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Free Akivis algebras, primitive elements, and hyperalgebras 1 

Ivan P. Shestakov and Ualbai U. Umirbaev 

Abstract: Free Akivis algebras and primitive elements 
in their universal enveloping algebras are investigated. The 
conjecture of K .H . Hofmann and K. Strambach on the struc
ture of primitive elements is proved to be not valid, and a full 
system of primitive elements in free nonassociative algebra is 
contructed. It is proved that every algebra can be considered 
as a hyperalgebra, that is, a system with a series of multi
linear operations that plays a role of a tangent algebra for a 
local analytic loop, where the hyperalgebra operations on B 
are interpreted by certain primitive elements. 
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1 Introduction 

A vector space A is called an Akivis algebra if it is endowed with two op
erations: an anticommutative bilinear operation [x, y], (a commutator), and a 
trilinear operation A(x, y, z) (an associator), that are related by means of the 
identity 

[[x, y], z] + [[y, z], x] + [[z, x], y] = A(x, y, z) + A(y, z, x) + A(z, x, y) 

-A(y,x,z) -A(x , z,y) -A(z,y,x). (1) 

These algebras were introduced in 1976 by M. A. Akivis [1], under the name W
algebras, as local algebras of three-webs (or of local analytic loops). 

Let L be a local analytic loop with the multiplication x . y, left division y\x, 
and right division xjy (see, for example, [4J). The tangent space of L at the 
unit O rnay be identified with L itself; and one rnay endow this space with the 
following two operations that represent the deviation from commutativity and 
from associativity of the multiplication x . y in the loop L: 

[x, y] lim r 2 ((tx . ty) j (ty . tx)) = 
t>-tO 

lim r 2 ((ty· tx) \ (tx . ty)) 
t>-tO 

lirnr2(tx·ty-ty . tx) ), 
t>-tO 

A(x, y, z) lim r 3 (((tx . ty) . tz) j (tx . (ty. tz))) 
t>-tO 

1 The extended version of the lecture presented at the IX Encontro em Álgebra 
USP /UNICAMP, September 19-22,2001, São Pedro, SP, Brazil. Supported by the CNPq grant 
300528/99-0, FAPESP Proc. 2001/06608-3 and FAPESP Proc.00/06832-8 
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lim r 3 ((tx . (ty· tz)) \ ((tx . ty) . tz)) 
to-tO 

lim r 3 ((tx . ty) . tz - tx . (ty . tz)) ), 
to-tO 

where x, y, z are vectors from the tangent space, tER. It was proved in [1] that 
with respect to these operations the tangent space of the loop L forms an Akivis 
algebra. We will denote this Akivis algebra as A(L). 

If a loop L is associative, i.e., L is aLie group, then the operation A(x, y, z) is 
trivial , and so the Akivis identity (1) converts to the well known Jacobi identity. 
Hence, in this case the algebra A(L) is aLie algebra. If L satisfies the Moufang 
identity 

(xy)(zx) = x(yz . x), 

then the function A(x , y, z) becomes skewsymmetric [1] and so by (1) this function 
can be represented in terms of the bilinear operation [x, y]: 

A(x, y, z) = lj6J(x , y, z), 

where J(x, y, z) = [[x, y], z] + [[z, x], y] + [[y, z], x] is the Jacobian of the elements 
x, y, z. Moreover, in this case A(L) satisfies the following Malcev identity 

[J(x,y,z),x] = J(x,y, [x,z]), 

hence A(L) is a Malcev algebra (see [8]). In general case the operation A(x, y, z) 
is not expressed in terms of the commutator [x, y]. 

Now, let B be a (not necessary associative) algebra with a bilinear multipli
cation (x, y) >-+ xy. Consider in B the usual commutator [x, y] = xy - yx and 
associator A(x, y, z) = (xy)z - x(yz) functionsj then it is easily checked that these 
functions satisfy identity (1). Hence Bis an Akivis algebra with respect to these 
operations. We will denote this algebra by Ak (B). 

It was conjectured by M. A. Akivis [1] (see also [2 , Problem X.3.8], [4, Problem 
IX .6.12]) and proved by I. P. Shestakov [lI, 12] that every Akivis algebra A can 
be isomorphically embedded into an Akivis algebra Ak (B) for a suitable algebra 
B. Moreover, a basis ofthe universal enveloping algebra U(A) was constructed in 
[11, 12]. 

In the present paper, we give some new results on the structure of free Akivis 
algebras and primitive elements in their universal enveloping algebras. We claim 
that subalgebras of free Ak:ivis algebras are free and that finitely generated sub
algebras are finitely residual. Decidability of the word problem for the variety of 
Akivis algebras is also proclaimed. 

The conjecture of K.H.Hofmann and K.Strambach [4, Problem 6.15] on the 
structure of primitive elements is proved to be not valid, and a full system of 
primitive elements in free nonassociative algebra is constructed. 

Finally, we show that every algebra B can be considered as a hyperalgebra, 
that is, a system with a series of multilinear operations that plays a role of a 
tangent algebra for a local analytic loop, where the hyperalgebra operations on B 
are interpreted by certain primitive elements. 

The full proofs of the presented results wilJ appear in [13]. 
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2 Free Akivis algebras 

Let A be an Akivis algebra over a field F with a linear basis 

Consider the set of words 

V {ei, eiej, (e;ej)ekli:S j:S k} 

in the universal enveloping algebra U(A) (see [11, 12]). Set aIs o lell = 1, leiejl = 
2, I( e;ej )ek I = 3. Denote by V* the set of ali nonassociative words in the al
phabet V, including the unit 1 considered as the empty word , and by VO the 
set of ali words from V* that do not contain the subwords of type Vl V2, where 
Vl, V2 E V, IVll + IV21 :S 3. The elements of VO are called vO-words in the alphabet 
el, e2, ... e"" .. .. The first author in [11, 12] proved that the vO-words form a basis 
of the algebra U(A). 

For an algebra C and a subset M ç C, we denote by alg c(M) and idl c(M) 
the subalgebra and the ideal of C generated by M . 

Lemma 1 Let A be an Akivis algebra and M be a subset of A. Then the following 
statements are true: 

1) alg A(M) = alg u(A)(M) nA; 
2) idl A(M) = idl u(A)(M) n A. 

Remind that a variety of algebras is called Schreier if every subalgebra of a 
free algebra in this variety is also free. The general properties of Schreier varieties 
were investigated in [7, 17]. The well-known examples of Schreier varieties are 
the varieties of alI nonassociative algebras [6], commutative and anticommutative 
algebras [15], Lie algebras [14, 18] and Lie superalgebras [10, 16]. 

Using lemma 1 and the results of [17], we prove 

Theorem 1 The variety of Akivis algebras is Schreíer. 

Theorem 1 has two standard corollaries [7]. 

Corollary 1 A utomorphisms of finitely generated free Akivis algebras are tame. 

Corollary 2 The occurrence problem for free Akivis algebras is decidable. 

Furthermore, applying the corresponding results for the variety of alI nonas
sociative algebras (see [5, 20]), one can prove the following theorems. 

Theorem 2 Finitely generated subalgebras of free Akivis algebras are residually 
finite. 

Theorem 3 Word problem is decidable for variety of Akivis algebras. 
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3 Primitive elements of nonassociative algebras 

Let A be an Akivis algebra over a field F and U(A) its universal enveloping 
algebra. It is easily checked that the linear mapping 

~ : A ~ Ak(U(A) ®F U(A)) 

given by the rule 

~(u) = u ® 1 + 1 ® u, u E A, (2) 

is an embedding of Akivis algebras. 
By definition of the universal enveloping algebra U(A), (see [12]) , the homo

morphism ~ can be uniquely extended to the homomorphism 

~ : U(A) ~ U(A) ®F U(A). 

An element u E U(A) is called primitive ifit satisfies equality (2). 

One can easily check that the set P(A) of all primitive elements of the algebra 
U(A) is closed under the operations [x , y],(x,y,z); that is , P(A) is an Akivis 
subalgebra of Ak(U(A)). By definition of ~, every element from A is primitive. 
K. H. Hofmann and K. Strambach formulated in [4, Problem 6.15] the question 
about validity of the equality A = P(A) , for algebras over fields of characteristic 
O. Note that in the case of Lie algebras this equality turns to the well-known 
Friedrichs criterion (see [3]) for Lie elements in universal enveloping algebras. 

We first show that the question of K. H. Hofmann and K. Strambach is an
swered negatively. Let A be a free Akivis algebra on a single free generator x. 
Then U(A) = F{x} is a free nonassociative algebra generated by x . Consider the 
element 

f = (x 2 , x, x) - 2x(x , x, x) = (x 2 x)x - x2 x2 - 2x(x, x, x). 

The element f does not belong to A since it is a linear combination of vO-words 
in the alphabet x, (x, x, x), with length ~ 2. On the other hand, one can straight
forwardly check that equation (2) is true for f, that is, f E P(A) . 

This example shows that the operations [x, y], (x, y, z) do not produce all the 
primitive elements in U(A) . The remainder of this section will be devoted to 
construction of a full system of primitive operations on nonassociative algebras. 

Let B be the free nonassociative algebra on the set of free generators X U Y U 

{z} , where X = {Xll ... , Xn , .. . } , Y = {Yl , ... ,Yn, .. . }. Then B = U(A) , where 
A is the free Akivis algebra on the same set of generators , and so we may consider 
primitive elements in B . 

Denote by Xl the set of all right normed words of the type 

(3) 
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where i l < i 2 < ... < im , m 2: O. If u is a word of t.ype (3), then we puto lul = m, 
supp (u) = {il' i 2, ... , im }. Besides, we will use the following simplified notation 
for this word: 

omitting the parenthesis. For any words u, v E Xl, we set u :S v if supp (u) ç 
SUPP (v). If U :S v and U =F v, we write u < v. In particular, U > 1 for any U of 
type (3) with lul 2: l. 

An ordered sequence (UI, U2, .. . ,Uk) of elements Ui E Xl, 1 :S i :S k, is 
called a k-decomposition of the word u E Xl if SUpp(Ui) n supp(Uj) = ~ for 
i =F j and U?:lsuPP(u;) = supp(u). For a given word U E Xl, we will denote 
by Ltll,tI~ (or LU1,tl 2, tl3) the sum over all the 2-decompositions (or correspon
dently, 3-decompositions) of the word u. Moreover, we will omit indexes UI, u2 in 
this notation if it is clear from the context what kind of decomposition is under 
consideration. 

Similarly, we define the set yl and extend to it all the previous notat.ions. In 
the sequei, if the parenthesis are not arranged in a product then the product is 
considered as a right normed one. 

Let u == XIX2 ... Xm E Xl, V = YIY2 .. . Yn E yl. By induction on m + n = k, 
where m, n 2: 1, we define polynomials 

Pm,n(XI, X2,···, Xm; YI, Y2,···, Yn; z) = Pm,n(U, v, z) E B 

in the following way. 
1. PI,J(XI;YI;Z) = (XI,YI,Z); 
2. Suppose that for all m, n > 1 and m + n < k, k > 3, the polynomials 

Pm,n (u, v, z) are already defined. 
3. Let m + n = k 2: 3. Put 

Pm,n(u,v,z) = (u,v,z)-

Since the numbers m = lul, n = Ivl are uniquely defined by u, v, we reduce 
the notation Pm,n(u, v, z) to p(u, v, z). To simplify the formulas below, we extend 
the definition ofpolynomialsPm,n(U,V,Z) also for the cases m = O or n = O, by 
setting Po,n(l, v, z) = Pm,O(u, 1, z) = O. With this notations, we have the equality 

(4) 

For I,g E B we denote lo 9 = 113> 9 + 9 13> 1 E B 13>F B. We have the 
homomorphism 

~: B --t B 13>F B, 



154 Ivan P. Shestakov and Ualbai U . Umirbaev 

defined by the ruIes 

~(xi)=loxi , ~(Yi)=loYi , ~(z)=loz, i2:1. 

By definition, an eIement f E B. is primitive if and only if ~(f) = Iof. 

Lemma 2 Let U = Xl X2 .. . Xm E X l , V = YI Y2 .. . Yn E yl . Then the foilowing 
equalities hold: 

1) ~(u) = LUI 0 U2; 

2) ~(uv) = L UlVI 0 U2V2; 

3) ~(uvz) = LUIVI o (U2V2Z); 

4) ~(u(vz)) = LUIVI O (U2(V2Z)); 

5) ~(u,v,Z)=LUIVIO(U2,V2,Z). 

Using the Iemma, we prove that all the eIements of type p( u, V, z) are primitive. 

Theorem 4 Let U = XIX2 . . . Xm E Xl, V = YIY2 .. ' Yn E yl , m,n 2: 1. Then 
Pm,n(u, v, z) is a primitive element of B. 

Corollary 3 Let C be an algebra with the unit 1 and assume that there exists 
an algebra homomorphism Ó : C -4 C 0F C. Then the space Prim (C, ó) = 
{p E Cló(p) = lo p} of ó-primitive elements of the algebra C is closed under the 
operations 

[X,y], Pm,n(XI,X2" ", Xm ;YI,Y2, ... , Yn;z) , m,n 2: 1. (5) 

Notice that if F is a field of characteristic P > 0, then the operation xP can be 
added to the set of operations (5) . 

The following theorem shows completeness of the set of primitive operations 
(5). 

Theorem 5 Let C be an algebra with the unit 1 over a field of characteristic 0, 
and Ó : C -r C 0F C be a nontrivial homomorphism of algebras. Suppose that 
the algebra C is generated by a set M of ó-primitive elements, and let P(M) be 
the minimal subspace of C that contains M and is closed with respect to primitive 
operations (5). Let el,e2, ... ,ea , ... be a basis ofP(M). Then the set ofright 
normed words of the type 

(6) 

where i I ::; i 2 ::; . . . ::; ik, k 2: O, forms a basis of the algebra C. 

Corollary 4 Under the assumptions of the theorem, the set P(M) coincides with 
the set Prim (C, ó) of ail ó-primitive elements of C. In other words, any set 
of ó -primitive elements which generates C generates also the set Prim (C, ó) by 
operations (5). 
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4 Hyperalgebras and primitive elements 

Let F be a field of characteristic O. If L is aLie algebra, then by the Friedrichs 
criterion [3], the set of primitive elements of the algebra U (L) coincides with 
L. Note that L is closed under the primitive operation [x, y], and all the other 
primitive operations Pm,n are identically zero on L. 

Lie algebras first appeared as tangent algebras of Lie groups and, in case 
of simply connected Lie groups, they determine the corresponding groups up to 
isomorphism. It is known [4] that Akivis algebras do not determine, in general, the 
corresponding local analytic loops. It was shown by P.O.Miheev and L.V.Sabinin 
[9] that a simply connected local analytic loop is determined up to isomorphism 
by a more sophisticated analogue of tangent algebra, the so called hyperalgebra, 
an algebraic system with a series of multilinear operations. It is nat.ural to ask 
whether the operations in hyperalgebras can be interpreted by primitive elements 
in a nonassociative algebra. Below we give an interpretation of hyperalgebra 
operations in nonassociative algebras. 

First, let us remind the definition of a hyperalgebra. 

A vector space A over a field F is called a hyperalgebra if it is endowed with 
the multilinear operations 

< Xl,X2, ... ,Xm,y,z >, m ~ O, 

<P(Xl, X2,···, Xm , Yl, Y2 ,···, Yn), m ~ 1, n ~ 2, 

which satisfy the identities: 

(7) 

< Xl,f2, ... , Xr , a, b, Xr+l, ... , Xm , Y, z >-< Xl, X2, ... , Xr , b, a, Xr+l,· .. , Xm , y, Z > 
+ 2:2: < X"", ... , X"'k' < X""+l'···' X"'r' a, b >, Xr+l,···, Xrn , y, Z >= O, (8) 

k=O '" 

r O"x,y,z« XI,···,Xr,x,y,z> + 
2:2: < X""' ... ,x",.,< X"'k+"·· .,x"'r'y,z >,x » = O, 
k=O '" 

<P(XI, ... , Xm , Yl,··· , Yn) = <P(Xr (I), ... , xT(m), Yó(l), · · ·, Yó(n)), 

(9) 

(10) 

where a runs the set of ali bijections of the type a : {I, 2, . . . , r} ~ {I, 2, ... , r}, 
i t-+ ai, aI < 0'2 < ... < ak, ak+l < ... < ar, k = O,I, ... ,r, r ~ O, O"x,y,z 

denotes the cyclic sum by x, Y, z; T E Sm, Ó E Sn, SI is the symmetric group. 
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Let B be a (nonassociative) algebra over a field F of characteristic O. For any 
Xl, X2,·· ., x m , V, z E B we put 

< V,z > -[V,z] ::::: < I,V,z >, (11) 

< X1,X2," ., xm,V,z > ::::: -Pm,I(u,V,z) + Pm,I(u,z,V):::::< u,V,z >, (12) 

where u::::: X1X2 ... Xm, m 2: l. 
Ifm 2: l,n 2: 2, then for any :l:1,X2,·· .,Xm,V1,V2,'· .,Vn we put 

By (4), we have 

(u,z,V) - (u,V,z) = L Ui < U2,V,Z >. 
t.l2>1 

(14) 

Note that definition (12) does not give (11) when m = O, because PO,l(1, V, z) = 
O. The restriction U2 > 1 in (14) is caused by this fact and means that the 
summand with < 1, V, z > does not appear there. 

Observe also that if Xl ::::: X2 ::::: ... ::::: Xm ::::: X, VI = V2 ::::: ... ::::: Vn ::::: V, then 

Denote by G(B) the space B considered as an algebra under operations (11), 
(12), (13) . 

Theorem 6 G(B) is a hyperalgebra. 

It is natural to ask the following questiono 

Problem 1 Is it true that any hyperalgebra can be isomorphically embedded into 
a hyperalgebra G(B) for a suitable algebra B? 

In case of affirmative solution ofthis problem every hyperalgebra would have a 
universal enveloping algebra with the Poincare-Birkhoff-Witt basis as in theorem 
5. Remind that, in particular, Lie algebras, Malcev algebras, BoI algebras are 
hyperalgebras (see [9]). All the hyperalgebra operations except [x, V] are trivial 
in Lie algebras. Operations <.I> (Xl , X2, ... , Xm, VI, V2, ... , Vn) are trivial in Malcev 
and BoI algebras. 

Note that the definition of hyperalgebras given above was motivated by and 
oriented to a description of identities of tangent algebras of right-monoalternative 
local analytic loops (see [9]). It would be interesting to find an alternative def
inition of hyperalgebras, probably, with another operations, that is more closely 
related to primitive operations (5). Maybe, this could help to solve problem l. 

Another natural question that related closely to problem 1 is the following. 
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Problem 2 To give an intrinsic characterization of the set Prim (B) of primitive 
elements in a free nonassociative algebra B , in terms of primitive operations (5). 

In particular , is it possible to choose a definition of hyperalgebra in such a 
way that Prim (B) would be a hyperalgebra with respect to operations (5) or, 
probably, relatively to another set of primitive operations? 
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