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Multivariate Analysis in Vector Time Series 

Pedro Galeano and Daniel Pella 

Abstract: This paper reviews the applications of classi­
cal multivariate techniques for discrimination, clustering and 
dimension reduction for time series data. It is shown that 
the discrimination problem can be seen as a model selection 
problem . Some of the results obtained in the time domain 
are reviewed . Clustering time series requires the definition of 
an adequate metric between univariate time series and sev­
eral possible metrics are analyzed. Dimension reduction has 
been a very active line of research in the time series literature 
and the dynamic principal components or canonical analysis 
of Box and Tiao (1977) and the factor model as developed by 
Peiia and Box (1987) and Peiia and Poncela (1998) are ana~ 
Iyzed. The relation between the nonstationary factor model 
and the cointegration literature is also reviewed. 
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1. Introduction 

Standard multivariate analysis includes, among others, procedures for discrimina­
tion among several populations, classification (pattern recognition) of multivariate 
data into groups, either hier~rchical or not, and dimension reduction. These prob­
lems are also important in multivariate time series. The discrimination problem 
appears as follows . Suppose that we know that a set of time series can be gen­
erated by one of several possible models, Mi, i = 1, ... , k and we assume that 
these models are known. Now, we observe a new time series and the problem is to 
decide which ofthe models, Mi, has generated this time series. This problem is an 
important area of research in different disciplines. For instance, in seismology it is 
important to be able to discriminate between data from earthquakes and nuclear 
explosions (Dargahi-Noubary, 1992, Darg~hi-Noubary and Laycock, 1981, Kak­
izawa, et al., 1998, Shumway and Unger, 1974). In medicine the information from 
the electroencephalographic time series (EEG) can be used for discriminating be­
tween different stages of sleep (Alagon, 1989, Gersch et al., 1979). In engineering 
it is important to discriminate between a pattern generated by a signal plus noise 
and a pattern generated by a noise alone, for example, to detect a radar signal for 
determining the position of a moving target . In Economics we are interested in 
classifying the economic situation as expansion or depression by considering the 
values of some time series economic indicators. Finally, in Business a company 
can be classified as successful or in potential trouble by looking at some time series 
indicators of its economic activity. 

The problem of making clusters of set of time series appears also in many sci­
entific fields but most of the published examples of cluster analysis in time series 
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have been made with environmental data. We have time series from different lo­
cations and we want to make groups with locations with the same behavior. See 
for instance Bohte et al. (1980) , Cowpertwait and Cox (1992) , Gantert (1994) , 
Walden (1994) and Macchiato et al. (1995) . There are several problems not com­
pletely solved in the application of cluster analysis in time series. The standard 
approach for splitting a sample of multivariate data into clusters is to assume that 
the multivariate observations have been generated by a mixture of multivariate 
normal distributions with different means and covariance matrices and unknown 
mixture probabilities. If the number of populations were known, the parame­
ters can be estimated by the EM algorithm or by MC2 Bayesian methods. As 
the number of population is unknown, a model selection procedure, such as the 
BIC or AIC criteria is applied to select the number of populations involved . The 
generalization of these approach to time series is to assume that data has been 
generated by some set of possible multivariate time series models or data gen­
erating processes, M I , . . . , Mk, with unknown probabilities, and then the cluster 
problem is closely related to the discrimination problem. However, this approach 
has not yet been fully explored. 

The problem of dimensionality reduction is very important for dynamic data 
since for vector ARMA models, as well as for simultaneous equations econometric 
models, the number of parameters to estimate grows rapidly with the number of 
observed variables. An interesting extension of the idea of principal components 
for time series is the canonical analysis of Box and Tiao (1977). Instead of finding 
linear combination of maximum (or minimum) variability these authors studied 
the problem of finding linear combinations of maximum (or minimum) predictabil­
ity. They showed that the canonical variables are useful for understanding and 
simplifying the dynamic structure present in the vector of time series. Factor anal­
ysis oftime series was studied by Geweke and Singleton (1981), Brillinger (1981) , 

. Engle and Watson (1981), Molenaar (1985), Pena and Box (1987), Molenaar et 
al. (1992), Pena and Poncela (1998) among others. An alternative approach to 
dimension reduction is the reduced rank approach by Velu et al. (1986) and Ahn 
and Reinsel (1988). In the nonstationary case estimating the nonstationary fac­
tors is equivalent to testing for cointegration in the econometrics field (whose vast 
literature we do not pretend to review here), since the number of cointegration 
relations among the components of a vector of time series is the dimension of the 
vector minus the number of nonstationary common factors (see Escribano and 
Pena, 1994). An alternative useful approach for model simplification is the scalar 
components approach by Tiao and Tsay (1989) . Finally the state space approach 
to time series includes procedures for dimension reduction (Hannan and Deistler, 
1988, Aoki, 1990) . 

This paper describes some of the development of these procedures in the time 
domain. The reader interested in the devepment in the frequency domain is ad­
vised to read chapter 5 of Shumway and Stoffer (2000), which contains a good 
review of this field. The article is organized as follows. In the next section the 
problem of discrimination in time series is presented. The standard discriminat 
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analysis is seen as a model fitting exercise and it is shown that in practice, when 
the parameters are unkonwn, discriminat analysis for time series is closely related 
to the model selection problem that has been the subject of an important area of 
research in time series. In Section 3 we present the clustering problem and discuss 
some of the measures of distance among time series that have been proposed in the 
literature. Some suggestions for further research in this field are also included. We 
have decided to consider only in Section 4 the extensions of standard multivariate 
methods, as the literature on model simplification and dimension reduction is very 
large. Thus, in the section we present the extension of the principal component 
idea of Box and Tiao (1977) and the Dynamic factor model. The relationship 
between both approaches is discussed and we also relate the nonstationary . fac­
tor model and the cointegration literature. Section 5 presents some concluding 
remarks. 

2. Discrimination in Time Series 

2.1 Linear Discrimination 

Discriminant analysis has been mainly studied for Gaussian processes. The clas­
sical approach is as follows. Suppose a series with T observations, denoted by 
x = (Xl"", XT)', which follows a Gaussian process with vector of marginal means 
Pj = (Pjl; ... , PjT)' for j = 1, 2. Assume that the process x - Pj is a zero mean 
stationary process with covariance matrix L.j = {O"j (5 - t): 5, t = 1, ... , T}. Thus, 
under the hypothesis Hj, x '" NT (Pj, L.j) , for j = 1,2. Then, the probability 
density function for this process is, 

The classical approach assumes that both covariance matrices are equal, L.l = 
L.2 = L., but the means are unequal. Thus, we assume that the difference between 
the two marginal means is due to some deterministic function. For instance, if 
Pj; = bOj + b1ji, the series have a different deterministic trend and if b1j = 0 
the series have a different marginal mean. The Neyman-Pearson lemma for the 
hypothesis Hl : x E Ml versus H2 : x E M 2 , leads to the following rule for 
accepting HI : 

p(x/Hl ) > K (2) 
p(X/H2) , 

for some value K that takes into account the probabilities of misclassifying the 
time series. Assuming that the costs of missclassification are the same and that 
the a priori probabilities of each model are also the same, we will classify the 
observation in the model that have the maximum likelihood. This is equivalent 
to accept the hypothesis H 1 if 
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that is, if we denote by Di = (x - Ild' E- 1 (x - f-l;) the Mahalanobis distance 
between the data and the vector of marginal means, x is classified in the first 
population if D2 > D l . An alternative interpretation of this rule can be obtained 
by writing this equation as: 

(3) 

that implies that the scalar measure v = o/x is built, where 

Calling ml = a'ill and m2 = a' 112 the series is classified in Ml if v > (m! tm2 ) . If 
we denote for Dl 2, the Mahalanobis distance between the means of both popula­
tions, 

(4) 

then the linear discrimination function, v, is normally distributed with mean ml 
under HI, and m2 under H 2 . The variance is D12 in both cases . Thus we classify 
on Ml if the scalar variable v is closer to ml than to m2. 

Note that this rule, obtained by the likelihood ratio test, is equivalent to fitting 
the time series by both models and then choosing the model that leads to a smaller 
residual variance. This result is clear from (1) because note that ej = x - Ilj, 
j = 1, 2 are the residuals from the deterministic fit x = f-lj and aj = E-l/2ej 
corresponds to the residuals taking into account the stationary structure. Note 
that the errors aj have an identity covariance matrix. Thus 

(5) 

and minimum Mahalanobis distance is equivalent to minimum residual sum of 
squares. Another way to look at this property is by noting that if ej follows a zero 
mean linear process the likelihood f( ej) can be written, by using the prediction 
error decomposition, as 

and the likelihood will only depend on the one-step ahead forecasting errors that 
are equal to the residuals a. Note that for linear time series we can write the zero 
mean process 7r (B) et = ft, where 7r (B) = 1-7r1 B -7r2B2 _ ... , as IIe = f, where 

1 o 

-7rT-l 

o 

o 
1 
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Suppose that the covariance matrix of t is (1"21 . Then , calling I; the covariance 
matrix of e, we have 

and, therefore, 

and 
lIn n 

e':E-le = e' (1"2 (n'n) e = (1"2 L t; = La; 
;=1 ;=1 

in agreement with (5). Thus, discriminant analysis can be viewed as assigning 
the observed time series x to the model (population) that when fitted to the time 
series produces the smallest one step ahead squared forecast error. 

2.2 Unequal Covariance Matrices 

A more relevant case in time series discrimination is when the covariance matrices 
are unequal. Suppose that we want to discriminate between two time series mod­
els . Both imply Gaussian populations but with different covariance matrices and , 
for simplicity, we will assume that the marginal means are in both cases equal to 
O. Then, the rule (2) says that we accept HI if 

Q(x) = x' (:E2I - :Ell) X > K 

which is a quadratic form. This discriminant rule has a simple interpretation in 
term of prediction errors, because, as before, x':E; 1 x is the residual sum of squares 
of the fitted model. Thus, the likelihood ratio test leads to fitting the observed 
time series with both models and choosing the one with the smallest one step 
ahead forecast error. 

An alternative interesting interpretation of the discriminant rule is that it 
assigns the series to the model producing the smallest interpolation error. The 
best linear interpolator of a time series is given by (see for instance Pefia and 
Maravall , 1991) 

00 

Xs = E [x s IXt, t =/: s] = - L pf (x s_; + Xs+;) 
;=1 

where pf are the coefficients of the dual autocorrelation function of the model 
given by 

00 

with 1f (B) , the autoregressive form of the model, VD = (1"2 L 1ft and F = B- 1 , 
;=0 

the forward operator. Then, Galeano and Pefia (2000) showed that 

(x - x)'(x - x) 
x':E;lx = ~--~~~--~ 

MSE(x) 
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where M SE(15) denotes the mean square interpolation error. That is , the series 
Xt is assigned to the model that produces the smallest interpolation error or , in 
other words, the model that is better fitted to the data. 

As the distribution of Q(x) is difficult to find, Shumway (1982) suggests 
that under Hj , j= 1,2, and for large values of T, Q(x) can be approxi­
mated by a normal distribution with mean tr ((E;-I - Ell) Ej ) and variance 

2 . tr ((E2I - E2I) Ej) 2 , where tr denotes trace. This method has the principal 
inconvenient that the eigenvalues must be obtained numerically, being the matri­
ces (E21 -- E2I) "Ej very large, which makes a numerical solution very difficult to 
obtain . 

When the covariance matrix are different the optimum discriminant rule is 
not linear. An alternative approach in these situations is to obtain a good lin­
ear discriminant rule according to some criteria. This is the idea of admissible 
linear procedures introduced by Anderson and Bahadur (1962). For Gaussian 
populations, under Hi, a linear discriminant rule, c/ x, has a univariate normal 
distribution with mean a' Pi and variance a'Eia. Therefore the probability of 
misclassifying an observation are given by 

Pr (a'x < Klx E M 1 ) = <I>(K-a'Pl) 
y' a'E I a ' 

<I> (a'P2 - K) 
y'a'"E2a ' 

where <I> (x) is the cdf of the N(O, 1) distribution. The objective is to make these 
values as small as possible, and this is equivalent to make the values, YI = ~ a ,a 

and Y2 = ~fJ?;K, small. The set of desirable procedures are those that: (1) 
a 2a 

minimize the probability of one error when the other is specified, or (2) minimize 
the maximum probability of error, or (3) minimize the probability of error when 
a priori probabilities of the two populations are specified. The solutions to these 
problems are the set of admissible linear procedures. The set of solutions that 
minimizes YI for each given Y2 is characterized by, 

(6) 

where the values tl and t2 verify K = a'PI +tla'I:la = a'P2 - t2a'E2a . 
Information measures usually leads to admissible linear procedures. For in­

stance, Kullback (1959) considered the Kullback-Leibler discrimination informa­
tion for discriminating in favor of HI over H 2 . It is given by 

I(I : 2,a'x) 
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Another useful measure is the divergence that for discriminating is defined by 

J (1 : 2, a'x) = 1(1 : 2, a'x) + I (2: 1, a'x). 

The values of a that maximize 1(1 : 2, a'x), 1(2 : 1, a'x) or J(1 : 2, a'x) are of 
the form :Ela - ,\:E2a = 'YO, where 0 = (Ill -1l2) , for some values of the scalars 
,\ and 'Y . As a consequence of this , the procedures based in the Kullback-Leibler 
information and in the divergence are admissible linear procedures. Chaudhuri et 
al. (1991) obtain linear discriminant procedures through the maximization of the 
Bhattacharyya distance for Gaussian processes with unequal covariance matrices. 
If (n, B, v) is a measure space and p is the set of all the probability measures 
on B which are absolutely continuous with respect to v, then the Bhattacharyya 
distance between two probability measures with density functions PI and P2 be­
longing to p, is defined by, 

-In P (PI, P2) = -In J ../PIP2dv. 

n 

Under HI : x E N (IlI,:Ed and H2 : x E N (1l2, :E2) , the linear discriminant 
function obtained maximizing -In P (PI, P2) is, 

a'x = (Ill -1l2)' (:EI - :E2)-1 x. 

Chaudhuri (1992) considered the problem of classifying a complex normal time 
series through the maximization of the previous distance. 

When the parameters of the models are unknown they must be estimated from 
the data. Although in principle we can plug in the estimates and use the same 
criteria that in the known parameter case this is not a good solution when the 
number of parameters in both models are very different. For instance, suppose 
that one of the possible models is an AR(I) and the other is an AR(5) with 
four complex roots, that is, we are checking if an observed time series presents 
pseudo-cycles. Then if we use the plug in procedure of obtaining the estimates 
and introducing them in the discriminant function we will always get that the 
model with a larger number of parameters provides a better fit. Thus we have to 
take into account the difference between in sample fit and out of sample forecast. 

Several criteria has been proposed for selecting time series models since the 
seminal work of Akaike (1969, 1974). Among them are the Bayesian Information 
criteria BIC of Schwarz (1978) and Akaike (1979), the penalty methods of Hannan 
and Quinn (1979), the predictive least squares criterion of Rissanen (1986), ex­
tended by Lai and Lee (1997), and the modified AIC of Hurvich and Tsai (1989) 
and Cavanaugh and Shumway (1997). Surveys on the performance of these crite­
ria for ARMA order selection can be found in Bhansali (1993) and Postcher and 
Srinivasan (1994). 

These criteria have the general form 

C = -2(logmaximized likelihood)+f(number of parameters), (7) 
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where the function f depends on the criteria. For instance, for ARMA models the 
AIC of Akaike is 

Ale = n log 0:2 + 2(p+ q) 

where (p + q) is the number of parameters in the model. The BIC criteria due to 
Schwarz (1978) is 

BIG = -2(logmaximized likelihood)+(logn)(number of parameters) . (8) 

This last criterion has been shown to' have a very good performance in many model 
selection problems. 

Some Bayesian approaches have been proposed that do not adopt a formal 
Bayes rules via a loss function. For example, Broemeling and Son (1987) consider 
how to assign an observed time series to one of several possible autoregressive 
sources with a common known order and unknown parameters and error variance. 
Using a vague prior density for the parameters and the variance, the observed time 
series data is assigned to one class by using the marginal posterior mass function 
of a classification vector , 

A = (AI, .. . , Ak)' 

with k mass points (1,0, ... ,0)" ... , (0 , ... ,0,1)'. The realization is assigned to the 
process i if the posterior mass function of A has its largest value at the i - th mass 
point. Marco et al. (1988) consider the case of different autoregressive classes. 
The data is assigned to the class k, if it has the greater predictive probability. 

Finally, there exist other approaches for discrimination in which discriminant 
functions are not used. For instance Kedem and Slud (1982) proposed transform 
a stationary time series into binary arrays that retain only the signs of the j - th 
difference series. This binary series are used for discriminating among different 
models. Li (1996) proposed a generalization of this method through the use of 
parametric filtering, i.e., using a family of filters indexes by a parameter. The 
series is filtered and the information provided by the autocorrelation function is 
used for discriminate the series into different models. 

3. Clustering Time Series 

Suppose that we have a large set of time series following different models. In a 
nonparametric approach each series is considered as a point on ~T, where T is 
the length of the series. A straightforward generalization of the standard cluster 
methods is to obtain groups of series by looking at the distance between these 
points in the space. In order to identify groups we can work directly with a 
distance metric in ~T, or we can try to work in a smaller space by projecting the 
points according to some optimality criterion. This criterion should be related to 
the possibility of identifying clusters in the projected cloud of points. 

A parametric approach would proceed by first fitting time series models to the 
data and then representing the series by the vector of estimated parameters. If 
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the dimension of the vector of parameters is p these parameter vectors will be 
points in ~P, and again we can try to find points that are close in this space. In 
both cases we can define a measure of distance and then use a standard k-means 
type algorithm. Thus, an important first step is obtaining an appropriate metric 
for measuring the similarity between points. 

In the parametric ARIMA approach each time series is represented by the 
vector of parameters models. For instance, if the series are fitted by 

i = 1, ... ,k 

where cPi (B) = 1 - cPilB - ... - cPipBP, and Bj (B) = 1 - BilB - ... - BiqBq, 
we can represent the series by the autoregressive and moving-average parameters 
including all of them in a vector 

and then defining a measure of distance by 

where ~p is an appropriate matrix to define the metric that, in particular, it can 
be the identity. Bruce and Martin (1989) consider a similar measure of distance 
between ARIMA models. However, as indicated by Peiia (1989) this measure 
has three main principal problems. The first is that it cannot compare ARIMA 
models with different degrees of differencing. The second is that it does not take 
into account the possibility of cancellation between AR and MA. For instance 
the models (1 - .9B)xt = (1 - .89B)ft is almost exactly the same as the model 
Xt = ft whereas with this metric both will seem very different. The third is 
that it does not allow for the duality between the AR and M A forms. A more 
convenient measure is defined through the comparison between the coefficients of 
the polynomial7r (B) , obtained from B (B) 7r (B) = cP (B) (1- B)d. 

Piccolo (1990) introduced a metric for ARIMA models that can be used for 
classifying and clustering time series. Let Xt is a zero mean stochastic processes 
following an ARIMA(p, d, q) model in the usual notation, ¢ (B) Xt = B (B) ft, 
where ft is Gaussian white noise. When Xt is invertible, it is possible to define 
the autoregressive operator 7r (B) = 0- 1 (B) ¢ (B) = 1 - 7rlB - 7r2B2 - .... The 
coefficients of 7r (B) convey all usual information about the stochastic structure 
given initial values and the order of the process. If £ denotes the set of invertible 
processes, we can define a measure of structural diversity between processes in 
£ comparing their respective 7r sequences. The metric on £ is defined by the 
distance, 

1 

d(x, y) = {f: (7rj,x _ 7rj ,y)2} "2 , 

3=1 
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which always exists for every x, y E £ , and being the zero element the sequence 
(0 , ... ,0) . We notice that a dual metric can be defined by 

1 

d(x, y) = {f ('1PJ,x _ tPj ,y)2} 2 , 

3=1 

where the tP sequence defines the MA(oo) operator as tP(B) = ¢(B)-lO(B) = 
7[-1 (B) . However this metric can not be computed for integrated processes. 

This definition of distance allows to perform applications to clustering algo­
rithms, through the study of similarities between time series. Piccolo (1990) 
applies the following method to study a possible similarity in the behavior of 
industrial production series in different sectors. The algorithm starts defining a 
model for each series considered and based on this model the distances between 
all the time series are computed. Then a dendrogram based on the similarities is 
built and that gives us the different clusters formed by the models. An alternative 
procedure, also used in the paper, is the classical solution of multidimensional 
scaling to the distance matrix previously obtained , that is, obtaining a configura­
tion of points in a convenient space where the interpoint distance reproduces the 
similarity matrix. The results found in the two ways are very similar. 

Nonparametric clustering techniques for time series have been less studied be­
cause of the difficulties of defining a general measure of distance between stationary 
time series sequences. In order to illustrate a possible procedure suppose that we 
have n zero mean and unit variance stationary time series sequences, Xl, .. . , Xn. 
We assume first that the data has been centered and scaled. A possible distance 
metric among the points Xi is the Euclidean metric. However, this metric is in­
variant to transformations which modify the order of the observation over time 
in the two series that are compared an,d, therefore, it does not take into account 
the correlation structure of the stationary data. That is, given the original set of 
time series Xi = (Xii, .... , XiT) for i = 1, ... , k, if we now built a new set of time 
series sequences xt = (xi1' ... . , xiT) by using the same permutation of the time 
observation for all the series the Euclidean distance between the elements in the 
second set are identical to those in the first , whereas the correlation structure of 
the second set can be arbitrarily distorted. Thus, the Euclidean distance does not 
take into account the autocorrelation structure. 

The distance measure to be used depends on the kind of similarities we are 
interested in. We may be interested in (a) Finding series with a similar correla­
tion structure or (b) Finding series with a similar noise structure. In case (a) a 
straightforward measure of distance is to compute the autocorrelation coefficients 
ri = (ri(l), .... ,ri(h)) for some h such that riU)::: 0 for j > h and then use 

D(Xi,Xj) = (r; - rj)'Wr(ri - rj)' 

for some weighting function Wr that can be used to give weights to the coefficients 
that decrease with the lag. This measure is related to the parametric approach 
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as the parameters of the autoregressive approximation are computed from the 
autocorrelation coefficients. 

For (b), a model is fitted to each series and the residuals f are obtained. Then 
a measure of distance between them is built by 

D(Xi,Xj) = (Ei - fj)'W(fi - €j), 

where, for instance, the matrix W can be used to give more weight to the re­
cent values than to the oldest values in the time series. Both procedures can be 
combined to define a measure of distance that takes into account both sources of 
variability by 

. D(Xi,Xj) = Adr; - rj)'Wr{r; - rj) + AZ{€; - €j)'W{€; - €j), 

where Ai, i = 1, 2 are normalizing constants. This idea does not seem to have 
been yet explored in the literature. 

4. Dimension Reduction 

4.1 Canonical Analysis 

The canonical analysis of time series was introduced by Box and Tiao (1977) and 
can be considered as a principal component analysis of time series. This work was 
very important because (I) It leads to a clear solution of the dimension reduction 
problem in terms of prediction, (2) It introduces, for the first time, the idea that 
linear combination of nonstationary time series can be stationary, that is, the idea 
of cointegration. 

Suppose a m x 1 vector Xt following a stationary VAR{p) model 

¢ (B) Xt = Ct. 

We can always write the orthogonal decomposition 

Xt = xt-l{l) + Ct, 

where xt-l(l) is the one step ahead prediction. Corresponding to this decompo­

sition we can also split the covariance matrix, E [XtX;] = rx(O), as 

r x{O) = Fx{O) + 1:, 

where E{ct€D = E and E [xt-l{l)xt-l(l)] = F;e(O) . We are interested in finding 
a linear combination of Xt 

Zlt = m'xt, 

such that it has maximum predictability. The variance of this linear combina­
tion is m'r x (O)m and this variance is decomposed into a~ explained variability, 
m' Fx(O)m, and a residual variability, m'Em. We want to maximize 

A = m'Fx(O)m 
m'rx(O)m 
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and the value that maximize this equation is 

Thus, m must be the largest eigenvector of the matrix obtained as product of the 
matrix of explained variability and the inverse of the matrix of total variability, 

The procedure can be extended to find other linear combinations by choosing 
as m the ordered eigenvectors of the matrix Q. Thus, in practice the canonical 
decomposition consists in finding the eigenvalues and eigenvectors of the matrix 

Qm; = .A;m;, 

the eigenvectors provide the required linear combination and the eigenvalues the 
predictability of these linear combinations. Building the matrix M = [m1 .. . mp]' 
where .A1 ~ .A2 ~ ... ~ .Ap and the transformation 

Zt = M'Xt 

a new vector of time series is obtained with components ordered from most to 
least predictable. The components are contemporaneously uncorrelated because 
it is easy to show that the matrices M'roM and M'Y:.M are both diagonal. 

4.2 The Dynamic Factor Model 

The factor model has a straightforward extension to the dynamic case. Consider 
the possible nonstationary vector process Xt. The dynamic factor model assumes 
that this time series vector, which we assume has dimension m, has been generated 
by the equation 

Xt = Pit + 11t, (9) 

where P is a m x r loading matrix that we assume is normalized in such a way that 
P' P = I . Thus, all the common dynamic structure comes through the common 
factors, It, and the 11t includes the independent idiosyncratic components. We 
suppose that the vector of common factors follows a VARIMA(p, q) model 

I!> (B) It = E>(B)at (10) 

where I!> (B) = l-¢lB- ... -¢pBp and E>(B) = I -fhB- ... -OqBq are polynomial 
matrices r x r and the roots of II!> (B) I are on or outside the unit circle and those 
of IE> (B) I are outside the unit circle. The sequence at is serially uncorrelated with 
zero mean and covariance matrix Y:. a . The components of the vector of common 
factors can be either stationary or nonstationary. 

The specific dynamic structure associated with each of the observed series is 
included in the vector 11t of idiosyncratic components. Some components of this 
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vector can be white noise, while other ones can have stationary dynamic structure. 
In general, we assume that nt follows the vector ARMA model 

(11 ) 

where ~n(B) and 0 n(B) include mxm diagonal matrices. The sequence of vectors 
et are normally distributed, have zero mean and diagonal covariance matrix I;e. 
Therefore, each component follows an univariate ARMA(Pi, qi), i = 1,2,· ··, m , 
being p=max(Pi) and q=max(qi), i = 1,2,···, m. We assume that the noises 
from the common factors and specific components are also uncorrelated for all 
lags, E(ate~_h) = 0, 'tIh. 

The model as stated is not identified, because for any r x r non singular matrix 
H the observed series can be expressed in terms of a new set of factors , 

where I; = Hit , and 
~*(B)lt = 0*(B)a; 

where a; = Hat. With this transformation the old system matrices are related 
to the new system matrices by 

~*(B) 

0oO(B) 

~: 

H~(B)H-l, 

H0(B)H-l, 

H~aH'. 

To solve this identification problem, we can always choose either ~a = lor pIp = 
I. Note that as 

p*' P* = (H-1), P' P H-1 

if pIp = I then PoO' poO = (H- 1 ), H-l that will only be the identity matrix if H is 
orthogonal. Therefore the model is not yet identified under rotations, and we need 
to introduce a restriction to estimate the model. The standard restriction used to 
solve this problem in static factor analysis is that p/~;; 1 P should be diagonal. 
Harvey (1989) imposes that Pij = 0, for j > i, where P = [Pij). This condition is 
not restrictive, since the factor model can be rotated for a better interpretation 
when needed (see Harvey, 1989, for a brief discussion about it). 

Peiia and Poncela (1998) showed that the model presented is fairly general 
and includes also the case where lagged factors are present in equation (9). For 
instance, for ease of exposition assume a stationary model with no specific com­
ponents, but with lagged factors on the observation equation, such as 

Xt = Pv(B)Ft + nt, 

where v(B) = I + v1B + ... + vlBI , 1<00 and Ft follows a VARMA model 

Ft = 'iJI(B)at, 'iJlo = I. 
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This model can be rewritten in the standard form presented in (9) with 

It = Ft + V1 Ft-1 + ... + vlFt-1 

following_the VARMA model It = ~(B)at where ~(B) 2::1 ~iBi :nd ~i 
satisfies Wi = Wi + VI Wi-l + ... + V/Wi _ / with Wj = Orxr if j < 0 and Wo = I. 
Since matrices Vi are of constants coefficients, II v;! I < 00 and equation It = ~ (B)at 
also represents a VARMA stationary process. Therefore the standard formulation 
presented in (9) can include important complex relationships between the series 
and the factors . 

In the particular case that all the factors are stationary and the component nt 
is white noise, f, the dynamic factor model reduces to the model studied by Peiia 

and Box (1987). In this case, assuming E(xt) = 0 and calling r x (k) = E [XtX;_k] 

and r J (k) = E [Jd:- k ] we have that 

rx (0) 
rx (k) 

prJ (0) pI + E f , 

prJ (k) pI, k ~ 1, 

which implies that the columns of P are eigenvectors of the matrix r x ' (k) for all 
k > 1. To show this note that 

and, 

E [Pld:-k P' + ftf~_k + Pltf~_k + fd:_kPl] = PE [Id:-k] pI = prj (k) P' . 

Thus, the eigenvalues of r x (k) are the covariance of the factors, k ~ 1. Peiia and 
Box (1987) proposed the following procedure to recover the factors: 

(1) Compute eigenvalues and eigenvectors ofrx (k) for k ~ 1. 
(2) Obtain the number of common factors by the rank of the matrices r x (k) . 

Assume that the common rank is r, the number of common factors. 
(3) Use the non zero eigenvectors of r x (k), for k ~ 1, in order to estimate the 

loading matrix P. 
(4) Build the transformation M = [P V), where P'V = 0, V belong to the 

null space of P and apply it to the Xt in order to recover the factors. As pIp = I 
we have 

pIXt = It + plft 

and 

Then, the transformation 
Zt = M'Xt 

gives r linear combinations of the time series components that will recover the 
factors and m - r combinations that will be white noise. 
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This model has been estudied in the nonstationary case by Pella and Poncela 
(1998). They showed that the identification of the nonstationary I(d) factors 
can be made through the common eigenstructure of some generalized covariance 
matrices, properly normalized. The number of common nonstationary factors is 
the number of nonzero eigenvalues. Thus, a similar identification procedure can be 
applied in the stationary and in the nonstationary case. Once we have a preliminar 
estimation of the dimension of the system we can estimate the factor loading 
matrix and the parameters of the VARIMA factor representation by writing the 
model in the state space from and use the EM algorithm. 

4.3 Relationship between Canonical Analysis and the Dynamic Factor 

Model 
Let us show the relationship between the dynamic principal components or 

canonical analysis and the standard principal component approach that considers 
the eigenstructure of r 2;(0). In the canonical analysis we obtain eigenvectors from 
Q = r2;(O)-1 (r,,(O) - E) = 1- r2;(0)-1E. Note that: 

(1) Q, r2;(O)-1E, and E-1r,,(0) have the same eigenvectors; 
(2) The largest eigenvalue of I - r ",(0)-1 E is the smallest of r ",(0)-1 E; 
(3) The smallest eigenvalue of r;1(0)E is the largest of E-1r",(0). 
Then the canonical analysis can be interpreted as obtaining eigenvectors from 

E- 1 r ",(0), whereas the standard principal component approach uses directly the 
matrix r", (0). 

To understand better this difference, suppose that the factorial model holds 
and 

r",(O) = pr/(O)p' + E, 

then 

and if V is such that P'V = 0 then 

and therefore a transformation based on the eigenvectors of E-1r2;(0) will also 
separate the factors from white noise. 

Let us consider now the relationship between the canonical analysis and the 
identification procedure in the factor model as developed by Pella and Box (1987) 
and Pella and Poncela (1998). Consider the stationary case to simplify. Then the 
factor are initially estimated by computing eigenvalues and eigenvectors of r", (k) 
for k ~ 1. Thus this identification depends only on P. whereas in the canonical 
analysis the components obtained depend on both P and E. 
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4.4 Cointegration and the Factor Model 

Suppose that Xt follows a nonstationary model 4> (B) \7Xt = €t. Then we say that 
Xt is /(1). There will be cointegration among the components if we can find linear 
combinations that are stationary. That is, we will say that the components of Xt 

are cointegrated if there exits a m x p matrix (3 such that 

(3' Xt = stationary 

that is, Xt ,..... / (1) but (3' Xt ,..... / (0). The matrix (3 is called the cointegration 
matrix and there will be p linear combinations that lead to stationary processes. 
In order to see the implications of this property, suppose the simplest /(1) model 
Xt = Xt-l + €t· We can write this model as 

(12) 

and note that if Xt follows the multivariate random walk the value of II in this 
equation is zero and this implies no cointegration. However, if the process is a 
stationary VAR(1) process we can write the model as 

Xt = (II - I)Xt-l + ft 

in this equation II is a full rank matrix becasues II = 4> + / where 4> is the 
AR matrix that must have eigenvalues smaller than one for the process to be 
stationary. Thus saying that II is a full rank matrix implies that Xt follows and 
VAR(l) , all the components are stationary, or they are /(0) . A third intermediate 
possibility is that II is neither a zero matrix nor a full rank matrix but it has 
rank p . Let us show that this implies cointegration, that is, in this case some 
linear combination of the vector of time series are stationary whereas some others 
will be nonstationary. To show this property note that if II has rank p it can be 
written as 

II = a(3' 

where a and (3 are m x p matrices of rank p < m. Now if we multiply (12) by (3', 
we have 

\7(3' Xt = ((3' a )(3' Xt-l + (3' ft 

and calling Zt = (3' Xt we have that 

and II* is a full rank matrix and Zt stationary. Thus, the p linear combinations 
(3' Xt will be stationary whereas if the matrix m x (m - p), 0'.1 belongs to the null 
space of a, that is, it verifies O'~ 0' = 0, we have that the m - p combinations a~ Xt 

are nonstationary. 
There is a close connection between cointegration and the factor model. Es­

cribano and Peiia (1994) showed that the following two proposition are equivalent: 



Multivariate Analysis in Vector Time Series 399 

(1) The individual components of Xt are I (1) but there are p cointegration 
relationships, (3' Xt, that are 1(0). 

(2) Xt can be written as generated by m - p common factors that are 1(1) . 
Thus, cointegration implies common factor and common nonstationary factors 

implies cointegration . From the practical point of view if the dimension m is large 
it is simpler to look for a few factors than for many cointegration relations. 

5. Conclusions 

As any stationary time series is a sample from some multivariate distribution 
one could expect that multivariate classical methods will be widely applied in 
time series. However, in practice the time series analysis is made without any 
reference to multivariate analysis by using · the special structure implied by the 
ordering of the observations on time. Some univariate time series identification 
methods have been based on canonical correlation analysis (see Tiao and Tsay, 
1985) but in general the use of multivariate methods in univariate time series 
is small. However, with vector time series multivariate techniques are of key 
importance. Discrimination is related to the problem of model selection, clustering 
methods appear in a natural way when working with large set of time series and 
methods for dimension reduction are a clear need for practical model building. In 
fact, it was shown by Peri a and Box (1987) that building a VARMA model ignoring 
the possible common factors is a sure method to look for trouble: the MA and AR 
parameter matrices are not identified when common factors are present and so we 
could end up building a very complicated multivariate VARMA model when in 
fact the data generating process is very simple. Also Tiao and Tsay (1989) have 
shown the usefulness of linear combinations of the vector of observed time series 
for model simplification. 

We have seen that the discrimination problem is closely related to the model 
selection problem, and the criteria to choose models can be applied to select the 
data generating process in discriminant analysis. In time series cluster methods, 
more research is needed in order to have meaningful procedures that search for 
useful configurations taking into account the autocorrelation structure and new 
algorithms need to be developed to implement them. Although research in model 
simplification and dimension reduction has been very large, still more research is 
needed in order to compare the advantages and drawbacks of the different proce­
dures available. We expect that this review can stimulate further developments 
in this area in the future. 
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