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Group rings of finite groups over p-adic integers, some examples 

Gabriele Nebe 

Abstract : A method to describe certain group rings of 
finite groups over p-adic integers is applied to calculate the 
group rings Z 2J 1 and Z3S9 up to Morita equivalence. The 
radical series are calculated. 

Key words: p-adic group rings of fintie groups, radical 
series . 

1 Introduction. 

The p-adic integral group ring RG of a finite group G is the connecting link 
between the p-modular and the ordinary representation theory of G. Already R. 
Brauer (see e.g. (Bra56]) aimed to study the number theory of RG by investigating 
the factor algebra RGlrrRG, where '1r is a prime element in R. If p divides the 
order of G, the group ring RG is not a maximal order, not even hereditary, but 
a much more complicated object . Therefore the first step to understand group 
rings is the calculation of examples. 

Here it is always assumed that the p-modular and ordinary representation the­
ory of G is known . In particular the decomposition matrix of RG is used. In 
his habilitation thesis ((Ple80] , (Ple83]) Plesken develops methods to describe cer­
tain integral group rings. One gets a complete description if the p-decomposition 
numbers of G are ~ 1. Plesken's methods aime to calculate a certain graduated 
overorder r (see Definition 2.1) of RG, canonically attached to RG. r has the 
same irreducible lattices as RG, which can be described combinatorially. As an 
application he describes among other single examples the blocks of cyclic defect 
((Ple83, Chapter VIII], see also (Rog80], (Rog92] and (Lin96]) and the 2-adic group 
rings of SL2 (pf) for odd primes p . E. Kleinert ((Kle90], (Kle92]) refines this lan­
guage to obtain a description of a smaller overorder of RG, which can be described 
as a multiple fibre product. Motivated by Plesken's ideas, H. Wingen, a student 
of W. Jehne, calculates p-adic integral group rings of certain Frobenius groups, 
where Gaussian and Jacobian sums appear as matrix entries ((Win93],(Win95]) . 
A different approach to describe the integral group rings for the symmetric groups 
is developed by M. Künzer in his thesis and further articles ([Kün99], [KünOO], 
[Kün02]) . He gives explicit homomorphisms between certain different Specht lat­
tices modulo an integer m . This allows to identify a non-maximal overorder of 
ZSn . 

My habilitation thesis refines Plesken 's methods to obtain a complete descrip­
tion of the group ring RG for certain groups G via explicit generators for the 
Morita equivalent basic order. If the defect is small, then the calculation of RG 
is an easy application of these methods (see (Neb02], (Neb98]) . Among other ex­
amples the group rings of SL2 (pJ) over p-adic integers are described nearly up to 
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Morita equivalence (see [NebOOa], [NebOOb]) using [Kos94] and [Kos98]. 
Knowing these p-adic group rings , one can calculate many invariants, give a 

description of the unit group and the ideal theory or calculate automorphisms of 
these group rings as demonstrated in [HeN02]. 

The present paper is intended to present certain results describing p-adic group 
rings , which are either unpublished or only contained in [Neb99]. Therefore the 
language used to describe these group rings is briefly repeated in Section 2 before 
we give the group rings in Section 3. Here, proofs are omitted , if they can be 
obtained from [Neb99]. As an application, the radical series of the group rings 
are calculated . It is known that these series become periodic (see Section 4). The 
period length, however, is unknown in general. 

2 Methods 

Let G be a finite group and R the ring of integers in a finite extension field K 
of the p-adic numbers . Then the integral group ring RG provides a link between 
the ordinary representation theory of G over K and the p-modular representation 
theory of G over the residue field k = R/(1r). To calculate RG, information from 
the ordinary and p-modular representation theory of G is used. In particular, the 
decomposition matrix of RG should be known. 

The first step to describe the order RG is to decompose this order (or more 
precisely an overorder that is canonically attached to RG) into smaller pieces using 
the central primitive idempotents 1'1, ... , f. E KG in the semi sim pIe K-algebra 
KG and orthogonal idempotents eI , . . . , eh E RG that are lifts of the central 
primitive idempotents of the biggest semisimple factor algebra RG / J( RG) of RG. 
Note that the fi are unique and the idempotents ei are unique up to conjugacy in 
RG. Clearly 

h 

RG = EB ejRGej 
j ,j=I 

where the ejRGej are R-orders and eiRGej are ejRGe;-ejRGej-bimodules. The 
local rings eiRGej and also the bimodules are in general still quite complicated . 
Therefore one first describes the projections of these rings and bimodules into the 
simple components of KG: Let 

f:= EBf.tRG. 
t=I 

Then the idempotents ejft are either O or map onto the central primitive idempo­
tents of f / J(f) and 

• h 

f = EB EB f.tei RGej . 
t =l i ,j=l 
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The rings tte;RGei are local R-orders in the simple K-algebra tteiKGe; which 
are maximal orders, if the p-decomposition numbers of G are :s; 1 and R is "big 
enough". In this case f is a so called graduated order (see [Ple83]) or tiled or­
der ([Rog92]) and the order f can be described purely combinatorially using the 
language of exponent matrices. 

2.1 Graduated orders. 

Definition 2.1 An R-order f in a semisimple K -algebra is called graduated, if 
f contains a system of orthogonal idempotents e1, ... , eh with eiej = Jij ei and 
1 = el + ... + eh such that e;fe; are maximal R-oroers in e;Kfei . 

If f is a graduated order, then f contains the central primitive idempotents of 
Kf and hence f is a direct sum of graduated orders in sim pIe algebras. If f is a 
graduated order in the sim pIe algebra D n xn and el, ... , eh are lifts of the central 
primitive idempotents of fjJ(f), then the orders eifei are maximalorders in 
ejDn Xn ei ~ Dn ; xn;, hence of the form nn; xn; where n is the maximal order in 
D . The bimodules e;fej are isomorphic to nn;xnj , i.e. of the form (pm;j)n;xnj 

for certain mij E Z where p denotes the maximal ideal of n. Hence f is conjugate 
to the graduated order 

A(n, nl, ... , nh, M) = {X E Dnxn I X = (Xij) and Xij E (rm;jt;xnj } 

The matrix M = (mij) is called an exponent matrix of f. 

Remark 2.2 The entries in the exponent matrix satisfy: 

a) mii = O for all i = 1, . .. ,h. 

b) mij + mjk ~ mik for ali i, j, k = 1, ... , h. 

c) mój + mji > O for ali 1 :s; i -I j :s; h. 

Proof. a) and b) follow from the fact that f contains 1 and is closed under multi­
plication. c) is a consequence that we have chosen the ei to be lifts of the central 
primitive idempotents modulo the radical. O 

In general, the exponent matrix M is not determined by f, but only the 
structural invariants 

mijk := mij + mjk - mik 

Two graduated orders A(n, nl, ... nh, M) and A(n, n~, . .. n~/, M') are isomorphic, 
if and only if h = h' and there is a permutation (J'" of {1, . .. , h} such that ni = n~<T 
and mjjk = m~<T,j<T,k<T for all i, j, k = 1, ... , h (see [Ple83, Proposition (I1.6)]) . 

Remark 2.3 Let A be an R-order in a semisimple K -algebra K A and let tI, ... ,(. 
be the central primitive idempotents of K A. Then f := $:=1 ttA is a graduated 
order if and only if the decomposition numbers of A are :s; 1 and Z (f) is a maximal 
order in Z(KA). 
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2.2 Symmetric orders. 

Definition 2.4 An R-order A in the semisimple algebra A = K A is called sym­
metric if there is a nondegenerate symmetric associative K -bilinear form <I> : 
A x A --7 K such that A is self dual with respect to <I> , i. e. A = A # = {a E 
A j <I>(A, a) C R}. 

One easily shows that the nondegenerate symmetric assoeiative K-bilinear 
forms on the separable K -algebra A are precisely the forms 

$ 

Tr" : A x A --7 K, (a, b) t-+ E trred(aUftb) 
t=1 

where U E Z(A)* and trred denotes the redueed trace of Aft to K. 
The most important examples of symmetrie orders are bloeks of group rings 

of finite groups. Let G be a finite group. Then RG is a symmetric order in 
A = KG with respeet to jGj-l times the regular trace bilinear formo If Xt(l) 
denotes the dimension of an absolutely irredueible constituent of the sim pie K Gft­
module, then this associative symmetrie bilinear form equals Tr", where u = 
jGj-l 2::=1 Xt(1)ft. 

Lemma 2.5 ({Thé95], Proposition (1.6.2)) If A is a symmetric R-order with re­
spect to <I> and e,f are idempotents in A then <I>1(eAf)x(JAe) is a nondegenerale 
R-bilinear pairing. In particular eAe is a symmetric order. 

One important means to deal with symmetrie orders is Jaeobinski's eonductor 
formula (see [Jae81]). 

Theorem 2.6 Let A be a symmetric order and r be an overorder of A contained 
in K A. Then the dual r# of r is the biggest r -ideal lhat is contained in A. 

The dual of a graduated order ean also be deseribed by exponent matriees. 

Theorem 2.7 (cf (Ple83, Theorem (IJJ.8)]) Let A be a symmetric R-order with 
respect to Tr" such that r = EN=1 f tA is a graduated order 

• 
r = EB A(Ot, nt, M(t»). 

t=1 

Then the biggest r -ideal in A is 

r# = EI1:=1 (f tA nA). 

Here 
r# = EI1:=IA(Ot, KtJn, - (M(t»)tr) 

where Jn, E {I }n. xn, denotes the all-ones-matrix, Kt = J-It - Ót, such that 10;&' lS 

the inverse different of the maximal R-arder Ot, and pr' = (Uft) -1 Ot . 
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Since r# is contained in r this gives an upper bound on the entries of the 
exponent matrix: 

(t) (t) 
mij + mji S; "-t · 

2.3 Glueing. 

By Theorem 2.7, one has the following inclusions: 

~ 

r = E!1(tA;2 A;2 E!1«(tAnA) = r# 
t=l t=l 

In this section we use the fact that this inclusion describes A as an amalgamation 
of the orders A(t, where the amalgamating factor is known from the symmetrizing 

form , to derive further combinatorialconditions on the entries m~? ofthe exponent 
matrices. 

For 1 < i < h let 
Ci := {t I dti = I} 

and denote by ei a primitive idempotent in A with e,e. = ei. Then Pi := eiA (1 S; 
i S; h) are the projective indecomposable A modules. Multiplying the inclusion 

above with e., one sees that for tEci n Cj the number "'t - m~~) - mJ~) is the 
multiplicity of the simple A-module Sj (with Sjej = Sj) in (tP./((tP' n Pi)' 

Definition 2.8 Let 1 S; i S; h. Then the amalgamation matrix A(P.) E (2;>0 n 
{.} )ICil xh is the matrix of which the rows are labeled by the elements of Ci and the 
columns by {I , ... , h} such that 

A(P.) "'t -m·· - m· · { 
(t) (t) 

• t,j = 'J J' 
ift E Cj n Cj 
else 

Remark 2.9 The entries in the amalgamation matrices satisfy: 

(i) A(Pih,j = A(Pj}t,. for aUl S; i,j S; h, tEci n Cj. 

(íí) A(Pih,i = "'t. 

(iii) lf c. n Cj = {t}, then A(Pi}t,j = O. 

(iu) ({Ple83, Corollary (IV. 7)]) If Ci n Cj = {t, l} then A(Pi}t,j = A(Pi)l,j' More 
generally the two maximal entries in any column of A(Pi) are equal. 

2.4 A language to describe RG. 

To describe the suborder RG of the graduated order r = EEl:=l (tRG it remains to 
calculate the rings ei RGei, the bimodules ei RGej and the multiplication ei RGej x 
ej RGek -+ ei RGek. The idempotents (t yield a "canonical basis" of ei f{ RGej 
where the coefficients of the "basis" element that corresponds to (t lie in Dt. 



334 Gabriele Nebe 

We now assume that k = R(rr R is a splitting field for kG and that the di­
vision algebras Dt are commutative. This can be achieved by replacing K by a 
suitable unramified extension. Let Pl , ... , Ph represent the isomorphism classes 
of projective indecomposable RG right modules . 

Then RG is Morita equivalent to 

h 

A ;= EndRG(P1 EI3 . . . EI3 Ph) = EB HomRG(Pi , Pj) 
i, j=1 

and A is a basic order in the sense that the simple A-modules are one dimensional 
vector spaces over k. 

Since there is an idempotent e E RG such that A =:! eRGe, Lemma 2.5 shows 
that A is symmetric. Note that the module categories of RG and A are equivalent. 
In particular the decomposition numbers of RG and A are equal. We assume that 
for 1 :'S i :'S h the endomorphism rings EndRG(Pi) are commutative which is 
equivalent to say that the decomposition numbers of RG are :'S 1. 

The main new idea for describing the order A is to embed the R-Iattices 
HomRG(Pi, Pj) simultaneously for all 1 :'S i,j :'S h into a commutative finite­
dimensional K-algebra E such that the multiplication 
HomRG(Pi, Pj) x HomRG(Pj, Pz) -+ HomRG(Pi , Pt} can be performed in E. 

To this purpose let 

be the sum over a system of representatives of the isomorphism classes of sim pIe 
KG-modules and 

E := EndKG(V) =:! EB Dt =:! Z(KG). 
t=l 

Let 1 :'S j :'S h. Since EndRG(Pj) is commutative, the KG-module V has a 
unique KG-submodule isomorphic to K 0R Pj and up to isomorphism a uni que 
RG-sublattice isomorphic to Pj. For all 1 :'S j :'S h choose an embedding 

Let Qj be the unique KG-invariant complement of K 0 R Lj(Pj) in V, 

Then the RG-homomorphisms 'P E HomRG (Pj, Pi) for 1 :'S i, j :'S h are consid­
ered as elements of E by letting 
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Definition 2.10 For i = 1, ... , h lei 1ri : V ~ K 0 R Pi be the projection anta 
K 0 R Pi with 1ri(Qi ) = O and Lj1rj = ídp ;. Then for 1 :s i,j :s h there are 
embeddings 

HOIDRC(Pi , Pj) y. E , <p t--t 1rj<PLj. 

Via these embeddings HomRc (Pi , Pj) is viewed as a subset 

Aij := 1riHomRC(Pi , Pj)Lj C E . 

Remark 2.11 For 1 :s i -# j :s h the endomorphism ring EndRc(Pj ) is eanoni­
eally (i .e. independent oflhe choiee OfLj) embedded in to E, whereas the embedding 
HomRc(Pi , Pj) y. E depends on the ehoiee of Li and Lj. 

In the examples only the Morita equivalent basic order EndA(EBf=IPi) is de­
scribed. To this aim we choose suitable embeddings Li : Pi Y. V and give gen­
erators of Aij C E, by using the canonical "basis" of E , formed by the central 
primitive idempotents ft. The elements in Aij are linear combinations 

(i) 

where at E Dt (more precisely in fJ';;j ) . A basis matrix of Aij is a 
LtEc;ncj dimK (Dt) x lei n Cj I matrix of which the lines are the coefficients at of 
an R-basis of Aij. 

3 Some examples of group rings. 

After the leading example to illustrate the notation, this section describes the 
principal blocks of Z 2JI (defect 3) and of Z :09 (defect 4) . 

3.1 The group ring Z 2S4. 
As a first sim pIe exampIe, the group ring íZ 2S4 ís descríbed to íllustrate the nota­
tion. The decomposition matrix of íZ2S4 is: 

1 2 
1 1 O 
I' 1 O 
2 O 1 
3 1 1 
3' 1 1 

Here I' denotes the sign character, 3 + 1 is the natural permutation character and 
3' = 3 . I'. The graduated hull of A = Z2S4 is 

r := fIA EB fI,A EB f2A EB f3A EB f3/A 
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where (IA == (l,A == Z2 = A(Z2, 1, (O)) , (2A == Z~X2 = A(Z2, 2, (O)), 

and (3A == (3/A == A(Z2, 1, 2, (~ ~)) . 
If A' denotes the basic order of A and el E A' and e2 E A' are lifts of the 

central primitive idempotents and Bi ,j denotes a basis matrix of eiA' ej then: 

BI ,1 = 1 l' 3 3' 
B2,2 = 2 3 3' 

1 1 1 1 B1,2 = 3 3' B2,1 = 3 3' 
1 1 1 

° 2 ° 2 

° 2 -2 4 4 1 1 

° ° 4 4 

° ° 8 ° 8 ° 2 

° ° ° 8 

The eleven generators described in these basis matrices correspond to following 
generators of A' (as Z2-lattice): 

(1,1,0, (~ ~),(~ ~)), (0,2,0, ( ~ ~ ) , ( ~ ~ )), 
(O,O,O,(~ ~),(~ ~)), (0,0,0, ( ~ ~ ), ( ~ ~ )), 

(0,0,1, (~ ~), (~ ~)), (0,0,0, (~ ~), (~ ~2)), 

(0,0,0,(~ ~),(~ ~)), (0,0,0, ( ~ ~ ), ( ~ ~ )), 
(0,0,0, ( ~ ~),(~ ~)), (0 , 0,0, ( ~ ~),(~ ~)), 

(O,O,O,(~ ~),(~ ~)). 
Proof. The exponent matrices are easily obtained, e.g. with [Ple83, Theorem 
(VI.1)]. This also gives the form of the bimodules eiA' ej for i i= j. From the 
central characters of 84 , one gets that e2Z(A') is symmetric and hence e2Z(A') = 
e2N e2. Similarly one finds that e1Z(A') is the suborder of index 2 spanned by the 

1 l' 3 3' 
111 1 

lines of ° 4 ° 4 of elA'el. The latter is contained in the dual (eIZ(N))#. 

° ° 4 4 ° ° ° 8 It remains to decide which of the 3 non-trivial classes of (eIZ(A'))# je1Z(N) 
(represented by (0,2 , 0,2),(0,2,2,0),(0 ,0,2,2)) lies in elNel. Since 1 and l' 
are not congruent modulo 4, the last class is impossible. To decide between 
the other two classes , we use the one-box shift morphism given by M. Künzer. 
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Let ). = I I I I I and /l = B=TI. Then). is the partition belonging to the 
trivial character 1 and /l belongs to the character 3. /l is obtained from ). by 
shifting the most right box in ). to the lower left box in /l. The shift length 
is 4. Therefore [KünOO, Theorem 3.1] implies that there is a homomorphism of 
elA' fl to elA' f3/ 4el A' f3 of order 4. Therefore all elements of elA' el (fl + (3) are 
congruent to O or 1 modulo 4f lA' EB 4f3A' . O 

Corollary 3.1 The J acobson radical J of Z 2S4 satisfies J4 = 2J3 • The exponent 

matrices of J3 are (3), (3), (3), (~ i), (~ i) , hence J3 is conjugate to 8 

times the maximal order in Q2S4. 

Let R := Z2[(3] be the ring of integers in the unramified extension of degree 
2 of Q2. This section gives generators for the Morita equivalent basic order of 
the principal block of RJ1 . The proofs are included for several reasons: First, 
this calculation is not contained in [Neb99], second, to demonstrate the methods 
developed in [Neb99], third to show the limit of these methods, since here serious 
computer calculations are involved to decide the last subtle question, and forth, 
to correct the error in the Loewy series of the projective indecomposable IF4 J l -

modules as given in [LaM78] and also in [Mic89]. 
The group ring R.lt has 7 blocks, 6 of which have defect :S 1. The defect 

group of the principal block A is elementary abelian of order 23 . A decomposition 
matrix of A is as follows: 

1 20 56a 56b 76 
1 1 

77 1 1 
77a 1 1 1 
77b 1 1 1 
133 1 1 1 1 
133a 1 1 1 
133b 1 1 1 
209 1 1 1 1 1 

Theorem 3.2 The graduated hull r of A is 

with Al = A(R, 1, (O)) , A7.., = A(R, 1,76, (~ ~)), 
A77a = A(R, 20, 56a, 1, M) , A77b = A(R, 20, 56b, 1, M), 
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A", = A(R, 20, 56a, 56b, 1, ( ~ 
1 1 ! », AI"'. = A(R, 76, 1, 56b, M), 
O 1 
1 O 
O O 

AI33b = A(R, 76,1, 56a, M), 

A,,, = A(R, 76, 1, 56a, 56b, 20, ( ~ 
1 2 2 3 

} , wh,reM= ( 
O 1 1 2 O 1 D O O 1 1 O O 
O 1 O 1 O O 
O O O O 

Proof. By choosing suitable bases, we may assume that the first columns of the 
exponent matrices consist of O only. Since the Cartan-invariant C76,20 is 1, the 
corresponding entry of the exponent matrix N of A209 is 3 (see 2.9). The non 
trivial Galois automorphism (j of R over Z2 induces a ring automorphism of RJI. 
(by L agg 1-+ L a;g). Therefore N 76 ,56a = N76 ,56b by [Ple83, Proposition (IV.l)]. 
Since all 2-Brauer-characters of J1 are real , one has N56b,56a = N56a ,56b ~ 1 by 
[Neb99, Folgerung 5.2.12]. Hence N 56a ,56b = N 56b,56a = 1 because N 56b,56a + 
N56a ,56b ~ 3 = 1I2(lltl). Similarly 056a,56b = 056b ,56a = 1, where O is the 
exponent matrix of A133. 

Let P76 be the projective indecomposable A-Iattice with head 76 . With the 
condensation given in [Lux97] one calculates the Loewy-series of P 76 /2P76 : 

76 
1 76 

56a 56b 
1 20 1 

56a 76 56b 
1 
76 

(Note that this Loewy-series is given iDcorrectly in both [LaM78] and [Mic89] .) 

In particular 20 occurs only in the 4-th layer of the Loewy-series of P76/2P76 . 

Therefore the Loewy-length of f.209P76/2f.209P76 is at least 4. Therefore one can 
apply [Neb99, Folgerung 5.2.12] to find the exponent matrix N of A209 as in 
[Neb99, Satz 5.6 .1] . 

The Cartan-invariants C76,56a = C76 ,56b are 2. Since the corresponding entrys 
in N are 2, aIs o the entrys in the exponent matrices of A 133b and AI33a are 2 
by [Ple83, Corollary (IV.7)] (see 2.9). Again, the form of the Loewy-series of 
P76/2P76 , implies that the exponent matrices of A133b and A133a are as given in 
the theorem. 
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With [Lux97] one calculates the Loewy-series of P20/2P20 as 

20 
56a 56b 

1 20 1 
56a 76 56b 

1 20 1 
56a 56b 

20 

Therefore the exponent matrices O resp. M of A133 resp. A 77a and A77b are of 
the form 

o=(H ~ =~:) M=(~ ~ b-oba) 
O O O O O O 

with 1 ::; x < y ::; 3 and 1 ::; a < b ::; 3. 
The amalgamation matrix (see 2.9) of P 20 is hence given as 

P20 1 20 56a 56b 76 
77a 3-b 3 3-a 
77b 3-b 3 3-a 
133 3-y 3 3-x 3-x 
209 1 3 2 2 O 

By [Ple83, Corollary (IV.7)(iii)] (see 2.9) the two maximal entries in the 
columns of the amalgamation matrix are equal. Therefore a = 1 or x = 1. 
Since the sum 3 - a + 3 - x + 2 over a column of the amalgamation matrix is 
even by [Neb99, Lemma 5.3.14] one gets a = x = 1. From the first column of 
the amalgamation matrix above one concludes that either b = 2 or y = 2. The 
amalgamation matrix of P56a is 

P56a 1 20 56a 56b 76 
77a 4-b 2 3 
133 4-y 2 3 1 
133b 2 3 1 
209 2 2 3 1 1 

Since the sum over the first column is even, one gets b == y (mod 2) and hence 
b = y = 2. Therefore we know all exponent matrices except of the one of A77 . 

This exponent matrix if of the form (~ ~) for some 1 ::; c ::; 3 Since the sum 

over the first column of the amalgamation matrix of P76 is even, one gets the c is 
odd, hence c = 1 or c = 3. 

Either by explicit calculation of the R-lattices in the 77-dimensional represen-
tation of J l or from the proof of the next theorem one finds c = 1. O 
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Theorem 3.3 Let I := {I, 20, 56a , 56b, 76} denote the indices of the simple A­
modules. For i E I let Pi be the corresponding projective indecomposable A­
module and V be the sum of representatives of ali simple KA-modules and E := 

EndKA(V) :::: Z(KA) . Then there are embeddings t i : Pi --+ V , i E I, with 
t56b = lS6a for the non trivial Galois automorphism U of R over íZ 2, such that the 
following elements ai! E A i,! := 1l"iHomA(Pi, PL)l! C E together with the primitive 
idempotents idp ; E EndA(Pi) C E ( for ail i E I) generate the basic order 

Ao := EndA(EBiElPi) '" A 

as R-order: 

a20,56a = 2(.77a + 2(.133 + (.209 
a20 56b = 2(.77b + 2(.133 + (.209 
al ,~6a = (.77a + (133 + 2(I33b + 2(5(209 
al ,56b = (77b + (133 + 2f.133a + 2(3(209 
ai 76 = 2(.77 + (l33a + (l33b + (209 
a7~,76 = 2(5(133a + 2(3(.133b + 2(.209 

a56a ,20 = (§(.77a + (3(.133 + 2(.209 
a56b,20 = (3(.77b + (5(.133 + 2(.209 
a56a ,l = 2(.77a + 2(.133 + (.l33b + (3(.209 
a56b,1 = 2(.77b + 2(.133 + (.133a + (§(.209 
a76,1 = (.77 + 2(.133a + 2(.133b + 2(.209 

The lines of the following basis matrices Bi ,j are the coefficients of basis ele-
ments of Ai,j with respect to the canonical basis given by the central primitive 
idempotents. Only those matrices Bi,j are displayed, where ICi n Cj I > 2, 

BI ,l = 1 77 77a 77b 133 133a 133b 209 

1 1 1 1 1 1 1 1 
O 2 O O O 2 2 2 
O O 2(3 2(5 2 2(5 2(3 2 
O O 2 2 O 2 2 O 
O O O O 4 O O 4 
O O O O O 4 4 O 
O O O O O 4(3 4(5 4 
O O O O O O O 8 

B 20 ,20 = 77a 77b 133 209 B76,76 = 77 133a 133b 209 
1 1 1 1 1 1 1 1 

2(3 2a O 2 O 2(j 2(3 2 
4(j 4(3 O 4 O O 4 4 

O O O 8 O O O 8 

B 56a,56a = 77a 133 133b 209 B 56b,56b = 77b 133 133a 209 
1 1 1 1 1 1 1 1 

2a 2(3 O 2 2(3 2a O 2 
O O 4 4 O O 4 4 
O O O 8 O O O 8 
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B 20 ,56a = 77 a 133 209 
2 
O 
O 

2 1 
4 2(3 
O 4 

B56a ,20 = 77 a 133 209 

B l ,56a = 77a 
1 
2 
2 
4 

B 56a ,l = 77a 
2 
O 
O 
O 

B l ,20 = 77a 
1 
(~ 
O 
O 

d 
2 
4 

(3 2 
2 O 
O O 

133 133b 209 
1 2 2(§ 
O O 4(j 
2 O O 
O O O 

133 133b 209 
2 1 (3 
420 
O 2 2(3 
O O 4(3 

77b 133 209 
1 
(3 
O 
O 

1 
1 
2 
O 

O 
4 
O 
8 

B20,l = 77a 77b 133 209 
4 4 

4(3 4a 
O O 
O O 

o 1 
4 O 
8 O 
O 2 

B20 ,56b = 77b 133 209 
2 
O 
O 

2 1 
4 2(j 
O 4 

B5 6b,20 = 77b 133 209 
d 2 
2 O 
O O 

B l ,56b = 77b 133 133a 209 
1 1 
2 O 
2 2 
4 O 

B56b,l = 77b 133 

B l ,76 = 77 
2 
O 
O 
O 

B76,1 = 77 
1 
O 
O 
O 

2 2 
O 4 
O O 
O O 

133a 
1 
2 

2(3 
O 

133a 
2 
4 

4(3 
O 

2 2(3 
O 4(3 
O O 
O O 

133a 209 
1 d 
2 O 
2 2a 
O 4(~ 

133b 209 
1 1 
2 O 

2(~ 2 
O 4 

133b 209 
2 2 
4 O 

4(~ 4 
O 8 

341 

Proof. If n, m E Ci = {t E {1, ... , s} I dti = I}, then 4(fn + fm)ei E Ai ,i = Afi' 
Therefore it remains to find for AlI three and for the other Aií one addition'al 
generator to determine the orders Ai •. 

W .l.o.g . one may assume that 

B20 ,56a = 77 a 133 209 
2 
O 
O 

2 
4 
O 

1 
2w 
4 

for some w E 

B56a ,20 = 77a 133 209 

{l, (3, (n· Dualizing one gets 
w-1 -w 
-2 2 
4 O 

2 
O . Since the projec-

O 
tion onto the first component of A56a ,2o is R it follows that w =j:. 1. Applying 
the Galois automorphism u, one may assume that w = (3. Applying u to these 
matrices one gets B 20 ,56b and B 56b,20 . Multiplying these generators one finds the 
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missing generators for the orders A 20 ,20, A S6a ,S6a and A S6b,S6b, as well as bases for 
the bimodules A S6a,56b and A s6b ,56a. 

From the Ext-quiver of A and the exponent matrices, one sees that the bimod­
ule A l ,S6a is generated (as a bimodule) by one element which may be chosen of 
the form (77a + (133 + 2(133b + 2a(209 E E by choosing the embeddings LI and LS6a 

suitably where a E R*. Multiplying by A S6a ,S6a one finds a basis matrix 

Bl ,S6a = 77a 133 133b 209 

1 
, 

2 2a .1 

2((3 - 1) -2(3 O 4a 
2x 2 O O 
4 O O O 

for A l ,56a where x = 1, (3 or (1. Dualizing yields the basis matrix 

BS6a ,1 = 77a 133 133b 
-2 2x 2 - x - (3 - X(3 

O O 2 
O O O 
O -4 2 

209 

(-3(3 + 3 - 3x(3)a 
2a- l 

4a- l 

O 

of As6a ,1' Therefore x + (3 + X(3 ~ O (mod 2) and 1 + (3 + X(3 ~ O (mod 2) 
hence x = 1. 

Multiplying these generators one finds the element a := -2(77a + 2(133 + 
2(133b - 2(209 E Al,l' 

The bimodules A l ,S6b and A56b,1 are obtained applying u. Since 
Al,56aAS6a,20A20,56b C A 1,56b, one has that -2(3(133 + 4a(209 E A 1,S6b. Since 
2(133 - 4a" (209 E A 1,S6b one gets a" = a(5, hence a = (5 . 
In particular f3 := 2(77b + 2(133 + 2(133a + 2(209 E Al ,l. 

The suborder of Al,l generated by el, a, f3 and the elements 4((n +(m) (n, mE 
Cl) (of index 2) acts on AI, 76 as the order generated by the lines of the matrix 

77 
1 
O 
O 
O 

133a 
1 
2 
O 
O 

133b 209 
1 1 
O 2 
2 2 
O 4 

Therefore one finds that c in the proof above is c = 1. Otherwise c = 3 and 
(1, O, O, O) E A 76,1 and therefore (0,2, O, O) E A76,1 which contradicts the fact that 
(133a is amalgamated in A 76,1 with depth 2. 

Also A1,76 is generated as a bimodule by one element as one sees by the Ext-
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quiver of A. For suitable embeddings one finds that 

Bt,76 = 77 133a 133b 209 B76 ,1 = 77 133a 133b 209 
v'- 2 1 1 1 1 2 -2 -2 
va= O O 2 -2 and dually O 4 O 4 
v{3 = O 2 O 2 O O 4 4 

O O O 4 O O O 8 

from which one gets the third missing generator , = 2(77 + 2ft33a - 2ft33b - 2(209 
of At,t. 

It remains to find the missing generator 15 of A76,76. For this we have to perform 
several explicit computer calculations: 

Calculating certain 276-dimensional J1-lattices one finds that 
(1'77+ (209)A76,76 = {(x, y) E R$R I x == y (mod 2)}. Therefore one may choose 
15 as 15 := 2af133a + 2bft33b + 21'209 for certain a, b E R*. Since the scalar product 
of 15 with 1 is integral, one finds that a + b + 1 == O (mod 4) . Moreover one may 
choose 15 to be fix under the Galois automorphism (j from which one gets that 
a = ( and b = (2, where ( is one of (3 or (§. The value of ( will be decided by 
explicit calculations modulo 2. 

The radical J(At,t) contains the (Galois invariant) element a' := 21'1 +2(3f77a+ 
2(§f77b + 2(3(t33a + 2(§(133b + 21'209, which is not contained in J(At ,t}2. The 
element {3' := 2(3f77a+2(§f77b+2é209Iies in J(A 20,20)-J(A20,20)2. Both elements 
a' and {3' act equally on A1,20. If ( = (3 then 15 = 2(3f133a + 2(§f133b + 21'209 is an 
element in J(A76 ,76) - J(A76 ,76)2 that acts like a' on A1,76. 

Condensation of lF2A does not only give the Loewy-series of the projective in­
decomposable lF2A-modules, but also a tool to calculate the endomorphism rings 
and homomorphism bimodules of these modules. Explicit calculations yield that 
J(EndlF2G(P20» acts as a one dimensional space on HOIDlF2G(P1, P20 ). The kernel 
ofthis action is J(Endl!'2G(P20»2. The same holds for the action of J(EndlF ,G(P76» 
on HomlF,G(P1, P76). Therefore we know the image of f3 and , under these actions. 
But there is no element of J(EndJr 2G(Pt}) that acts on HomlF,G(P1, P20) like f3' 

-- . 2 and on HomlF 2G(Pt, P76) hke 15. Therefore (= (3' O 

Corollary 3.4 Let J = J(A) be the Jacobson radical A. Then 

The Loewy series of the projective indecomposable A-lattices are given as follows, 
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where the last two layers are repealed periodically: 

P1 P20 P76 PS6a PS6b 

1 20 76 56a 56b 
1 76 56ab 56ab 1 76 1 20 1 20 
14 202 12 202 76 56ab 76 56a2 56b 76 56b2 

1 763 56a3b3 76 56a2b2 13 20 13 202 13 202 

17 204 14 203 763 56a2b2 762 56a3 56b3 762 56b3 

1 764 56a4 b4 76 56a3 b3 14 20 14 202 1'1 20:t 
18 204 14 204 764 56a2 b2 762 56a4 56b3 762 56b4 

From Theorem 3.3 one obtains the principal block of 7l.2h by Galois descent. 

3.3 The group ring of Z3S9. 

This section gives generators of the Morita equivalent basic order of the principal 
block of 7l.359. The proof can be obtained from [Neb99, Section 5.6.4]. The group 
ring 7l.aS9 has 5 blocks, 4 ofwhich have defect ::; 1. (see [Jam78]) . A decomposition 

56a 

56a3 

56a3 
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matrix for the principal block A Df 7l3S9 is given in [Jam78]: 

1 I' 7 7' 21 21' 35 35' 41 41' 
1 1 
I' 1 
8 1 1 
8' 1 1 

42a 1 1 
28 1 1 
28' 1 1 
70 1 1 
42 1 1 
42' 1 1 
48 1 1 
48' 1 1 
56 1 1 
56' 1 1 
84 1 1 1 1 
84' 1 1 1 1 
105 1 1 1 1 1 
105' 1 1 1 1 1 
120 1 1 1 1 1 1 
120' 1 1 1 1 1 1 
168 1 1 1 1 1 1 1 1 
168' 1 1 1 1 1 1 1 1 

Here X' denotes the tensor product Df the character X with the sign character I'. 

Theorem 3.6 The graduated hull r = $XElrr(A)A€x is as follows, where onlll 
one of the two summands A€x and A€x' is given. 

Al(l,(O)),A8(1,7,(~ ~)), A42a(21,21"(~ ~)), 
A28(7,21, (~ ~)), 

A70(35,35"(~ ~)), A42(l,,41,(~ ~)), A48(7,41,(~ ~)), 

A56(21,35,(~ ~), A84(7"l',35,41,(~ ~ ~ :), 

. O O O O 

A105 (35, 1,7,21,41, (H ~ i i 1), 
O 1 101 
O 1 110 
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O 2 1 1 1 2 

O O 1 O O 1 

A120 (35', 1 , 1', 7,35 , 41, 
O 2 O 1 1 1 

), 
O 1 1 O 1 1 

O 1 1 1 O 1 

O 1 O O O O 
O 2 2 1 1 2 1 3 

O O 1 O 1 1 O 1 

O 1 O 1 O 1 O 1 

A168(21', 1',7,7', 21,35,35',41, 
O 1 2 O 1 1 1 2 ) . 
O 2 1 1 O 1 1 2 

O 1 1 O O O O 1 

O 1 1 1 1 1 O 2 

O O O O O O O O 

Theorem 3.7 Let f := {1, 1', 7 , 7',21,21',35,35',41 , 41'} denote the indices of 
the simple A-modules. For i E f let Pi be the corresponding projective indecom­
posable A-module and V be the sum of representatives of all simple 1Q3A-modules 
and E := EndQ3A(V) ~ Z(IQ~) . Then there are embeddings Li : Pi -+ V, i E f , 
such that the following elements ail E Ai ,1 := 1T"jHOmA(Pi, PI)Ll C E together with 
the primitive idempotents idp • E EndA(Pi) C E (for all i E f) generate the basic 
order 

as 'ff..3-order: 

al ,7 = 9 f 8 + 3 f 84' + 3f 10S + f120 + f168' 

al' ,7' = 9f8' + 3 f 84 + 3f105' + f120' + f168 

al ,3S = I:I0S + f120 + 1:120' - 1:168' 

a1',3S' = 1:105' + 1:120 + 1:120' - 1:168 

a1 ,41' = 31:42' + 31:84' + 31:120' - 31:168' 

a1',41 = 3f42 + 31:84 + 31:120 - 3f168 

a7,21 = 31:28 + 1:105 + f168 + 1:168' 

a7' ,21' = 3f28' + 1:105' + 1:168 + f168' 

a7,35' = 3f84' + 1:120 + 1:168 + 31:168' 

a7',3S = 3 f 84 + f120' + 31:168 + 1:168' 

a7,41 = 31:48 + fl05 + 3f120 + 3f168 

a7' ,41' = 31:48' + f105' + 3 f 120' + 31:168' 

a21 ,21' = 31:42a + 1:168 - 31:168' 

a21,35 = 91:S6 + 1:105 + 3f168 + 3 f 168' 

a21',3S' = 9f56' + fIOS' + 3 f 168 + 3 f 168' 

a35,35' = 91:70 - 1:120 - 31:120' + 1:168 - 121:168' 

a35 ,41 = 1:84 + 31:105 + 31:120 + 3f168 

a3S' ,41' = 1:84' + 31:10S' + 31:120' + 31:168' 

a7,1 = 1:8 + 1:84' - fIOS + 31:120 + 61:168' 

a7' ,1' = f8' + f84 - 1:105' + 3 f 120' + 61:168 

a35,1 = 31:1OS + 3f120 + 31:120' - 31:168' 

a35' ,1' = 3f105' + 3f120 + 3f120' - 31:168 

a41' ,1 = f42' + f84' - f120' + f168' 

a41 ,1' = f42 + f84 - f120 + f168 

a21,7 = 3f28 + 3fl05 + 31:168 - 31:168' 

a21',7' = 3 f 28' + 31:10S' - 3 f 168 + 31:168' 

a35' ,7 = f84' + 3 f 120 + 31:168 + f168' 

a35,7' = 1:84 + 3f120' + f168 + 3f168' 

a41,7 = 1:48 + 31:105 - 1:120 - 1:168 

a41' ,7' = f48' + 3 f 105' - f120' - f168' 

a21' ,21 = 1:42a + 3f168 - 1:168' 

a35,21 = f56 - 31:105 - f168 + 4f168' 

a35' ,21' = f56' - 3f105' + 4f168 - f168' 

a35',3S = 1:70 + 31:120 + 1:120' + 31:168 - f168' 

a41,35 = -3f 84 + f105 + 1:120 - f168 

a41' ,35' = -31:84' + fl05' + f120' - f168' 
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The Ext-quiver of A/3A is obtained from the following graph, by replacing alI 
edges by arrows in both directions: 

A calculation of the radical series (Jn )nEN, where J = J(A) is the Jacobson 
radical of A shows the following: 

Theorem 3.8 

+3( f42a +f42 + f42' + f48 + f48' +f84 + 1'84' + fl05 + 1'105' + 1'120 + 1'120' + 1'168 + fI68')' 

then the Jacobson radical J := J(A) satisfies 

J5Z= f. 

During the calculation of the radical series we obtain the Loewy structure 
of the projective indecomposable A-Iattices, as well as the Loewy series of the 
projective indecomposable A/3A-modules ([Neb99], see also [TanOO]). 

4 The radical series. 

Let A be an R-order in the K-algebra A = KA and J := J(A) be the Jacobson 
radical of A. 

Theorem 4.1 (cf. [Kün99, Remark E.2.1J) The radical series (r)nEN becomes 
periodic, i.e. there are m > n E N and a unit a E Z(A), such that Jm = aJn. 

Proof. The radical J and alI its powers are two-sided ideaIs of A, hence A - A­
bimodules. The A - A-bimodules in A are the sublattices for the order r := 



348 Gabriele Nebe 

AOp ® Z(A) A. By the Theorem of Jordan and Zassenhaus (cf. [Rei75, Theorem 
26.4]) there are only finitely many isomorphism classes of r-Iattices in A. There­
fore there are m > n E N such that Jm ~ Jn as r-Iattices. All r-isomorphisms 
are given by multiplication with units in Z(A), hence there is a E Z(A) such that 
Jm=aJn. O 

There are many open questions about this radical series. 
Which isomorphism classes of bimodules occur as powers of J? 
What is the period of the radical series (determine a)? 
What is the period length? 

In the examples in Section 3, the period length is either 1 (Z234) or 2. For the 
principal block of Z3Mll, which has sim pIe modules, that are not self dual, the 
period length is 3 (see [Neb99, 5.6 .3]). 

What is the pre-period length? 
Give bounds for these lengths. 
Is there an exponent no, such that f.tln C Jn for all 1 :s t :s s and n ~ no? 

In the examples in Section 3, there is such an exponent no. An example, where 
there is no such no , is the group ring A := Z2[i]C4 . The Jacobson radical J := J(A) 
satisfies 

J3 = {(a, b, c, d) E 2(1 + i)Z2[W I a == b (mod 4), c == d (mod 4)} 

and J4 = (1 + i)J3. Therefore Jn is indecomposable for all n . 
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