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Group rings of finite groups over p-adic integers, some examples
Gabriele Nebe

Abstract: A method to describe certain group rings of
finite groups over p-adic integers is applied to calculate the
group rings Z9oJ; and Z3Sge up to Morita equivalence. The
radical series are calculated.
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1 Introduction.

The p-adic integral group ring RG of a finite group G is the connecting link
between the p-modular and the ordinary representation theory of G. Already R.
Brauer (see e.g. [Bra56]) aimed to study the number theory of RG by investigating
the factor algebra RG/wRG, where 7 is a prime element in R. If p divides the
order of GG, the group ring RG is not a maximal order, not even hereditary, but
a much more complicated object. Therefore the first step to understand group
rings is the calculation of examples.

Here it is always assumed that the p-modular and ordinary representation the-
ory of G is known. In particular the decomposition matrix of RG is used. In
his habilitation thesis ([Ple80], [Ple83]) Plesken develops methods to describe cer-
tain integral group rings. One gets a complete description if the p-decomposition
numbers of G are < 1. Plesken’s methods aime to calculate a certain graduated
overorder I' (see Definition 2.1) of RG, canonically attached to RG. T has the
same irreducible lattices as RG, which can be described combinatorially. As an
application he describes among other single examples the blocks of cyclic defect
([P1e83, Chapter VIII], see also [Rog80], [Rog92] and [Lin96]) and the 2-adic group
rings of SLy(p’) for odd primes p. E. Kleinert ([K1e90], [Kle92]) refines this lan-
guage to obtain a description of a smaller overorder of RG, which can be described
as a multiple fibre product. Motivated by Plesken’s ideas, H. Wingen, a student
of W. Jehne, calculates p-adic integral group rings of certain Frobenius groups,
where Gaussian and Jacobian sums appear as matrix entries ([Win93],[Win95]).
A different approach to describe the integral group rings for the symmetric groups
is developed by M. Kiinzer in his thesis and further articles ([Kiin99], [Kiin00],
[Kiin02]). He gives explicit homomorphisms between certain different Specht lat-
tices modulo an integer . This allows to identify a non-maximal overorder of
ZSn.

My habilitation thesis refines Plesken’s methods to obtain a complete descrip-
tion of the group ring RG for certain groups G via explicit generators for the
Morita equivalent basic order. If the defect is small, then the calculation of RG
1s an easy application of these methods (see [Neb02], [Neb98]). Among other ex-
amples the group rings of SLa(p’) over p-adic integers are described nearly up to
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Morita equivalence (see [Neb00a], [Neb0Ob]) using [Kos94] and [Kos98].

Knowing these p-adic group rings, one can calculate many invariants, give a
description of the unit group and the ideal theory or calculate automorphisms of
these group rings as demonstrated in [HeN02].

The present paper is intended to present certain results describing p-adic group
rings, which are either unpublished or only contained in [Neb99]. Therefore the
language used to describe these group rings is briefly repeated in Section 2 before
we give the group rings in Section 3. Here, proofs are omitted, if they can be
obtained from [Neb99]. As an application, the radical series of the group rings
are calculated. It is known that these series become periodic (see Section 4). The
period length, however, is unknown in general.

2 Methods

Let G be a finite group and R the ring of integers in a finite extension field K
of the p-adic numbers. Then the integral group ring RG provides a link between
the ordinary representation theory of G over K and the p-modular representation
theory of G over the residue field k = R/(m). To calculate RG, information from
the ordinary and p-modular representation theory of G is used. In particular, the
decomposition matrix of RG should be known.

The first step to describe the order RG is to decompose this order (or more
precisely an overorder that is canonically attached to RG) into smaller pieces using
the central primitive idempotents ¢;,...,6; € KG in the semisimple K-algebra
KG and orthogonal idempotents e;,...,e, € RG that are lifts of the central
primitive idempotents of the biggest semisimple factor algebra RG/J(RG) of RG.
Note that the ¢; are unique and the idempotents e; are unique up to conjugacy in
RG. Clearly

h
RG = @ e; RGe;
ij=1

where the e; RGe; are R-orders and e; RGe; are e; RGe;-e; RGej-bimodules. The
local rings e; RGe; and also the bimodules are in general still quite complicated.
Therefore one first describes the projections of these rings and bimodules into the
simple components of KG: Let

| B — éangG.
t=1

Then the idempotents e;e; are either 0 or map onto the central primitive idempo-

tents of I'/J(T') and
s h
= @ @ eeiRGe;j.

t=114,j=1
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The rings €;e; RGe; are local R-orders in the simple K-algebra e,e; KGe; which
are maximal orders, if the p-decomposition numbers of G are < 1 and R is “big
enough”. In this case I' is a so called graduated order (see [Ple83]) or tiled or-
der ([Rog92]) and the order T' can be described purely combinatorially using the
language of exponent matrices.

2.1 Graduated orders.

Definition 2.1 An R-order ' in a semisimple K -algebra is called graduated, if
I' contains a system of orthogonal idempotents ey, ..., e, with e;e; = &;je; and
1=-¢e)+ ...+ ey such that e;I'e; are mazimal R-orders in e; KTe;.

If T is a graduated order, then I' contains the central primitive idempotents of
KT and hence I is a direct sum of graduated orders in simple algebras. If " is a
graduated order in the simple algebra D™"*™ and e;, ..., e, are lifts of the central
primitive idempotents of I'/J(I'), then the orders e;['e; are maximal orders in
e; D"*ne; = DniXni hence of the form Q"*" where (2 is the maximal order in
D. The bimodules e;I'e; are isomorphic to Qm*™s, i.e. of the form (p™)"*"
for certain m;; € Z where g denotes the maximal ideal of 2. Hence T is conjugate
to the graduated order

AR,ny,...,n5, M) ={X € D"** | X = (X;;) and X;; € (p™i7)"*"i}
The matrix M = (m;;) is called an exponent matrix of T'.
Remark 2.2 The entries in the exponent matriz satisfy:
a) mi =0 foralli=1,..., h.
b) mij + mjx > myx foralli,jk=1,...,h.
c) mij+mj; >0 forall1<i#j<h.

Proof. a) and b) follow from the fact that I' contains 1 and is closed under multi-
plication. ¢) is a consequence that we have chosen the e; to be lifts of the central
primitive idempotents modulo the radical. O

In general, the exponent matrix M is not determined by I', but only the
structural invariants

Myjk = M5 + Mjx — Mg
Two graduated orders A(2, ny,...nx, M) and A(Q, n},...n},, M’) are isomorphic,
if and only if h = h’ and there is a permutation o of {1, ..., h} such that n; = n},
and myjx = m forall 7,7,k =1,...,h (see [Ple83, Proposition (IL.6)]).

Remark 2.3 Let A be an R-order in a semisimple K -algebra KA and leteq, ... €,
be the central primitive idempotents of KA. Then T' := ®_,€:A is a graduated
order if and only if the decomposition numbers of A are < 1 and Z(T') is a mazimal
order in Z(KA).

'
io,jo,ko
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2.2 Symmetric orders.

Definition 2.4 An R-order A in the semisimple algebra A = KA 1s called sym-
metric if there is a nondegenerate symmetric associative K -bilinear form & :
A x A = K such that A is self dual with respect to ®, i.e. A = A* = {a €
A|®(A,a) C R}).

One easily shows that the nondegenerate symmetric associative K-bilinear
forms on the separable K-algebra A are precisely the forms

Try: Ax A= K,(a,b)— Ztrred(auctb)

=1

where u € Z(A)* and tr,.4 denotes the reduced trace of A¢, to K.

The most important examples of symmetric orders are blocks of group rings
of finite groups. Let G be a finite group. Then RG is a symmetric order in
A = KG with respect to |G|~! times the regular trace bilinear form. If x.(1)
denotes the dimension of an absolutely irreducible constituent of the simple K Ge;-
module, then this associative symmetric bilinear form equals T'r,, where u =

G|~ E:=1 xt(1)ee.

Lemma 2.5 ([Thé95], Proposition (1.6.2)) If A is a symmetric R-order with re-
spect to ® and e, f are idempotents in A then ®|(eaf)x(sAe) 15 @ nondegenerate
R-bilinear pairing. In particular eAe is a symmetric order.

One important means to deal with symmetric orders is Jacobinski’s conductor
formula (see [Jac81]).

Theorem 2.6 Let A be a symmetric order and T’ be an overorder of A contained
in KA. Then the dual T# of T is the biggest I'-ideal that is contained in A.

The dual of a graduated order can also be described by exponent matrices.

Theorem 2.7 (cf. [Ple83, Theorem (1I1.8)]) Let A be a symmetric R-order with
respect to Try such that ' = &]_, ;A 1s a graduated order

I =P AQ, n,, MD).

s
=1
Then the biggest '-ideal in A is

I'* =a!_,(eANA).

Here
I# = @], A(Q, keJn, — (MP)Fr)
._J'

where J,,, € {1}"*" denotes the all-ones-matriz, ky = py — 0, such that p;°* is
the inverse different of the marimal R-order Q;, and pf'* = (ue)™'Q;.
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Since I'# is contained in T' this gives an upper bound on the entries of the
exponent matrix:
m'® (1) «
m;; + m: i < K¢.

2.3 Glueing.

By Theorem 2.7, one has the following inclusions:

r=@Pea«AdADP(ANA) =
t=1 t=1

In this section we use the fact that this inclusion describes A as an amalgamation
of the orders A¢;, where the amalgamating factor is known from the symmetrizing
form, to derive further combinatorial conditions on the entries m ) of the exponent
matrices.
For 1 <i<hlet
cii={t|du =1}

and denote by €; a primitive idempotent in A with €;e; = €;. Then P; := &A (1 <
i < h) are the projective indecomposable A modules. Multiplying the inclusion

above with &;, one sees that for ¢ € ¢; N ¢; the number k; — m® m(v‘,-) is the

multiplicity of the simple A-module S; (with Sje; = S;) in ¢ F; /(L;P N P]

Definition 2.8 Let 1 < i < h. Then the amalgamation matrix A(P;) € (Z>oN
{Dlesdxh s the matriz of which the rows are labeled by the elements of ¢; and the
columns by {1, ..., h} such that

®) _ p®

A(Pi)e,; = { R = My = g:f ¢ e

Remark 2.9 The entries in the amalgamation matrices satisfy:
(i) A(Pi)e; = A(Pj)e,i forall1 <i,j<h,t€ciNc;.
(1) A(Pi)ei = K.
(iiz) If c; N c; = {t}, then A(P;),; = 0.
(iv) ([Ple83, Corollary (I1V.7)]) If c; Nej = {t,1} then A(P;):; = A(P;)1j. More
generally the two mazimal entries in any column of A(P;) are equal.
2.4 A language to describe RG.

To describe the suborder RG of the graduated order I' = @;_, ¢, RG it remains to
calculate the rings e; RGe;, the bimodules e; RGe; and the multiplication e; RGe; x
e;RGer — e;RGer. The idempotents ¢, yield a “canonical basis” of e; K RGe;
where the coefficients of the “basis” element that corresponds to ¢ lie in D;.
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We now assume that ¥ = R/mR is a splitting field for kG and that the di-
vision algebras D; are commutative. This can be achieved by replacing K by a
suitable unramified extension. Let P,..., Py represent the isomorphism classes
of projective indecomposable RG right modules.

Then RG is Morita equivalent to

h
A :=Endpg(P1 & ...® Py) = €D Hompa(P:, P})

i,7=1

and A is a basic order in the sense that the simple A-modules are one dimensional
vector spaces over k.

Since there is an idempotent e € RG such that A = eRGe, Lemma 2.5 shows
that A is symmetric. Note that the module categories of RG and A are equivalent.
In particular the decomposition numbers of RG and A are equal. We assume that
for 1 < i < h the endomorphism rings Endgrg(F;) are commutative which is
equivalent to say that the decomposition numbers of RG are < 1.

The main new idea for describing the order A is to embed the R-lattices
Hompgg (P, P;) simultaneously for all 1 < 4,j < h into a commutative finite-
dimensional K-algebra E such that the multiplication
Hompgg(P;, P;) x Homgg(Pj, Pi) =& Hompgg(P;, Pi) can be performed in E.

To this purpose let

"4 :=@V¢
t=1

be the sum over a system of representatives of the isomorphism classes of simple
K G-modules and

E = Endgo(V) = P D = Z(KG).
t=1

Let 1 < j < h. Since Endgrg(P;) is commutative, the KG-module V has a
unique K G-submodule isomorphic to K ®g P; and up to isomorphism a unique
RG-sublattice isomorphic to P;. For all 1 < j < h choose an embedding

y: PV
Let @Q; be the unique K G-invariant complement of K ®g ¢;(P;) in V,
V = (K ®ri(F;)) ©Q;-

Then the RG-homomorphisms ¢ € Hompgg(P;, P;) for 1 < 4, j < h are consid-
ered as elements of E by letting

Ple; = 0.
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Definition 2.10 Fori = 1,...,h let m; : V = K ®@gr P; be the projection onto
K ®gr P with m;(Q;) = 0 and ym; = idp,. Then for 1 < i,j < h there are
embeddings

Hompgg(P;, Pj) = E, ¢ — mipe;.

Via these embeddings Hompeg(P;, P;) is viewed as a subset
A,‘j = ‘Ir,'Homgc(P,',Pj)Lj CE.

Remark 2.11 For 1 < i # j < h the endomorphism ring Endrg(P;) is canoni-
cally (i.e. independent of the choice of 1; ) embedded into E, whereas the embedding
Hompgeg (Pi, Pj) — E depends on the choice of v; and ;.

In the examples only the Morita equivalent basic order Endy(&/_, P;) is de-
scribed. To this aim we choose suitable embeddings ¢; : P; < V and give gen-
erators of A;; C E, by using the canonical “basis” of E, formed by the central
primitive idempotents €;. The elements in A;; are linear combinations

E A€t
tEe;Necy

&
where a; € D; (more precisely in g, ” ). A basis matrix of Aijis a
Ltecine; dimk (De) x |e; N ¢j| matrix of which the lines are the coefficients a; of
an R-basis of A.‘j.

3 Some examples of group rings.

After the leading example to illustrate the notation, this section describes the

principal blocks of Z,J; (defect 3) and of Z3S, (defect 4).

3.1 The group ring Z,S,.

As a first simple example, the group ring ZS4 is described to illustrate the nota-
tion. The decomposition matrix of Z,S54 is:

Here 1’ denotes the sign character, 3+ 1 is the natural permutation character and
3’ = 3.1'. The graduated hull of A = Z,5; is

I':= EIA@ A D e ADesA B 53:1\
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where ;A = e/ A = Zy = A(Z, 1, (0)), €2A = Z2%% = A(Z,, 2, (0)),
and A = e A = A(Zy, 1,2, ( g 3 ).

If A’ denotes the basic order of A and e; € A’ and e; € A’ are lifts of the
central primitive idempotents and B; ; denotes a basis matrix of e;A’e; then:

Biy= 1 ¥V 3 38 _ ,
1 1 1 1 Bzrz‘f:l"‘; Bip= 3 3 By;= 3 3
0 2 0 2 B 4 4 1 1
0 0 4 4 00 8 0 8 0 2
0 0 0 8

The eleven generators described in these basis matrices correspond to following
generators of A’ (as Zg-lattice):

aao (3 9).(3 3 wan(§ 8).(3 o)

o
A
oo oo
o oo oo o
LS
:---’
—
=
e
=
E——
—_— oo
oo = NN
e
FETIN,
= o o

I 00
@005 5) (3 o)

Proof. The exponent matrices are easily obtained, e.g. with [Ple83, Theorem
(VL1)]. This also gives the form of the bimodules e;A’e; for i # j. From the
central characters of S4, one gets that e;Z(A’) is symmetric and hence e; Z(A') =
eaA’ey. Similarly one finds that ey Z(A’) is the suborder of index 2 spanned by the
1 17 3 %
1 1
0 4
4 4
0 0 0 8
It remains to decide which of the 3 non-trivial classes of (e3Z(A’))#/e;Z(A’)
(represented by (0,2,0,2),(0,2,2,0),(0,0,2,2)) lies in e;A’e;. Since 1 and 1/
are not congruent modulo 4, the last class is impossible. To decide between
the other two classes, we use the one-box shift morphism given by M. Kiinzer.

1 1
linesof 0 4 of eyA’e;. The latter is contained in the dual (e; Z(A’))#.
0 0
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[]

Let A =L T TJand po= L . Then A is the partition belonging to the
trivial character 1 and p belongs to the character 3. pu is obtained from A by
shifting the most right box in A to the lower left box in pu. The shift length
is 4. Therefore [Kiin00, Theorem 3.1] implies that there is a homomorphism of
e1A’e; to eyA’es/4e;Ae3 of order 4. Therefore all elements of e;A’e; (€1 + €3) are
congruent to 0 or 1 modulo 4e; A’ @ 4ezA’. O

Corollary 3.1 The Jacobson radical J of Z1Sy satisfies J* = 2J3. The exponent
matrices of J* are (3),(3), (3), ( g ; ) ; ( g g ), hence J® is conjugate to 8
times the mazimal order in Q254.

3.2 The group ring Z,[(3]J;.

Let R := Zj[(3] be the ring of integers in the unramified extension of degree
2 of @3. This section gives generators for the Morita equivalent basic order of
the principal block of RJ;. The proofs are included for several reasons: First,
this calculation is not contained in [Neb99], second, to demonstrate the methods
developed in [Neb99], third to show the limit of these methods, since here serious
computer calculations are involved to decide the last subtle question, and forth,
to correct the error in the Loewy series of the projective indecomposable IF4.J;-
modules as given in [LaM78] and also in [Mic89].

The group ring RJ; has 7 blocks, 6 of which have defect < 1. The defect
group of the principal block A is elementary abelian of order 2. A decomposition
matrix of A is as follows:

1 20 56a 56b 76

1 1 2

77 |1 . : 1
T7a |1 1 1 ;
776 |1 1 : 1

133 [1 1 1 1 ;

133a | 1 i 1 1

1336 )1 . 1 ; 1

209 |11 1 1 1 1

Theorem 3.2 The graduated hull T' of A is

F'=A1®A7D Avrza ® Avrp ® A13z ® Araza ® Araszs B Azoe

with Ay = A(R,1,(0)), Az = A(R, 1,76, ( g (1) )

Arra = A(R, 20,56a,1, M), Azm = A(R,20,56b,1, M),
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01 1 2
0011
Avzs = A(R, 20,564,566, 1, | o 1 o 1 [) Aissa=A(R,76,1,565, M),
000 0
Aysss = A(R, 76,1,56a, M),
012 2 3
00112 01 2
Asos = A(R,76,1,56a,566,20,] 0 0 0 1 1 |), whereM:=| 0 0 1 |.
00101 (0 0 0)
00000

Proof. By choosing suitable bases, we may assume that the first columns of the
exponent matrices consist of 0 only. Since the Cartan-invariant c76 20 is 1, the
corresponding entry of the exponent matrix N of Agpg is 3 (see 2.9). The non
trivial Galois automorphism o of R over Z induces a ring automorphism of RJ;.
(by 3_agg = 3_agg). Therefore N7g 560 = N76 560 by [Ple83, Proposition (IV.1)].
Since all 2-Brauer-characters of J; are real, one has Nsep 560 = Nssa,s66 > 1 by
[Neb99, Folgerung 5.2.12]. Hence Nsga,s66 = Nsebs6a = 1 because Nggps56a +
Nssases < 3 = va(|J1]). Similarly Oseas66 = Osebs6a = 1, where O is the
exponent matrix of Ajss.

Let Pz¢ be the projective indecomposable A-lattice with head 76. With the
condensation given in [Lux97] one calculates the Loewy-series of Prg/2 Prg:

76
1 76
56a 56b
1 20 1 .
56a 76 56b
1
76

(Note that this Loewy-series is given incorrectly in both [LaM78] and [Mic89].)

In particular 20 occurs only in the 4-th layer of the Loewy-series of Prg/2Pzs.
Therefore the Loewy-length of €209 P76/2¢€200 P76 is at least 4. Therefore one can
apply [Neb99, Folgerung 5.2.12] to find the exponent matrix N of Aze as in
[Neb99, Satz 5.6.1].

The Cartan-invariants ¢76 562 = 76,565 are 2. Since the corresponding entrys
in N are 2, also the entrys in the exponent matrices of Aj3zp and Aq33, are 2
by [Ple83, Corollary (IV.7)] (see 2.9). Again, the form of the Loewy-series of
Pr6/2Prg, implies that the exponent matrices of Ajss, and Ajase are as given in
the theorem.
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With [Lux97] one calculates the Loewy-series of Pag/2P,q as

20
56a 56b
1 20 1
56a T6 5H6b
1 20 1
56a 56b
20
Therefore the exponent matrices O resp. M of Ajs3 resp. A77, and A7, are of
the form "
0 E J; yga: ¢ o b
0= , M=1 0 0 b—a
01 0 y—= 0 0 0
0 0 0 0

withl<z<y<3and1<a<b<3.
The amalgamation matrix (see 2.9) of Py is hence given as

Py 1 20 56a 566 76
TTa|3—-b 3 3-—a ;

761 3—-b 3 : 3—a
133|3—-y 3 3—-2z 33—z .
209 1 3 2 2 0

By [Ple83, Corollary (IV.7)(iii)] (see 2.9) the two maximal entries in the
columns of the amalgamation matrix are equal. Therefore a = 1 or z = 1.
Since the sum 3 —a + 3 — ¢ + 2 over a column of the amalgamation matrix is
even by [Neb99, Lemma 5.3.14] one gets a = ¢ = 1. From the first column of
the amalgamation matrix above one concludes that either b = 2 or y = 2. The
amalgamation matrix of Pse, is

Pssa 1 20 56a b56b 76

77a [4—b 2 3 ’

133 ([4—y 2 3 1 ;
133b 2 ’ 3 ; 1
209 2 2 3 1 1

Since the sum over the first column is even, one gets b =y (mod 2) and hence

b = y = 2. Therefore we know all exponent matrices except of the one of Az7.
This exponent matrix if of the form ( g S ) for some 1 < ¢ < 3 Since the sum
over the first column of the amalgamation matrix of Prs is even, one gets the ¢ is
odd, hence e=1or ¢ = 3.

Either by explicit calculation of the R-lattices in the 77-dimensional represen-
tation of J; or from the proof of the next theorem one finds ¢ = 1. a
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Theorem 3.3 Let I := {1,20,56a,56b,76} denote the indices of the simple A-
modules. For i € I let P; be the corresponding projective indecomposable A-
module and V be the sum of representatives of all simple K A-modules and E :=
Endga(V) = Z(KA). Then there are embeddings «; : P; = V, i € I, with
tsey = LZg, for the non trivial Galois automorphism o of R over Zs, such that the
following elements a; € A; ) := m;Homp(FP;, P)u C E together with the primitive
idempotents idp, € Endp(P;) C E ( for all i € I) generate the basic order

Ao := Endp(®ier Pi) ~ A

as R-order:

20,560 = 2€77a + 2€133 + €209 a56a,20 = C32€77a ~+ (a€133 + 2€209
as0,566 = 2€77p + 2€133 + €200 aseb,20 = (3€776 + (Z€133 + 2¢€200
1,560 = €77a + €133 + 2€1336 + 2(Z €200 As6a,1 = 2€77q + 2€133 + €1335 + (3€209
a1,566 = €776 + €133 + 2€133a + 2(3€209 asep,1 = 26776 + 2€133 + €133a + (S €209
ay,76 = 2€77 + €1334 + €133 + €200 azg,1 = €77 + 2€1334 + 2€1336 + 2€200

are, 76 = 2¢3€133a + 2(s€1336 + 2€209

The lines of the following basis matrices B; ; are the coefficients of basis ele-
ments of A; ; with respect to the canonical basis given by the central primitive
idempotents. Only those matrices B; ; are displayed, where |¢; N ¢j| > 2,

Biy= 1 77 T7la 77b 133 133a 1336 209
1 1 1 1 1 1 1 1
0 2 0 0 0 2 2 2
0 0 26 23 2 2% 2 2
0 0 2 2 0 2 2 0
0 0 0 0 4 0 0 4
0 0 0 0 0 4 4 0
0 0 0 0 0 4(3 4{3 4
0 0 0 0 0 0 0 8

Byozo= T77a T77b 133 209 Bre7e= 77 133a 133b 209

1 1 1 1 1 1 1 1
2 23 0 2 0 2¢¢2 2 2
43 4z 0 4 0 0 4 4

0 0 0 8 0 0 0 8

855";55“: 77a 133 1336 209 BSﬁb,EEbz 77b 133 133a 209

1 1 1 1 1 1 1 1
23 23 0 2 23 23 0 2
0 0 4 4 0 0 4 4
0 0 0 8 0 0 0 8
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Bygs6a = T7a 133 209 3201555 = T7b 133 209
2 2 i 2 2 1
0 4 2 0 4 2
0 0 4 0 0 4
8553,20 = TTa 133 209 Bsab,ga = 775 133 209
G (2 G G 2
2 2 0 2 2 0
4 0 0 4 0 0
Bissa= T7a 133 133b 209 Byser,= T7b 133 133a 209
1 1 2 203 1 1 2 2
2 0 0 4c2 2 0 0 4G
2 2 0 0 2 2 0 0
4 0 0 0 4 0 0 0
Bsean = T7a 133 133h 209  Bsepy = 776 133 133a 209
5 2 1 G 2 2 1 &
0 4 2 0 0 4 2 0
0 0 2 2 0 0 2 2
0 0 0 4 0 0 0 4
Biao= T77a T7b 133 209 Byze= 77 133a 1336 209
1 1 1 0 2 1 1 1
@ G 1 4 0 2 2 0
0 0 2 0 0 2¢ 2¢ 2
0 0 0 8 0 0 0 4
By = T7a 77b 133 209 Bgsy = 77 133a 133b 209
4 4 0 1 1 2 2 2
43 4¢ 4 0 0 4 4 0
0 0 8 0 0 4¢; 4¢2 4
0 0 0 2 0 0 0 8

Proof. If n,m € ¢; = {t € {1,...,s} | dsi = 1}, then 4(en + €m)e: € Ay = AF,.
Therefore it remains to find for A;; three and for the other A;; one additional
generator to determine the orders Aj;.

Baosea = T77a 133 209
W.lo.g. one may assume that g i 2::; for some w €
0 0 4
Bsga20= T77a 133 209
{1,¢3,¢3}. Dualizing one gets w_—21 _2w g . Since the projec-
4 0 0

tion onto the first component of Aseq 20 is R it follows that w # 1. Applying
the Galois automorphism &, one may assume that w = (3. Applying ¢ to these
matrices one gets Bag sep and Bssp 20. Multiplying these generators one finds the
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missing generators for the orders Asg 20, Assa 562 and Ases ses, as well as bases for
the bimodules A555,56b and Asﬁbrﬁﬁa.

From the Ext-quiver of A and the exponent matrices, one sees that the bimod-
ule Ay s6q is generated (as a bimodule) by one element which may be chosen of
the form €77, + €133 + 2€1336 + 2a€209 € E by choosing the embeddings ¢y and 56,
suitably where a € R*. Multiplying by Asea 564 One finds a basis matrix

Bi 562 = T7a 133 1336 209
1 H 2 2a

2(¢s—1) =2 0 4a

2z 2 0 0

4 0 0 0

for A1 56a where z = 1,(3 or (. Dualizing yields the basis matrix

Brsasr= T7a 138 133b 209
-2 2z 2—-z-(3—2( (=3(+3—3z(3)a""’
0 0 2 2a~!
0 0 0 4a~!
0 -4 2 0

of Asga,1. Therefore z + (3 + (3 Z0 (mod 2) and 1+ {3+ 2(3 Z0 (mod 2)
hence ¢ = 1.

Multiplying these generators one finds the element o = —2e77, + 2€333 +
2€1335 — 2¢€209 € Aq1-

The bimodules A 565 and Asgs 1 are obtained applying o. Since
Ai s6aMs6a,20M20,566 C Ay sep, one has that —2(3€133 + 4aezp9 € Ajs6p. Since
2€133 — 4a” €309 € Aj 56p One gets a? = a(,’g, hence a = (2.
In particula.r ﬁ = 2€77p + 2€133 + 2€1334 + 2€909 € Al,l‘

The suborder of Ay ; generated by e;, @, f and the elements 4(e, +€,) (n,m €
1) (of index 2) acts on A, 76 as the order generated by the lines of the matrix

77 133a 133b 209
1 1 1

1

0 2 0 2
0 0 2 2
0 0 0 4

Therefore one finds that ¢ in the proof above is ¢ = 1. Otherwise ¢ = 3 and
(1,0,0,0) € A7s,1 and therefore (0,2,0,0) € A7s,; which contradicts the fact that
€133q 1s amalgamated in A7g, with depth 2.

Also Ay 76 is generated as a bimodule by one element as one sees by the Ext-
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quiver of A. For suitable embeddings one finds that

Bige= T7 133a 133b 209 Brg1= 77 133a 133b 209
vi= 2 1 1 1 1 2 -2 =2
vy = 0 0 2 —2 and dually 0 4 0 4
vl = 0 2 0 2 0 0 4 4

0 0 0 4 0 0 0 8

from which one gets the third missing generator v = 2€77 + 2€1335 — 2€133 — 2€209
of Al.l B

It remains to find the missing generator d of A7g 7¢. For this we have to perform
several explicit computer calculations:

Calculating certain 276-dimensional J;-lattices one finds that
(e77+€209)A76,76 = {(z,y) E R®R |z =y (mod 2)}. Therefore one may choose
§ as § := 2a€1334 + 2b€133p + 2€209 for certain a,b € R*. Since the scalar product
of § with 1 is integral, one finds that a4+ b+ 1=0 (mod 4). Moreover one may
choose 4 to be fix under the Galois automorphism ¢ from which one gets that
a = ¢ and b = (2, where ( is one of (5 or (Z. The value of ¢ will be decided by
explicit calculations modulo 2.

The radical J(A1,1) contains the (Galois invariant) element o’ := 2¢1+2(3€77,+
2(:36775 + 2(3€1330 + 2(3(133{, + 2€209, which is not contained in J(Alil)g. The
element ' := 2(ze774 +2C32€77b+2€309 lies in J(Agu,m}] —J(Azg'go)z. Both elements
o' and (' act equally on Ay 0. If ( = (3 then § = 2(3€1334 + 2(Z€1336 + 2€200 is an
element in J(A7g,76) — J(A76,76)* that acts like o’ on A 76.

Condensation of Fa A does not only give the Loewy-series of the projective in-
decomposable F3 A-modules, but also a tool to calculate the endomorphism rings
and homomorphism bimodules of these modules. Explicit calculations yield that
J(Endy,c(Pag)) acts as a one dimensional space on Homy,(P;, P2g). The kernel
of this action is J (Endy,g(P20))?. The same holds for the action of J(Endy,c(Prs))
on Homp,G (P, Prs). Therefore we know the image of # and  under these actions.
But there is no element of J(Endg,c(P;)) that acts on Homy,g(P;, Po) like
and on Homp,c(P;, Pre) like 8. Therefore ¢ = (3. O

Corollary 3.4 Let J = J(A) be the Jacobson radical A. Then
JT=J%(2 4 2¢).

The Loewy series of the projective indecomposable A-lattices are given as follows,
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where the last two layers are repeated periodically:

P Py P Ps6a Psep

1 20 76 56a 56b

1 76 56ab 56ab |1 76 1 20 1 20

14 202 12 202 76 56ab |76 5642 56b |76  56b2 56a
1 76% 5663 |76 56a%b% | 1% 20 13 202 13 202

17 204 1 9p° 76% 56a%b? | 762 56a® 56b° | 762 566° 56a°
1 767 56a%b* |76 56a%b° | 17 20 1 202 ¥ 207

18 204 14 204 76% 56a%b% | 762 56a* 56b° | 762  56b* 5643

From Theorem 3.3 one obtains the principal block of Z4J; by Galois descent.

Corollary 3.5 Let Ay denote the principal block of ZJ,. Then

Zo 27
€1Ao ~ Zg, €77A0 ~ ( Zz Z: )

O 2R 4R Zy 2ZY**  4Z,
(e77a+€erm)Ao~| R R 2R |,e@asho~ | Z2* 5§  222%' |,

R R O s Z1%3 Zo
0O 20 4R
(€1330 + €133) Ao~ | O O 2R |,
R R R

Zy 2Zy AZY?  8Z,
eonoha~ | Z2 Za 2Z3%%  4Z,
209430 ngl ngl S 22%)(1 ]
Za Zy ZY?  Z,
where ~ means “is Morita equivalent to” and R := Z1[(3], O = Zo+ 2Z-[(s] < R,
and S := Zy[(a] 4+ 2222 < 7222,

3.3 The group ring of Z3Ss.

This section gives generators of the Morita equivalent basic order of the principal
block of Z3Ss. The proof can be obtained from [Neb99, Section 5.6.4]. The group
ring Z3Ss has 5 blocks, 4 of which have defect < 1. (see [Jam78]). A decomposition
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matrix for the principal block A of Z3Sy is given in [Jam78]:

1 17 7 7 21 21" 35 35 41 41

1|1 .

1 |. 1 .

g8 11 « 1 &

8 1. 1 -« 1 :
42¢ | . « = = L 1

28 . . 1 . 1 :

2850w o+ L o2 T = :

Wils w s w3 s £ 1

42 152 1 4 3 . . .1 g
42" |1 . . . : . . . : 1
48 . . 1 . . . . .1 .
48" 1. o« L, . . . ; 1

6 . . . . 1 - | :

56" |: « .« -~ . 1 « L

g4 (. 1 . 1 . T T ;
84 |11 . 1 = ’ « L 1
101 . 1 . 1 I (T
105’ | .
120 |1 3
120" | 1 : 1

168 | . 1
16811 . 1 1 1 1

1

bk ek
— et e b
[ S T W S

1

Here Y’ denotes the tensor product of the character x with the sign character 1’.

Theorem 3.6 The graduated hull T = ®,¢1-r(a)Aéx 15 as follows, where only
one of the two summands Ae, and A€, is given.

1
AI(]-:(O)): Ag(l,?,(g g))x A426(21,21',(g 0)):
2
A23(7,21(g )),
Ao (35, 35 A4, (@ 1)), Awran (2 1))
70(35, 35 ), Ada( 0}’ 48(”00’
01 1 2
Ass(21,35, (g )) AN FEE T !
0000

COoOO0OQ

O O

e = N ]

— O D -

(=T =T
e

1\105(35,1,7 21,41, [
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0211 1

00100

Ar20(35,1,1/,7,35,41, g f (1’ (1) }
01110

01000

(0 2 2

0 0 1

010

Asss(21, 1,7, 7,21, 35, 35/, 41, g ; f
0 1 1

001 1

L0 0 0

2
1
b
1
0
1121 3)
01101
10101
01 1 12
1o11 2|
00001
1110 2
0000 0)

Gabriele Nebe

Theorem 3.7 Let I := {1,1',7,7’,21,21',35,35',41,41'} denote the indices of
the simple A-modules. For i € I let P; be the corresponding projective indecom-
posable A-module and V be the sum of representatives of all simple Q3A-modules
and E := Endg,a(V) = Z(Q3A). Then there are embeddings v; : P; - V, i€ I,
such that the following elements a; € A;; := m;Homu(P;, P)u C E together with
the primitive idempotents idp, € Enda(P;) C E ( for all i € I) generate the basic

order

Ao := Enda(®ierPi) ~ A

as Zg-order:

a7 = 9eg + 3egar + €105 + €120 + €168/
ayr = 9egr + 3€gq + €105 + €120 + €168
aj3s = €105 + €120 + €120" — €168’

ajyr 35 = €105’ + €120 + €120" — €168

ay ay = €42/ + 3€gqr + €120 — €168
ayr,41 = 3€42 + 3ega + 3€120 — €168
a721 = 328 + €105 + €168 + €168

ar 210 = 3€28' + €105 + €168 + €168/
az7,3s' = 3€gqr + €120 + €168 + €168/

a7 35 = 3€gq + €120' + €165 + €168/
a7,41 = 3€48 + €105 + €120 + €168

arr 410 = deqsr + €105 + 3€1200 + €168
@21,21" = 3€424 + €168 — 3€168/

21,35 = €56 + €105 + 3€168 + €168
azy: 35 = Y¢€ser + €105 + €168 + 3€168

azs 35 = J€70 — €120 — 3€1200 + €168 — 12€1687

a35,41 = €84 + 3€105 + 3€120 + €168
aszs 410 = €g4r + 3€105 + 3€1207 + €168/

az,1 = €g + €gar — €105 + 3€120 + B€168
ay 1 = €gr + €4 — €105 + 3€1200 + Be168
ass,1 = 3€105 + 3€120 + 1200 — €168
aszs 1+ = 3€105¢ + 3€120 + 3€1200 — €168
a41+1 = €42/ + €84 — €120" + €168/

@41,1’ = €42 + €84 — €120 + €168

az1,7 = 3€28 + 3€105 + 3€168 — €168
agy 7 = 3€asr + €105 — €168 + €168/
ass' 7 = €gqr + 3€120 + 3€168 + €168/
ass, 7 = €gq + €120 + €168 + €168
@41,7 = €48 + 3€105 — €120 — €168

a4q1r,7 = €48 + 3€105’ — €120 — €168
@21/,21 = €424 + 3€168 — €168/

azs 21 = €56 — J€105 — €168 + 4€168/

azs 210 = €560 — J€105/ + 4€168 — €168/
a3s' 35 = €70 + 3€120 + €120 + 3€168 — €168
a41,35 = —3¢€gq + €105 + €120 — €168
@41,350 = —3€gqr + €105’ + €1200 — €168/
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The Ext-quiver of A/3A is obtained from the following graph, by replacing all
edges by arrows in both directions:

A calculation of the radical series (J")nen, where J = J(A) is the Jacobson
radical of A shows the following:

Theorem 3.8
Z :=9(€1 + €1 + €3 + €8 + €28 + €28' + €70 + €56 + €567)

+3(€42a + €42 + €427 + €48 + €48/ + €84 + €847 + €105 + €1057 + €120 + €120 + €168 + €1687),
then the Jacobson radical J := J(A) satisfies

J°Z =J".

During the calculation of the radical series we obtain the Loewy structure
of the projective indecomposable A-lattices, as well as the Loewy series of the
projective indecomposable A/3A-modules ([Neb99], see also [Tan00]).

4 The radical series.

Let A be an R-order in the K-algebra A = KA and J := J(A) be the Jacobson
radical of A.

Theorem 4.1 (c¢f. [Kin99, Remark E.2.1]) The radical series (J™),en becomes
periodic, 1.e. there are m > n €N and a unit a € Z(A), such that J™ = aJ™.

Proof. The radical J and all its powers are two-sided ideals of A, hence A — A-
bimodules. The A — A-bimodules in A are the sublattices for the order I' :=



348 Gabriele Nebe

A? ®z(ay A. By the Theorem of Jordan and Zassenhaus (cf. [Rei75, Theorem
26.4]) there are only finitely many isomorphism classes of I'-lattices in A. There-
fore there are m > n € N such that J™ = J” as I'-lattices. All '-isomorphisms
are given by multiplication with units in Z(A), hence there is a € Z(A) such that
J" =aJ". O

There are many open questions about this radical series.

Which isomorphism classes of bimodules occur as powers of J?

What is the period of the radical series (determine a)?

What is the period length?
In the examples in Section 3, the period length is either 1 (Z,S4) or 2. For the
principal block of Z3zM;;, which has simple modules, that are not self dual, the
period length is 3 (see [Neb99, 5.6.3]).

What is the pre-period length?

Give bounds for these lengths.

Is there an exponent ng, such that ¢, J" C J" forall 1 <t < s and n > ng?
In the examples in Section 3, there is such an exponent ng. An example, where
there is no such nyg, is the group ring A := Z5[i]Cs. The Jacobson radical J := J(A)
satisfies

J? = {(a,b,c,d) € 2(1 +)Z[i]*|a=b (mod4), c=d (mod4)}

and J* = (1 4i)J3. Therefore J" is indecomposable for all n.
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