contained in NG, where G is the set of 
all possible contours. 

Contour ensembles can therefore be considered extreme cases of perimeter­
interacting point processes (in a discretized space). They are ext reme on t.wo 
counts: (1) they involve perimeter-repulsion. i.e. a limit 0 --t 0, and (2) they 
correspond to an infinite (but countable) family of grains of arbitrarily large size. 

An important issue for these contour ensembles is the extension of (2.27) to a 
well defined infinite-volume process. Traditionally this problem has been tackled 
via cluster expansions. Our alternative approach , besides yielding the perfect. 
simulation scheme discussed in Section 4.4 , allowed us to prove that such an 
extension is possible and unique as long as 

1 '" - {3 C\' := sup -I I L.. 101 e 101 < 1. 
-y '8i- -y 

(2.29) 

(Fernandez et al. , 1999) . This is a weaker condition than the one obtained by 
usual expansions (for instance in Lebowitz and Mazel (1998)) . . -\ condition of this 
sort is unavoidable because the contour description cert.ainly can not remain valid 
at the Ising critical temperature, in fact at high enough dimension it breaks down 
at a temperature strictly below criticality (Aizenman and Lebowitz . 1987) . 

2.5 Loss networks with fixed routing 

A loss network models , for instance, the occurrence of calls in a communication 
network. The network is formed by a countable family of links (e .g. =d). and each 
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link j comprises a number Cj E £+ of circuits joining its boundaries. A call is 
characterized by a route 'Y and a holding period. There is a countable family, G, 
of routes , each one defined by the numbers Aj"") of circuits used from each link j . 
Calls requesting a route '"( arrive as Poisson streams of rate w('"() and as '"( varies 
it indexes independent Poisson streams. The call is lost if on any link j there are 
fewer than Aj-y circuits free. Otherwise, the call is connected and simultaneously 
holds Aj-y circuits from each link j for the holding period of the call. Holding 
periods are independent , and independent of earlier arrival times and holding 
periods. For a survey on loss networks, see Kelly (1991). The state space of a 
loss network is either {O , I} G if no more than one call per route is allowed or I'lG 

when more than one call can use the same route at the same time. The notation 
~t ('"() indicates the number of calls occupying route '"( at t ime t. 

This type of loss networks is labelled fixed-routing, as opposed t.o the alter­
native-routing networks in which calls that are blocked on a route can search for 
another route . The latter are not addressed in the following. The main issues in 
the theory of loss networks are: 

(i) To establish conditions granting the existence of the (infinite-volume) pro­
cess, for finite time-intervals. This means, conditions precluding the occur­
rence of an "explosion" in a finite time . 

(ii) To establish conditions for the existence of the process(es) for unbounded 
time-intervals , that is, conditions ensuring that the process have well defined 
limits for t -+ ±oo. 

(iii) To prove existence of invariant measures and to determine the regime in 
which there is uniquenness. 

(iv) To analyze the properties of this(ese) measure(s), for instance mixing prop­
erties, finite-volume corrections and validity of the central limit theorem. 

(v) To determine, or find bounds for, the speed of convergence to the invariant 
measure. 

In Section 3 we will see the results of Fernandez et al. (1998,1999) which give 
an answer to all these questions . In fact, the technique of analysis employed there 
leads to a perfect simulation scheme (Section 4.4). 

2.5.1 Continuous unbounded one-dirnensionalloss network 

A natural generalization of the preceding setting is to consider continuous loss 
networks , that is, networks with routes in a continuous, as opposed to discrete, 
space. The simplest of these models is the loss network in IR introduced by Kelly 
(1991). Callers of this network are arranged along an infinitely long cable and 
each call between two points S1, S2 E lR: on the cable involves just the segment 
between them. The cable has the capacity to carry simultaneously up to C calls 
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past any point along its length . Hence, a call attempt between SI and S2 E IF:, 
SI < S2, is lost if past any point of the interval [SI. S2) the cable is already carrying 
C calls . Calls are attempted with initial (leftmost) point following a homogeneous 
space-time Poisson process with rate density (i .e. time rate per unit length) /\', and 
(space) lengths given by a distribution 1r. independent of its leftmost point , with 
finite mean p. The holding time of a call has exponential distribution with mean 
one. The location of a call, its length and its duration are independent. 

Ferrari and Garcia (1998) used a continuous (non-oriented) percolation argu­
ment to prove that this model has a unique invariant measure whenever 7r has 
finite third moment and the arrival rate" is sufficiently small. The argument also 
shows that the process is ergodic, that is. converges to a unique invariant measure 
whatever the initial distribution. 

Let N = {~1,6 .... } be a /\,-homogeneous Poisson process on lP~ x [0,=) , 
HI , H2 , ... be i.i.d. random variables with lE[Hd = 1 and WI , ~ll2 ,." i.i.d. ran­
dom variables with common distribution r. . the variables H 's, 1-4"s and the Poisson 
process being independent. Consider the random rectangles 

Ri = {{x'Y) ; ~i1 ~ X ~ ~il + Wi,~i2 ~ Y ~ ~i2 + Hd , 
then {Ri ' i ~ I} = {~j + Si, i ~ I} is a boolean model in the continuum lP: x [0, <X) 
(Hall , 1988, p.43) where Si = [0, W;J x [0. Hi) and it represents the independent 
process of attempted calls. Fix (x , y) E Jr, x [0 , =), then 

-J 

lP' ((x , y) is not covered) = l!l' ( for all i, (x, y) ft. R;) = e- Kil . 

Let v{S;) the content of the largest sphere contained in Si and \1(5;) the 
content of the smallest sphere containing Si , then 

W H · 2 
v(S;) = 7r( T 1\ i) and 

since lE[v{S;)) > 0, if we assume IE(( ~ V !{t )3) < 00, there exists a critical value 
Kc such that there is no continuum percolation (Hall, 1988, Theorem 4.11). That 
is , the number of rectangles in each clump is finite with probability 1. In this 
case, each (s, t) E IR x [0 , 00) belongs to a finite number of random rectangles Ri 
and the loss network process can be constructed from the independent process by 
"erasing" the rectangles which lead to more than C calls. When H corresponds 
to an exponential distribution it has all moments. Hence , for this argument it 
is sufficient to ask that the random variable W with distribution 7r have a third 
moment finite . A refinement of the above argument shows that this condition can 
be weakened to 2 K P < 1. This construction is heart of the graphical represen­
tation of spatial birth and death processes defined in Section 3 that leads to the 
backward-forward perfect simulation scheme. 

This invariant measure can be considered a generalized point process where 
the germs are the leftmost points of a call and the grains are randomly -chosen 
segments . It can be generalized to any dimension . just substituting the segments 
by curves or arbitrary bounded sets . 
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3 Spatial birth-and-death processes 

The common feature linking all the spatial processes described in Section 2.1 is 
that all these distributions can be realized as invariant measures of spatial inter­
acting birth-and-death processes. 

3.1 Spatial birth-and-death processes 

Consider a spatial pure birth process in JRd with birth rate depending on the 
configuration of the process and constant death rate 1. We specify this process in 
terms of a nonnegative function A : J!l:d x N -t [0,0(.). The meaning of A is that 
if the point configuration at time t is n EN, then the probability that a point is 
added to the configuration in a neighborhood of the point x having area to,4 in 
the next interval of length tot is approximately A(X , n)toAtot. 

The above process has generator given by 

Af(1]) = J(1(17 + ox) - f(17))A(x, 17)dx + J(1(17 - ox) - f(1]))1](dx) (3.1) 

for "suitable" functions f. 
Consider first a finite range birth rate, that is, there exists a compact set G 

such that if 771 = 772 inside x + G then A( x, 771) = A( X, 772) satisfying 

~ = SUpA(X , 7/) < 00 . (3 .2) 
x ,'1 

We are going to use a oriented percolation argument to show the existence of the 
(infinite-volume) process, for finite-time intervals . More restrictive conditions in 
~ will ensure ergodicity and exponential rate of convergence. 

Graphical construction 
In order to get a graphical construction for the process with generator (3 .1) , 

we begin with a ~-homogeneous Poisson point process on ]Rd x JR . Denote it by 
N = {(€t, Td , (6, T2 ), .. . }. For each point (~j, T;) , associate two independent 
marks Sj ~ exp(l) and Zj ~ U(O, 1). 

We can see the marked point process C = ({(~j, T;, Sj, Z;), i = 1,2, ... } as the 
graphical representation of a birth and death process with constant birth rate ~ 
and constant death rate 1 (call this free process Q) and Zj will be used as the 
indicator of "allowed" births. 

From now on, a marked point (~j, T;, Sj, Z;) will be identified with a marked 
cylinder ((~j + G) X [T;, T; + Sj), Zj) with basis ~j, birth time T;, lifetime Sj and 
flag Zj . Calling C = (~, t, s, z), we use the notation 

Basis(C)=~, Birth(C)=t, Life(C)=[t , t+s], Flag(C)=z. (3.3) 
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Define incompatibility between cylinders C and C' by 

C' -I- G if and only if Basis (C) + G n Basis (G') + G f. 0 

and Life (C) nLife(C') f. 0, (3.4) 

otherwise C' - C (compatible). 

3.1.1 Finite-volume construction 

The construction of the spatial birth and death process in a finite box A with an 
initial configuration 770 = {'PI, 'P2 , ... } using the Poisson processes is straight­
forward. We use only the finite set {(~i , T;,Sj , Zj): ~j E A.Ii > OJ. Let 
C A = {C E C : Basis (C) nA f. 0, Birth(C) > OJ . To each point 'Pj present 
in the initial configuration 170 we independently associate an exponential time !;j 
and a cylinder ('Pj , 0 . . ~j. 0). The collection of initial cylinders is called C~ . We 
realize the dynamics 77;' as a (deterministic) function of C A and C~. Let 

CA[O.I ] = {(~. 8.1,:) E CA u C~; 0::; 8 + I, 8::; I}. (3.5) 

Consider 0 < tl < 12 < ... < tN as the birth and death marks T j • Sj lying 
in the set [0, t). By the properties of the Poisson process all of these times are 
distinct , that is 

{t l , .... is} = [0 , t) n {8 , 8 + l; (~, s, l. z) E CA[O, tl}. (3.6) 

We construct the process 77f inductively as follows: 

FV.1. Suppose that 77~ is already defined, and that ti-l ::; u < Ii . We set 

77~ = 7]~, for all u ::; s < ti· (3.7) 

If u ~ tN then 
7]~ = 7]~, for all u < s. (3.8) 

FV.2. If tj is a death time, that is, ti = S + l for some (~. s, I, z) E CA[O, t) then 
we delete the point ~: we set 

(3.9) 

Go back to FV.l. 

FV.3. Iftj is a birth time, that is, ti = s for some (~ , s , l,z) E CA[O , t) then we 
do not add the point ~ if z > .x(~i, 7]~-) : we set 

A A 
7]t, = 7]t,-' (3 .10) 

Otherwise the point ~ is added : we set 

7]~ = 7]~- u {O · (3.11) 

In ei ther case, go back to FV.1. 
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It is tedious but easy to show that 77~ has generator A A defined as in (3.1) 
restricting the sums to the configurations contained in A. It is easy to find an 
invariant measure J.lA for this process (through the equation J AIIA(77) = 0). Some 
regeneration argument should show that 77~ converges in distribution to J.lA for any 
initial configuration 1) . This, in particular, implies that IIA is the unique invariant 
measure for 1)~ . 

Using the same Poisson marks for 1)~ and at (the process with constant birth 
rate>' and constant death rate 1), we have 

(3.12) 

for all A C A because in the process at all cylinders are kept. This implies 

IlA {1) : 77(A) = O} 2: W{O' : O'(A) = O} . (3.13) 

3.1.2 Infinite-volume construction 

If we try to perform an analogous construction in infinite volume we are confronted 
with the problem that there is not a first mark . However , notice that the free 
process at always exist. The goal, is to find conditions under which the process 
Ot can be thinned by the finite-volume construction. 

Consider the total order -< in the set of cylinders induced by the birth times. 
That is C -< C' if and only if Birth (C) ~ Birth (G'). 

For an arbitrary space-time point (x , t) define the set 

Ax,t 
I {G E C ; x E Basis ( C)) , Life (G) 3 t} 

the set of cylinders containing the point (x, t) . 
For any cylinder G define the set of ancestors of C as the set 

Af = {C' E C ; C' -< C ; c' f C} 

(3 .14) 

(3.15) 

Notice that the definition of ancestor does not depend on the lifetime of C . Re­
cursively for n 2: 1, the nth generation of ancestors are defined as 

A;,t = {Gil : Gil E Af' for some C' E A~'~I} ' 

and for a given cylinder G, 

A~ = {Gil: Gil E Af' for some C' E A~_I} ' 

(3.16) 

(3 .17) 

We say that there is backward oriented percolation in C if there exists a space­
time point (x, t) such that A~,t i- 0 for all n, that is . there exists a point with 
infinitely many generations of ancestors. Let the clan of the space-time point 
(x , t) be the union of its ancestors: 

Ax,t = U A;,t 

n~l 

(3 .18) 
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and C[O,t] = {C E C : Birth (C) E [O,t]} . 
In the next theorem we give a sufficient. condition for the existence of the 

infinite-volume process in any finite time interval in terms of backwards percola­
tion. 

Theorem 3.19 If with probability one A r ,I nC[O, t] is finite for any x, E IF. d and 
t ~ 0, then for any box A C Jll'.d, the process with generator AA is well defined and 
has at least one invariant measure pA . 

Proof. We construct the process for A = JFl:d. The construction for other A is 
analogous. The initial distribution is denoted 170 = {!PI, 'P2, . .. }. For each 'Pj E 1]0 

let 5j be an independent. exponentially distributed random time of mean 1. The 
time 5j represents the lifetime of the cylinder with basis 'Pj, birth time ° and flag 
0. We call C(O) the set of cylinders {('Pj , O,~j,O) ; ipj E 1]0} . Since the cylinders 
in C(O) have no ancestors in C[O, fJ, under the hypothesis of the theorem , every 
cylinder in C(O) U C[O , t] has a finite number of ancestors in C[O, t]. 

It is easy to see that we can represent the constant birth and death process at 
as 

at = {Basis(C);CE C(O)UC[O,tJ,Life(C) 3t}. (3 .20) 

\Ve will construct 1]t as a thinning of the constant birth and death process at , 

for this consider C E C(O) U C[O,t] such that Life (C) 3 t , then Basis (C) Eat. 
to decide if Basis (C) E 1]1 we need to look at C(O) U Un> 1 A~' , which is finite by 
hypothesis . In this case , we can perform the mark-by-m~rk construction defined 
in the previous section and it can be accomplished in a finite number of steps. 

It is possible to show that 1]t has generator A gi yen by (3.1). 0 

The lack of percolation allows us to construct 1]t as a thinning of at for times 
in the whole real line. Since the construction is time-translation invariant, the 
distribution of 1Jt will be invariant. 

Theorem 3.21 If with probability one there is no backwards oriented percolation 
in C, then the process with generat01' A can be constructed in (-00 , 00) in such a 
way that the marginal distribution of 1Jt is invariant. 

Definition 3.22 The distribution of 1Jt is called p. 

Remark: A consequence of Theorem 3.21 is that the spatial birth and death 
process in a finite box A can be constructed for all t E JR(. 
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3.1.3 Time ergodicity 

The main theorem in this section shows that all that is needed for exponential 
convergence to a unique invariant measure is the absence of backwards and non­
oriented percolation. The key to prove this fact is a domination by a branching 
process which will be sub-critical under the condition). :S 1/md (G) . 

Note that the collection of cylinders 

c = {(Basis (e) + G) x Life (e); e E C} (3.23) 

is a boolean model (Hall, 1988) and for any x E lR d and t ~ 0 we have that the 
number of hypercubes that cover (x , t) is Poisson distributed with mean m d ( G) •. 
In fact, 

lP'( (x, t) not covered) = (3.24) 

lP'((x,t) rt ((Basis (C) + G) x Life (C) for anye E C) 

= e-md (G)5.. 

Notice that the process of ancestors is not a Galton-Watson process, a cylinder 
in the first generation can also be in the second generation of a cylinder. However , 
we can define a Galton-Watson branching process Bn E N such that the offspring 
distribution of a cylinder e has the same (marginal) law as the distribution of Af, 
but the branches behave independently. The key point is to fix a way to distribute 
common ancestors. Let yt be i.i.d. non negative integer valued random variables 
with Poisson distribution with mean md(G)'\. Define Bo = 1 and 

Bn 

Bn+1 = Lyt (3.25) 
i=1 

(with the convention I:?=1 yt = 0). It is possible to couple the BO-cluster A x ,1 

and (Bn)n>o in such a way that the number of ancestors in the nth generation 
of (x , t) is less than or equal to Bn . The total number of a~cestors of (x, t) is 
bounded by 

IIAx,tll :S L Bn. (3.26 ) 
n~O 

Therefore, there is no backward oriented percolation if the process is sub­
critical, that is, 

(3.27) 

Defining the time-length and the space-width of the family of cylinders A x,t 
be respectively 

TL (Ax,t) 

SW (Ax ,t) 
= t - sup{s : Life (e) :3 s, for some e E Ax,t}, 

= md(UCEA"" Basis (e) + G), 

(3.28) 

(3 .29) 
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where 
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SW (AX ,o) < md(G)B 
B 

TL (AX ,o) < LSi 
i=1 
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(3.30) 

(3.31 ) 

( 3.32) 

and Sj, i > 1 are i.i .d . exponentially distributed random variables with mean 1. 
Since 

1 
JE[B) = 1 _ md(G),\ (3.33) 

we have 

(3.34) 

JE[TL (A x ,o)) < (3.3.5) 

Moreover, the moment generating function of TL (AX,O) is gi\'en by 

( 3.36) 

where F(b) is the generating function of Z and consequently, 

(3 .37) 

3.1.4 Time convergence and uniqueness 

We say that two sets of cylinders A and A' are incompatible if there is a cylinder 
in A incompatible with a cylinder in A': 

A -f A' if and only if C -f C' for some C E A and C' E A' . ( 3.38) 

Theorem 3.39 Assume that there is no backwards oriented percolation with prob­
ability one. Then , 

1. Uniqueness. The measure J.l is the unique invariant measure for the process 
TJt · 

2. Time convergence. For any compact set A, 

lim sup lIEr,i (A) - IEr,(A) I = o. 
t-+oo A 

( 3.40) 
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Furthermore, 

sup 1lFi}(A) -lErJi (A)I (3.41) 
A 
< IF(UXEA{Ax ,t 7- C(O) orTL(Ax,t) > t}) 

< (IF(UXEATL (AX ,o) > btl + e-(l-b)t IE(SW (AX ,O))) 

for any bE (0 , 1) . 

3. Space convergence. As A -+ IR d, p.h converges weakly to p.. More precisely, 
if A is a finite set contained in JP: d, then 

(3.42) 

where AA(AA,A) is the clan of ancestors of A in the infinite(finite)-volume 
construction . 

Moreover, by construction we have that the invariant measure p. is space­
invariant. That is , we have spatial ergodicity of the stationary distribution. 

Proof. Existence of p. has been proven in Theorem 3.2l. 
In order to prove uniqueness of the invariant measure we use the same Poisson 

marks to construct simultaneously the stationary process 1]t and a process starting 
at time zero with an arbitrary initial configuration TJ . The second process is called 
TJi , where TJci = 1]. The process 1]i ignores the cylinders in C with birth times less 
than 0 and considers C(O) = {(~j, 0, Sj, 0) : <pj E 1]}, the set of cylinders with 
basis given by the initial configuration TJ and birth time zero - the times Sj are 
exponentially distributed with mean 1 and independent of everything. 

It is enough to prove that 

suplF(l1]t(A) - TJi(A)1 > 0) -+ 0 (3.43) 
A 

as t -+ 00. 

Since we are using C to construct 1]t and C(O, tj u C(O) to construct 1]i , it 
follows 

l1]i(A) - TJt(A)1 :'S L 1{ (Ax,t 7- C(O) or TL(Ax,t) > t)} (3.44) 
xEA 

Note that A x,t =1= 0 for finitely many x E A. The proof of the above results 
is done similarly as in Fernandez et al. (1998). The estimates for the moments of 
TL (Ax ,t) and SW (Ax ,t) are given by (3.34), (3.35) and (3.36) . 

The arguments prove that the process converges, uniformly in the initial con­
figuration, to the invariant measure p. . An immediate consequence is that p. is 
the unique invariant measure. Moreover, it is easy to see that the velocity of 
convergence is exponential. 
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3.2 More general birth-and-death processes 

3.2.1 Peierls contours of the Ising model 

303 

In this case, we are considering a birth-and-death process where the individuals are 
contours in G , a birth rate depending on the configuration of contours already 
present and unit death rate. Specify this process in terms of a non-negative 
function>. : G ~ {O, l}G -+ [0,1] given by 

(3.45 ) 

The above process has generator given by 

Af(TJ) L e-,8h1 1{TJ+"l E {a, l}G}[f(TJ+"l) - f(TJ)] (3.46) 
"lEG 

+ L TJh)[J(TJ-"l - f(7])] 
"lEG 

where f is a cylindrical function and 

(3.47) 

A construction similar to Section 3 shows that a sufficient condition for exis­
tence of the process is 

(3.48) 

where as ergodicity is obtained under the condition (2 .29) (a < 1). In this case , 
consider the origin of a contour to be the first point in lexicographic order and 
define 

>',8:= L e-,8hl. (3.49) 
T orih )=O 

Begin with >',8-independent Poisson streams {N x ; x E 2d}. Denote 

N x = {Tdx) , Tz(x), . .. } (3.50) 

and to each point Ti(X) assign independent marks: 

• ')'i(X) = ')' chosen from {-y : orih) = x} with probability exp(-!1bl)/>',8; 

• Si ( x) '" exp ( 1) . 

Consider the set of marked cylinders: 

C{bi(X),T;(x),Si(X));X E ;Zd, i ~ I} == 
{-y;{x) x [T;(x) , T;(x) + Si(X)]; x E 2 d , i ~ I} (3.51) 
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and as before for G = (" t, s), we use the notation 

Basis(G)=" Birth(C)=t, Life(G)=[t , t+s]. 

Define incompatibility between cylinders G and G' by 

G' f G if and only if Basis (G) f Basis (G') 

and Life (G) n Life (G') ::j:. 0, 

(3.52) 

(3.53) 

otherwise C' '" G (compatible), where compatibility between contours was defined 
in Section 2.4.1. 

The construction follows as Section 3.1.1 and 3.1.2, except that here we erase 
all incompatible cylinders (we do not need to check the flag) . Conditions for 
lack of backward percolation and velocity of convergence are obtained through a 
domination by a multi-type branching process bn , where the types are the contours 
and b~ (8) denotes the number of cylinders of basis () in the nth generation of a 
cylinder C with basis ,. III this case , 

L>~(e) ~ IIA~II· (3.54 ) 
8 

It is easy to see that the mean number of descendents type () from a mother type 
ry is given by 

(3 .55 ) 

and 
(3.56) 

e e 

where a is defined by (2.29) and the process is sub-critical if Q < 1. Detailed 
calculations can be found in Fernandez et al. (1998, 1999). 

3.2.2 Loss networks 

They can be associated to point processes with grains stochastically chosen (pos­
sibly with sizes forming an unbounded set). For instance, for the continuous loss 
network of Section 2.5.1, the germs are the leftmost points of calls and the grains 
are segments with random lengths. In this case, the domination is done through a 
multi-type branching process with uncountable many types. Assume, in general, 
that the leftmost points of calls appear with rate !(x) and that call lengths are 
given by a distribution 1r independent of x. We only require the latter to have a 
finite mean p. Consider a germ sitting at the origin, that is a call stretching from 
the origin to the right, born at time zero. Its ancestors correspond to cylinders 
with sufficient lifetime and with bases given by either calls starting at negative 
sites and passing through the origin, or calls of arbitrary length originating within 
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the sites occupied by the initial call. Therefore. the sub-criticality parameter has 
two contributions: 

f o dxf(x)rr({L> x}) + roc, rr(dL) (L dxf(x). 
-00 Jo Jo (3.57) 

[We have omitted a factor 1 corresponding to the lifetime of the ancestors.] If the 
rate f is constant, say equal to Ii, each contribution in (3.57) is equal to lip. The 
finite-time process therefore exists as long as p < 'Xl and the ergodic stationary 
process if 

21\.p < 1 . (3.58) 

4 Perfect Simulation 

4.1 General definition 

Let us start with an abstract definition embodying the three exact simulation 
algorithms, Coupling from the Past (CFTP) , Acceptance-Rejection Algorithm 
(ARA) and Backward-Forward Algorithm (BFA) described in the Introduction. 

Definition 4.1 A perfect simulation (or exact sampling) scheme for a a proba­
bility space (X, Q, F, Ji) consists in: 

(i) A process V = (Vdt~O, 

(ii) A Hid-stopping-time, r = r(V), where 9t = ()(V" 0 ::::: s ::::: i), such that 

lP'(r(V) < 00) = 1, ( 4.2) 

(iii) A random function <I>!::, : ~+ -+ X such that 

(4 .3) 

The definition is completely general: \f is some underlying process and IP' is a 
probability measure defined in a sufficiently large space encompassing X and the 
state-space of the process V. In fact, in CFTP and our algorithm, the set up is 
such that 

Vi> r. ( 4.4) 

This is not so in the ARA algorithm. Property (4.4) stems from the fact that in 
CFTP and in our case, the algorithm "looks into the past", and the process V 
is related to past histo'ry or ancestry of what happens at a fixed time, say time 
zero . The ARA algorithm, instead, is constructed on the basis of the forward 
evolution but incorporates a time-reversed trajectory for the acceptance-rejection 
procedure. 
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4.2 Coupling from the past 

The coupling from the past algorithm (CFTP) was the first feasible algorithm for 
a perfect simulation scheme. It. was introduced by Propp and Wilson (1996) and 
after this paper was made available, there was a sequence of articles applying the 
method to several different situations. We are going to describe the application 
to some situations ranging from the simplest (discrete-time finite state Marko\" 
chain) to more complicated problems (area-interaction point process and Strauss 
processes) . 

4.2.1 Discrete-time 

Consider the problem of generating a random sample from a distribution 11 on 
a finite set S which is the unique invariant measure of a discrete-time aperiodic. 
irreducible, positive recurrent Markov chain with state space S. Let P denote the 
transition matrix. 

In this case, the ingredients of the algorithm are: 

• A discrete-time backwards process defined by a sequence ([1;)i<O of indepen­
dent random variables uniformly distributed in [0,1]. The fo~ward process 
\! is simply defined as its time-inversion: ~/i = U -i . 

• A function F : X x [0,1] -t X such that the Markov chain constructed by 
setting Xn = F(Xn- 1 , \/~) has 11 as unique invariant measure . 

The definition of T and <I>!:. is based on iterations of F: 

(4 .. 5 ) 

for k' ~ k, where F[k,kj(X, V) = F(x, Vk). Notice that F[k,k'j(X, \/) depends only 
on (Vk, . . . , Vk')' Now, 

T = min {n : F[_n,Oj(x, V) does not depend on x} (4 .6) 

and 
(4.7) 

for any x E X and t ~ T. For t < T the value of <I>!:. is arbitrary. 
In words, the process is simulated from time -t to time 0, using the samE 

realization U_t, ... , U_I of the random variables (U;)-t<i< -I for all possible initial 
states X _ t = x. If all the resulting trajectories coaleSce- at or before time 0, the 
value of Xo is taken to be a sample of 11. If not, the simulation is .started some other 
time t' > t, using, for the period [-t, 0], the previous realization U _ t, ... , U _ 1 of the 
independent random variables. This (backwards) iteration is continued until all 
trajectories are seen to coalesce before time O. The key points of this prescription 
are: (i) the use of the same random numbers to generate trajectories for different 
initial states (coupling), (ii) the keeping of a given realization of random numbers 
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for a given period in all iterations, and (iii) the use of a fixed time -called time 
0- to register the sample. 

The efficiency of the algorithm depends on the choice of the function F. A 
badly designed coupling can lead to extremely large values of T. As an example 
of this , consider a process with X ::: {O,l} and with probability 1/2 of jump­
ing from any state to any other. Here p(O) ::: 11(1) ::: 1/2. If one chooses 
F(O ,v )::: 1- F(l,v)::: l{v < 1/2}, the resulting coupling time T is infinite with 
probability one. The construction of "good" couplings requires the maximization 
of minx,y JlD (F(x , Vo) ::: F(y , \In)). This condition is strongly model-dependent. 
Every homogeneous ergodic Markov process admits an F yielding a finite coales­
cence time, e.g. the Vaserstein coupling used by Dobrushin (1965). 

For completeness, let us see why the algorithm performs as stated. By defini­
tion of F , 

I1(X)::: lim lll' (F[_T ,o)(a ,l]::: x) 
-T-+- oo 

.( 4.8) 

and by definition of T, 

Vt> T . (4 .9) 

On the other hand , if F is well chosen, T is finite with probability one , hence 

JlI'(Fr-T,o)(a, \l) ::: x , T > T) < JlI'(T> T I X-T ::: a) 

JlI'(T> T) -+ O. 
T-+oo 

This shows property (4.3). 

(4.10) 

While it is true that trajectories also coalesce when looked forward in time, an 
algorithm based on this fact does not lead to a perfect simulation scheme. Indeed , 
if T* is the forward coalescing time, the analogous of (4 .8) holds , 

p(x) ::: Tlim JlI'(F[OT](a , \l) ::: x) (4.11) 
-+ 00 

::: TI~![JlI'(F[o,T)(a , U::: x, T- ::; T) + JlI'( (FrO,T)(a, V)::: x, T* > T)] , 

but in general 

(4.12) 

(in fact , the limit may not even exist). 

Example 4.13 
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Let's consider a very simple example, take the random walk on {O , 1. 2, 3.4} with 
transition probabilities 

P(i, i + 1) = P(i + 1, i) = 1/2, for i = 1, 2.3 : 

P(O, 0) = P(O , 1) = P(4 , 4) = P(4, 3) = 1/2 . 

rr= (1/5,1/5,1/5,1/5,1/5,1/5) 

In this case we have a stochastic flow defined as: if Xo = i then .Yn = Fo .n (i) 
The usual MCMC approach is to run the chain .Yn = Fo .n(i) for n large. 

Define 
Yn(i) := F-n .o(i) ;g Xn given Xo = i. 

Notice that {Yn, n ~ O} is not a Markov chain. Define 

Tc := inf {n ; }~ (i) do not depend on i} . 

Then, it is easy to see that 

We have that Tc is coalescence time and it. is a stopping time in the reverse 
filtration : 

Tc = inf{ n; F _ n ,ois constant} 

and F_n ,o(i) = Yoo has the desired distribution 7r. 

In the example, showed in Figure 4.2.1 Tc = 10 and F_10 ,0 (i) = 1 is an unbiased 
sample from rr : 
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·10 ., .J TIM [ 

CFTP for the symmetric random walk in Example 4 .13 

Let ... " [;'-3 , U- 2 , U_ I , Uo be independent identically distributed random vari­
ables and ¢(' , .) a deterministic function such that 

JlD [¢(i, Uo) = j ] = Pi ,j 

for all i . j E S. Define 
I 

If, with probability one, there exists a T such that FT ,O is constant , which value 
we denote by ¢( ... , U- 2 , U_ I , Uo), then 

¢( ... , U- 2 ,U- I , UO) '" 1r. 

The algorithm has been used for state space X finite or with a maximal and 
a minimal state in some partial ordering. In this last case, the chain Xn must 
be order-preserving, so only the extremal states need to be followed. In actual 
simulations T is not really computed. In general F[-n ,Oj(x , V) is computed for all 
x and for different - but not all- values of n (for instance powers of 2) up to the 
first time F[-n ,Oj is constant in x . 

4.2.2 Jump processes in continuous-time 

The previous algorithm can be trivially adapted for invariant measures of Markov 
jump processes with an embedded ergodic Markov chain . Let (Yd be a process of 
this type. with finite state space X, rates Q(x , y), x, y E X , and (unique) invariant 
measure 11. It is convenient to consider another process , with rescaled transition 
times , having the same invariant measure. The new process has transition times 
given by a Poisson process N(t) of rate A = maxx Ey Q(x, y) and transitions 
determined by an skeleton Markov chain X with transition probabilities 

{ A-I Q(x , y) if y i= x 
P(x,y)= 1-A- I Ez;txQ(x , z) ify=x' (4.14) 
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We have that 
} ' 1) \' t = , N(t)· ( 4.15) 

Therefore, the invariant measure for X coincides with that of the original process 
(Yd. It is therefore enough to proceed as in the discrete-time case . 

4.2.3 Point processes 

Kendall (1997 , 1998) has applied CFTP to simulations of processes that can be 
obtained as weighted Boolean models using quermass integrals. These include 
the area-interaction processes considered by Baddeley and van Lieshout (1995) 
described in Section 2.3.1, where the point process is produced by the germs of a 
Boolean model e under the weighting 

l-area(0) . 

Its Radon-Nikodym derivative (restricted to a bounded window A) is given by (cf. 
(2 .16)) 

(4 .16) 

where" and </> are positive parameters . ZA(" , dJ) is a normalizing constant and 
N ffi G is the coverage process given by 

N Pi! G := U {x + G} . (4 .17) 
rES 

The attractive processes can be simulated using CFTP methods in the presence 
of monotonicity, when models can be sandwiched between a "maximal" and a 
"minimal" weighted Boolean models . In fact, through a minor modification the 
algorithm is also applicable to repulsive point processes (Kendall, 1997). We 
describe his scheme. 

Consider the space-time Boolean model of cylinders constructed in Section 3. 

Fini te-volume construction 

Now , fix -T < 0; for t .E [-T,O] we are going to follow the evolution of 
three processes: IJ~Tx (t), IJ~:P (t) and 1]_ T (t) on A. Each process will have initial 
configuration IJ~P(-T) C IJ-T(-T) C IJ~TX(-T) and they will use the finite set 
of marked cylinders 

C~T = {C E C; Basis (C) E ,\, Life (C) n [-T, 0]/0}. 

The initial "maximal" and "minimal" configurations are defined by 

IJ~TX( -T) 

IJ'!::P (-T) 

{Basis(C);C E C~T,Life(C):3 -T} 

{Basis (C); C E C~T' Life (C) :1 -T, 

Flag (C) ~ rmd(G ) } 

( 4.18) 

(4 .19) 

(4 .20) 
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while l1-T(-T) can be any arbitrary subset of l1~TX(-T) and superset of 
11~}P (-T). 

Using the graphical construction defined in Section ~ 1.1, it is possible to couple 
monotonically the trajectories l1~Tx (t) and TJ~T (t) for all - T < t < D until the 
coalescence time 

(4.21) 

In general, the algorithm is run for fixed times Tl < T2 < T3 < ... , with 
TN = eN . 

The modification needed for the repulsive case, is that in FV.3 (Section 3.1.1), 

• a point ~ is added to TJ~Tx (t) if the mark 

• a point ~ is added l1~T (t) if the mark 

The above references analyze processes in a finite window with fixed boundary 
conditions. On the other hand, it seems interesting to to consider finite windows 
of an infinite-volume distribution. The only mention to this is by Kendall (1997). 
who points out a scheme that requires that that the underlying B90lean model 
do not exhibit percolation in space-time. In this case, the CFTP method can 
be extended by looking at [-T, OJ x [-]{, ]{jd for ever increasing T and J{. The 
lack of percolation ensures that eventually the area-interaction process will not be 
affected by whatever boundary conditions are imposed at time -T and outside 
[-]{, I<j2. This lack of percolation argument is the same used in Section 2.5.1 for 
continuous unbounded loss networks, as before an oriented-percolation argument 
can lead to a scheme that can be applied to a broad regimen. 

4.2.4 User Impatience Bias. 

The coupling from the past algorithm possesses the impatient-user bias. That is. 
it has a running time which is not independent of the state sampled, thus if the 
user aborts a long run of the algorithm a bias is introduced. The following simple 
example is presented in Thonnes (1999). Consider the Markov chain X with state 
space {D, 1, 2} and transition matrix 

p = ( 1~2 
1/2 

1/2 
o 
o 

o 
1 

1/2 
) 
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The stationary distribution is given by 1!" = (2/5,1/5,2/5). We can simulate X 
using the following rule: 

{ 
0, 

¢>(x, U) = min{x + 1, 2}, 
2, 

for x = 0,2 and U::; 1/2 
for x = 0,2 and U > 1/2 
for x = 1 

where U is a U (0 , 1) random variable. Notice that this rule is not monotone and 
to run CFTP we need to follow the simulation for all 3 states. 

Denote by 

( 4.22) 

the state of the chain at time ° starting the chain at time - T in state x. 
Suppose now that the user always terminates a run of CFTP after I iterations 

without obtaining coalescence . In this case, if coalescence is attained at time T 
we are sampling from the distribution defined by 

which is different from 1!" since 

( . ; T _ )_IF'(T<Iand¢>(x,UI , . . . ,UT)=r) 
IF'</J(x,[I , ... ,[T)-rIT<I - IF' (T<1) . 

Let N = 21 -I, then by combinatorial arguments we can show that 

where p(k) is the k-step transition matrix. Therefore, for I 2:: 3 we have 

2 [ 1 - 2- N ] 

"5 1 - 2- N +1 

1 1 - 2- N ] 

"5 [1 - 2- N +1 

3 1 - 2- N 

1 - "5 [1 _ 2-N+1 ] . 

(4 .23) 

(4 .24 ) 

Although the bias decreases with I as expected, the sll;mple will always be biased. 

4.3 Fill's interruptible algorithm 

Fill (1998) describes a perfect sampling scheme based on a rejection sampling 
method, which protects against the user impatience bias. Consider a Markov 
chain on a partially ordered finite state space (S , ::;) with stationary distribution 
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p . Suppose that the state space has a maximum element i and a minimal element 
O. The transition matrix P is such that its time rel'ersal ? defined by 

?( ) = p(y)P(y, x) 
x, y p(x) (4.26) 

for x such that p(x) > 0 is monotone with respect to :So As ? is monotone, it is 
well-known, e.g. Theorem 1 in Kamae, Krengel and O'Brien (1977), that there 
exists an upward kernel K(x,y)("') such that 

?(y, V') = L ?(x, xl)K(x,Yi(x' , V') (4.27) 
x'ES 

for all YES. 
It is assumed that it is possible to sample from the measure K(x,y)(x' , .) when­

ever x :s y and ?(x, x') > O. 

Definition 4.28 A monotone transition rule for a transition matrix? on a par­
tially ordered space (S,:S) is a measurable function j : S xU -+ S together with 
a random variable U taking values in an arbitrary probability space U such that: 
(i) j(x,-u) :s j(y, u) for all u E U whenever x :s y: 
(ii) 1JI'(J(x , U) E .) = ?(x,.) for all xES. 

If ? has a monotone transition rule j then we can take as upward kernel 

K(X,y)(X', V') := w(i(y, U) = y' I j(x, U) = x'), (4.29) 

for all y' E S when x:S y and ?(x,x/) > O. 

Algorithm 4.30 Fill's algorithm consists in three steps: 

1. Start X in 0 and runs it for t steps. Record the obtained trajectory (Xo = 
o,X1 , ... ,Xt = z). 

2. Reverse the obtained trajectory in time leading to the time-reversed trajectory 
(which is regarded as a ? trajectory conditionEd to start at z and to end at 
0) 

(Xo = z,X1 , . .• ,Xt = 0) = (X t = ::.Xt - 1 , .. . ,Xo = 0). 

3. A second Markov chain Y is simulated for t steps using the upward kernels 
I«x ,y) (., .) together with the time-reversed trajectory. The initial state of Y 
is set to be i. Then Yk for k = 1, .. .. , t is sim ulated according to the kernel 

I«X- y- )(Xk . . ). 
k-I, .Ie-I 

If Yt = 0 the proposed sample z is accepted. 
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4. If the sample is not accepted, reinitiate the pmcess with t + 1 independently). 

Notice that this algorithm is based on the well-known acceptance-rejection 
algorithm for sampling, see Ripley (1987) . 

(a) Generate an observation from pt(O, .); 

(b) Find a constant c such that 

rr(z) 
c> pt(O,z)' 

for all z E S such that pt(O, z) > 0. 

(c) Accepts z as an observation from rr with probability c-1rr(z)/pt(O.z). 

Notice that for this algorithm to work there is a couple of questions to be 
answered . 

• How to choose c? By definition of P we know that 

rr(z) 
pt(O, .:) 

rr(O) 
pt(z,O) 

and by the monotonicity of P, we can choose 

rr(O) 
c = _ .. . 

pt(1,O) 

(4.31 ) 

(4 .32) 

Thus, step (c) says to accept z as an observation from rr with probability 

rr(z) 
x --':-"--

pt(O, z) 

pt(i,O) 

pt(z,O) 
( 4.33) 

• How to design a coin-flip with probability of heads equals to pt (i, 0) / 
pt(z,O)? Running the coupled-reversed chain starting at i for t steps, if 
the 'Vt = 6, the coin flips head. In fact, 

- '-. - . - • pt (i, 0) 
lP' (Yt = ° I X 0 = z, X t = 0, Yo = 1) = - . , 

pt(z,O) 
(4 .34) 

In this case we can construct the process 11 = (Vt, t 2: 1) where Vt = 
((Xo, ... , Xd, (,Yo, ... , Ytl) are independently generated by the rejection algorithm 
described above. 

T = min{t; ft = O} (4.35 ) 

and 
(4.36 ) 

Fill suggests the the algorithm should be run using t as powers of 2 similarly 
to CFTP. 
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4.3.1 Application to attractive spin systems 

Consider an attractive spin system with attractive equilibrium measure IT . Con­
sider the Gibbs sampler (heat-bath algorithm) with uniform random update for 
attractive spins systems as described in Section 2.4. In this case, the chain is re­
versible with P = P which is monotone since the system is attractive, then (2.19) 
gives us a monotone transition rule ¢ = j. ARA algorithm becomes: 

1. Start the chain {7 at {7min == -1 and run it for t steps using ¢ as an updating 
rule. We obtain 

({70 == -1,{71 ,.· · , {7t-l,{7t = () . 

2. Construct the time-reversed trajectory 

(0-0 = (,0-1 = (7t-l,· .. , o-t == -1). 

3. Simulate a second Markov chain r, for t steps starting at r,o == + 1 using the 
following rule: 

(a) When o-n-l -# o-n (they disagree at a unique site i), 

• If o-n_l(i) = -1 and o-n(i) = +1 then set r,n(i) = +1 ; 
• If o-n-di) = +1 and o-n(i) = -1 then set 

{ 
TJ- (i) - -1 w ' th b bTt rr(li;;- I ) rr(<7 n-d+rr (<7 n ) 

n - . I pro a II y rr(li n _ 1 )+rr(ii!_I) rr(<7 n ) 

- ( ')- +1 ·· h bb')' 1 rr(Ii;;-_I) rr(<7 n _l)+rr (<7 n ) 
TJn Z - , "It pro a Ilty - rr( - - )'rr(-+ ) rr(<7,,) 11 n _ 1 ;- 1J n -l 

(b) o-n-l = o-n = 0-" , then the computation of the conditional probability 
is a little messy, but we can overcome this problem by noticing that 
o-n = {7t-n and o-n-l = (7t-n+l and this transition was produced in step 
1 by generating U '" U(O , 1) and V", U(A) independent and updating 

0-" = ¢(o-", U, V). 

So we can store (U, F) and use it to set 

r,n = ¢(r,n-l, U, V). 

4. If r,t == -1 then the proposed sample ( is accepted, if not reinitiate the 
process at Step 1. 

4.3.2 Point processes 

Thonnes (1999) uses ARA algorithm to simulate from penetrable sphere model 
without impatient user bias. Her argument follows Fill 's interruptible algorithm 
and uses a forward construction and a backward checking. 
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The objective is to simulate from the bi-dimensional point process (N , M) E 
N x N described in Section 2.3.3. The crucial observation is that under the model 
(2.17), the the conditional distribution of N given M is a homogeneous Poisson 
process with intensity /31 on A \ (M if;G), where G is a sphere of radius R. Similarly, 
the conditional distribution of M given N is a homogeneous Poisson process with 
intensity /32 on A \ (N $ G). 

In this case, a convenient Markov chain to be used is the Gibbs sampler . Given 
the configuration of the process at time t to be (71t, mt ), then in the next step 

/32 Poisson on A \ (nt if; G) 

/31 Poisson on A \ (mt + I if; G) . 

(4.37) 

(4 .38) 

Notice that , this Markov chain has an uncountable state space. We can par­
tially order this space by considering 

(n , m)::; (n',m') if n C n' and m :J m' . 

It is easy to check that the Gibbs sampler defined by (4.37) and (4.38) defines 
a monotone transition rule I given by 

I(n , m, VI, V2 ) = (n' , m') (4 .39) 

where VI and V2 are independent Poisson point processes on ,\ with rates /31 and 
/32 respectively and n' = VI \ (m EB G) and m' = V2 \ (n' 4; G). ;'\otice that 

I(n , m, VI, V2)::; I(n' , m', VI , V2 ) whenever (n , m)::; (n' , m') . ( 4.40) 

In fact, if (nl ,md = I(n , m, VI, V:?) , and (n~,m~) = I(n' , m' , \ '1. V2) . then 

ml = VI \ (n $ G) :J m; = VI \ (n' 67 G) , since n 67 G C n' if; G 

and 

nl = V2 \ (ml $ G) C n~ = V2 \ (m~ $ G), since ml $ G :J m~ EEl G. 

However, the state space N x N does not have a maximal or minimal element. 
Instead , Haggstrom et al. (1999) call an element (n , m) quasimaximal-if 

ACn if; G and m=0. (4.41) 

Similarly, the element (n, m) is quasiminimal if 

n=0 and A C m$G. (4.42) 

It is easy to check that if (nO , mOl is a minimal state and (n 1, m 1) is a maximal 
state, then for an arbitrary configuration (n, m) , if we call (NO , .\10) , (N , M) and 
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(Nl,MI) the Markov chains obtained with initial states (N8,M8) 
(No,Mo) = (n,m) and (NJ,MJ) = (nl,ml) respectively, we have 

(N~, M~) :S (Nn, Mn) :S (N~, M~), for all n 2: 1. (4.43) 

In fact, if (NP, Mf) = f(n O, rna, VI, V2), (NI' Md = f(n, m, VI, V2) and (Nt, Ml) 
= f(nl,ml, VI, V2), then 

Mf = VI and Nf = V2 \ (VI EEl G) 

and 

Then, 
Mf J Ml J Ml and Nf C Nl C Nl· 

This proves (4.43) for n = 1, for n > 1 it is a consequence of the monotonicity of 

f· 
Notice that, the Markov chain defined by the monotone rule f defined by 

(4.39), is reversible . However, the two-step rule (4.37) and (4.38) is not reversible. 
The two-step rule for the reversed chain is: 

Fill's algorithm 

(31 Poisson on A \ (mt EEl G) 

(32 Poisson on A \ (iit+ 1 EEl G). 

(4.44 ) 

(4.45 ) 

1. Start the chain (n, m) at a quasiminimal point (nO, rna) and run it for t steps 
using (4.37) and 4.38 as a two-step update rule. We obtain 

((no, mol = (nO, rna), (nl' mil, ... , (nt-I, mt-d, (nt, md = (n", m")). 

2. Construct the time-reversed trajectory 

((no, mol = (n-, mOl, (iii, ml) = (nt-I, mt-d, ... , (iit, md = (no, mO)). 

3. Simulate a second Markov chain (v, w) for t steps starting at a quasimaximal 
state using the following rule: 

• If at time n we have the following transitions on the time-reversed chain 
(iin-l,mn-l) -+ (iin-l,mn ) -+ (iin,mn), then let 

Vn (31 Poisson on mn-l EEl G 

vn f- [iin U Vn] \ [Wn-l EEl G] 

Wn f- mn \ [Vn EEl G]. 

( 4.46) 

(4.47) 

(4.48) 

4. If (i\, wr) is quasiminimal then the proposed sample ( is accepted, if not 
reinitiate the process at Step 1. 
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4.4 Backward-Forward Algorithm 

4.4.1 Spatial point processes 

Consider first the case of the simulation of the invariant measure of a spatial birth 
and death process on IRd as described in Section 3 with finite birth rate A such 
that 

>. = SUpA(X , 7]) < 00 ( 4.49) 
X,1/ 

and unit death rate. 
Moreover , suppose that>. is G-local, that is, there exists a compact convex 

set G such that >'(x, nd = A(X, n:?) if nj and n2 coincide inside G . Then, by 
(3.27) we know that condition>. < (md(G))-1 is sufficient for the birth and death 
process to be ergodic and its invariant measure I-' is absolutely continuous with 
respect to the law of a >'-homogeneous Poisson process on lP',d. In the case of the 
area-interaction point process described in Section 2.3.1, G is a compact convex 
set and>' = K. For the attractive case, >'(x,7]) = K¢-md((r+G)\(T/$G) and for 
the repulsive case A(X, 7]) = K¢md(Gj-md((r+G)\(T/$G» . For the Strauss process, G 
is the ball centered at the origin with radius r, >. = efJl and >'(x, 7]) = efJl efJ2T/(x+G) . 

The objective is to simulate from J.1- restricted to a finite-box A. The outline 
of the scheme is: 

1. Generate the free process Q as a >'-homogeneous Poisson process on A ac­
cording to Algorithm 2.3. 

2. Construct the clan of ancestors of all points of Q. 

3. Apply the deterministic finite-volume "cleaning procedure" described in Sec­
tion 3.1.1 to decide which points of Q are going to be kept. 

Algorithm 4.50 Construction of the clan of ancestors 

(i) Generate the free process 0'0 = {Xl , X2, ... , X R} as a A-homogeneous Poisson 
process on A according to Algorithm 2.3. 

(ii) Generate Sr, .. . ,S~ independent mean one exponential random variables 
and construct the following cylinders: 

Co = {(Xi + G) x [-Sf, Ojj i = 1,2, ... , R}. 

(iii) Consider the following fattening of Co, a subset of IRd x (-00, OJ 

AD = UCEco(Basis(C) + G) x Life (e) 

where Basis (e) + G = {x + y; x E Basis (e) , y E G}. 

(4.51) 

(4.52) 
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(iv) Set e = 1. Generate a )..-homogeneous Poisson process {~L ~~, .. . , ~h,} on 
Ao according to Algorithm 2.3. 

(v) Generate S;, . .. , Sh, independent mean one exponential random variables 
and construct the following cylinders: 

C1 = {(~f + G) x [-sf, 0]; i = 1, 2, .. . , Rd. 

(vi) Consider the following fattening of Ci , a subset of]Rd x (-00,0] 

Ai = UCECl (Basis (C) + G) x Life (C) 

( 4 .. ')3) 

( 4.54) 

(vii) Generate a )..-homogeneous Poisson process {(~~+l,Tf+l),(~~+l,~+l) ... . , 
(~Rl+l ,T!:n+ 1 )} on Ai \ Ai - 1 according to Algorithm 2.3. 

l+' l+' 

(viii) • If Rl+J = 0, set the clan of ancestors of a 

AQ .= ul+1C· . .=1' (4 .55) 

and stop. 

• If not, set e = I!. + 1. Generate Sf, . . . ,Sk, independent mean one 
exponential random variables and construct the following cylinders: 

Cl = {(~f + G) x [-Sf , T/J; i = 1,2, . . . , Rd· 
and go back to (vi) . 

(4 .56) 

A slight modification of the algorithm allows to simulate the penetrable sphere 
model described in Section 2.3.3 . 

1. Generate the free process a as a marked point process on A according to 
Section 2.2 where the location process is a (/31 + /32}-homogeneous Poisson 
process and the marks are independent with 

P(l) = /31 
/31 + /32 

and P(2) = /32 
/31 + /32 

2. Construct the clan of ancestors of all points of a. 

3. Apply a modification of the deterministic finite-volume "cleaning procedure" 
described in Section 3.1.1 to decide which points of a are going to be kept . 

FV.3a. 1ft; is a birth time, that is , t; = s for some (~,s,l,z) E CA[O,t] 
then we do not add the point (~, z) if z = 1 and d(e 1]t- (-, 1)) ~ R or 
if z = 2 and d(C 1]t-( · , 2)) ~ R : we set 

A _ A 
1]t. -1]t.-· 

Otherwise the point (C z) is added: we set 

1]~ = 1]~- U {(e z)} . 

(4.57) 

(4 .58) 



320 Nancy L. Garcia 

4.4.2 Peierls contours of the ferromagnetic Ising model 

The above algorithm do not translate immediately to the Ising model because the 
fattening of the cylinders cannot be done before the generation of the contours. 
In fact , practical limitations prevent even the inclusion of all possible sizes in the 
simulation, in fact the mere enumeration of the possible contours is beyond reach 
when more than a few dozens of links are involved. Also, this scheme suffers from 
the user impatient bias as described for the CFTP. In this case, we do have a 
simulation scheme from the distribution J1. conditioned on two events. Letting 
J{ = "maximum perimeter of bases of cylinders in the clan", we sample from 
(using the notation of Definition 4.1) 

( 4.59) 

where k = 30 and 5 = "the maximum time left in order to have the results ready 
for the next congress" , for instance. 

In fact , our approach also admits a joint realization (1],0 with the right 
marginal distributions such that 1] = ~ if J{ < k and T < 5, and such that 
IP'({ J{ 2: k} n {T > S}) goes to zero exponentially fast in 5 and in the cutoff of 
the length of the contours (30 in our example). Slightly more precisely, 

JP>(U(2:k}n{T>S}) ~ O(QT x SUP7rx (I\·>k)) . 
x 

(4.60) 

This follows from the sub-criticality of the majorizing branching process. For the 
Ising model , for instance. ;'x(A· > k) = O(e- J3k ) . 

Fernandez, Ferrari and Garcia (2000) propose a non-homogeneous time-backwards 
construction of these clans based on a result proven in Section 4 .5.1 of Fernandez 
et al. (1999). It is shown there that the clan of ancestors of a family of cylinders 
can be obtained combing back in time and generating births of ancestors with 
an appropriate rate . In fact , this rate is equal to the rate density of the free 
process multiplied by an exponential time factor ensuring that the ancestor has 
a lifespan large enough to actually be an ancestor . This time factor involves the 
time-distance to the birth of existing cylinders, which can be expressed through 
the following function. For a finite region A and a finite set of cylinders H, let the 
set of basis of the potential ancestors of H and A x {O} be defined by 

G(H, A) := 

{OEG: Basis(C/)fO, forsomeC/EH}U{OEG 

and for a given individual 0 E G(H, A) , 

(4.61) 

OnA#0} 

TI(H, A, 0) = min{ Birth (G/) : G' E H, Basis (G/) f O} ( 4.62) 

with the convention min 0 = O. By definition , TI(H, A, 0) ~ O. 
The outline of the scheme is : 



Perfect simulation of spatial processes 321 

1. Generate in A the "free process" of contours ~ with distribution J.L~, product 
of Poisson random variables with mean e-,8hl for 1 E G such that hi < I\ 
and 1 n A =1= 0 (cf (2.28)). Let ~ = bI' 12 ,· '" IR} . -

2. Construct the clan of ancestors of all contours of~. 

3. Beginning with the first ancestor (the one first born) , erase all incompatible 
contours. 

Algorithm 4.63 An algorithm to construct the backwards clan of a finite 
region 

The combination of (4.61)/(4.62) can be translated into the following explicit 
algorithm. We do it first for the case of countable number of individuals and 
indicate at the end of this section how to proceed in the continuous case . To 
generate A A,O " 

BFA.1. Set e = 0 and ro = O. Genemte S?, S~ , .. . , S~ independent mean one 
exponential random variables. 

Set 

Co = {(,i,O , S?);i= 1,2 , .. . ,R} . (4.64) 

BFA.2. For each 1 E G(C(, A) generate an independent random variable r(,) 
such that 

fiJl(r(,) > t) = 1- exp(-v"'( (s)) (4 .65) 

where 
v",((s) = e-phle-s+TI(Cl ,r ,"'(ll{s > rd. (4.66) 

Notice that r(,) may be infinity. 

BFA.3. Let Let l = l+ 1 and r[ = inf{T(,);, E G(C( , A)} . 

• If T[ < 00 , call =y be such that Tl = T(=Y) . Let 

(4 .67) 

where Sf is an exponentially distributed mean one random variable gen­
erated independently of everything else. Go back to BFA.2 . 

• If T( = 00, let the clan of ancestors of ~ be defined as 

( 4.68) 

and stop. 
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The above algorithm can be improved by removing the generation of the free 
process and beginning with the empty configuration . The algorithm will generate 
the cylinders and we can find which ones survive at time zero. See Section 4.2 
(Step i) of Fernandez , Ferrari and Garcia (2000) . 

In the continuous loss network described in Section 2.5.1 , time and space can 
. not be in general separated. Instead of steps BFA.2 and BFA.3 above we must 

consider a random sample w of 11" and the events (x, s) of a Poisson process with 
rate 

v(x, s) = lI:e-·+TI(Ct ,A;,, ) l{s > Ttl Ib E G(Cl , An (4.69) 

where '"Y = (x , x + w) . 
For a finite window A the total rate is finite , hence these events can be well 

ordered by looking to the time coordinate. If the set of these events is not empty, 
we take Tl to be the minimal time coordinate (it is strictly positive with probability 
one) and denote :.y the associated interval (x , x + w) . If the Poisson process with 
rate density (4 .69) yields no event we take Tl = 00. We then continue as in BFA.3. 

5 Conclusion 

There are several different approaches to perfect simulation of spatial point pro­
cesses, every week a new procedure is proposed either improving old ones or sug­
gesting new ideas. As it can be seem from the examples given above, none of them 
is better than the others in absolute terms. For example, as pointed by M!3ller 
(personal communication) , CFTP is much more efficient than BFA for the Strauss 
process in a finite region. First, it can be applied to a much more broad regimen. 
Second, exploring the structure of a model such as the repulsive behavior in the 
Strauss process and using upper and lower processes as described in Kendall and 
M!311er (1999) give a lower coalescence time than the stopping time needed for 
BFA. However, for infinite-volume regions , it is less efficient since it involves a 
coupling for maximal and minimal configurations and also a limit procedure in 
time and space. Fill 's ARA has the advantage of having no "user impatient bias", 
however it requires monotonicity of the reversed process. In fact , we can think as 
all of the methods to be, in some sense, complementary to each other. Simula­
tions based on CFTP and ARA can be applied to much broader class of processes. 
Nevertheless , they need specific conditions such as finite volume or monotonicity. 
On the other hand, although BFA has a much smaller range of validity it has the 
advantage of its generality. Moreover , it is a powerful theoretical tool. Proba­
bilistic arguments (successive dominations by oriented percolation, life-and-death 
and branching processes) yield all the properties obtained via usual cluster expan­
sions --except analyticity- in a larger region and in a more intuitive and concrete 
way: convergence of the series is replaced by sub-criticality of a branching process, 
mixing and central-limit properties are a consequence of lack of percolation . 
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