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To our friend Sudarshan K. Sehgal, on the occasion of his 6sth birthday. 

Abstract: Let * be the natural involution on a group 
algebra FG induced by setting 9 -+ g-1, for all 9 E G. 
Here we survey on the results recently obtained on the Lie 
nilpotence of the symmetric and skew elements of FG under 

*. 
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Let FG be the group algebra of a group G over a field F . We shall give 
here a brief account of the results about the Lie nilpotence of FG and of certain 
significant subsets of FG. 

Let F {X} be the free associative algebra on the set X = {Xl , X2, ... } over F 
and let R be an F-algebra. If f = f(X1 , ..• , Xn} is a non-trivial polynomial in 
F{X} and S is a subset of R, we say that f is a polynomial identity for S (or that 
S satisfies f) if f(S1,' .. , sn} = O for all Sl , . . . , Sn E.s. We shall be concerned 
with a special type of polynomial identity, the nth Lie commutator leading to 
the notion of Lie nilpotence. We shall also consider the case when R is a group 
algebra and S is the set of symmetric or skew elements of R under the canonical 
involution. 

In general, group algebras satisfying a polynomial identity were classified by 
Isaacs and Passman [11] in characteristic zero and by Passman [17] in positive 
characteristic. Recall that a group G is p-abelian if the derived group G' is a 
finite p-group. We say that G is O-abelian if it is abeliano With this terminology 
in mind, these results can be stated as follows. 

Theorem 1 ([18, Teorems 5.3 .8 and 5.3 .9]) Let F be a field such that char F = 
p 2: O. Then FG satisfies a polynomial identity if and only if G has a p-abelian 
subgroup of finite indexo 

Among polynomial identities one of the first studied is the Lie commutator of 
length n. Let [ , ] be the usual Lie bracket, [Xl, X2] = X1X2 - X2X1, and for n 2: 2 
define inductively [Xl, " "Xn ] = [[Xl,,, , ,Xn -1],Xn ], For subsets A,B of R , let 
us write [A, BJ for the additive subgroup of R generated by all commutators of 
the type [a, b], a E A, b E B. We say that the subset S of the algebra Ris Lie 
nilpotent if there exists n 2: 2 such that [Xl, ... , X n ] is a polynomial identity for 
S. Let us say that a set S is Lie nilpotent of index n 2: 2 if n is the least positive 
integer such that [Xl, . .. ,Xn ] is an identity for S . 

1 Research partially supported by MURST (Italy) and FAPESP and CNPq (Brazil) 

363 



364 A. Giambruno and C. Polcino Milies 

In general, what can one prove if a ring R is Lie nilpotent? Since n x n matrices 
over a field are Lie nilpotent if and only if n = 1, structure theory and standard 
arguments show that if Ris Lie nilpotent, then the commutator ideal [R, R]R of R 
must be locally nilpotent. Moreover Jennings in [12] proved that for any such ring, 
[R, R, R]R is a nilpotent ideal. We remark that in this situation, one cannot hope 
to prove that, in general , the commutator ideal itself is nilpotent. As an example 
one can consider E, the Grassmann algebra on an infinite dimensional vector space 
over a field F of characteristic different from 2. Recall that E is generated by a 
countable set. of elements {ei, e2, ... } subject to the condition e,ej = -eje, for all 
i, j > 1. It. is not hard to see that the algebra E is Lie nilpotent since it satisfies 
the polynomial identity [Xl, X2, X3] (see for instance [5]). Still the commutator 
ideal of E is locally nilpotent but not nilpotent . 

A characterization of group algebras which are Lie nilpotent was obtained by 
Passi, Passman and Sehgal as follows. 

Theorem 2 ([16]) lf F is a jield and char F = p 2: O, then FG is Lie nilpotent 
if and only if G is a nilpotent p-abelian group. 

As a consequence of this theorem one can easily prove that, for the group al
gebras FG which are Lie nilpotent , the commutator ideal is nilpotent. In fact, in 
this case the previous theorem shows that Gf is a finite p-group. Hence the aug
mentation ideal Á(G, G f ) is nilpotent. But Á(G, G f ) is actually the commutator 
ideal of FG. 

Recall that an involution * on an F-algebra R is an antiautomorphism of R 
of order 2. For simplicity we shall assume throughout this paper that whenever * 
is an involution on an F-algebra R, * is the identity map on F and char F -# 2. 
Let R+ = {r -E RI r = r*} and R- = {r E R I r = -r*} be the sets of symmetric 
and skew elements of R respectively. Notice that R+ is a Jordan subalgebra of R 
under the operation {a, b} = ~(ab + ba) and R- is aLie subalgebra of R under 
the bracket operation [a, b] = ab - ba . A natural question to ask in this setting 
is the following: if R+ or R- satisfies a polynomial identity does R itself satisfy 
a polynomial identity? The answer is yes , as it was shown by Amitsur in two 
subsequent papers [1], [2] . 

Let F{X,*} = F{Xl,xj.X2 , X;, ... } be the free associative algebra with invo
lution on the set X over F. Hence the elements of F{X, *} are polynomials in the 
x,'s and the x;'s. The algebra F{X, *} is uniquely determined by the following 
universal property: for any algebra with involution R, any map X -+ R can be 
uniquely extended to a homomorphism of algebras with involution F{X, *} -+ R. 
We say that a non-trivial polynomial f(Xl,xi , ... , xn,x~) E F{X,*} is a *
polynomial identity for a subset S of the F -algebra R, if f( sI , si, ... , Sn, s~) = O 
for ali SI, ... , Sn E S . With t.his terminology in mind, Amitsur's result can be 
st.ated as follows . 

Theorem 3 ([2]) lf R satisjies a *-polynomial identity, then R satisjies a (ordi
nary) polynomial identity. 
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We remark that Amitsur's theorem proves the existenee of an ordinary poly
nomial identity for the algebra R but, in general, does not give any information 
on its degree. The reason for this failure is the following: the theorem was proved 
first for semiprime rings where, through strueture theory, the degree of an identity 
for R is well related to that of the given *-identity; then the result was pushed to 
arbitrary rings by means of the so-ealled Amitsur's triek. In sueh procedure any 
informat.ion on the degree ofthe *-identity satisfied by Ris lost. This problem has 
been recently solved in [3] . In fact, by using eombinatorial methods pertaining to 
the asymptotic behaviour of a numerieal sequenee attached to the algebra R, it 
was shown that one can relate the degree of a *-polynomial identity satisfied by 
R to the degree of a polynomial identity for R by mean of an explicit function. 

Another question in this setting is the following: if R satisfies some special kind 
of *-polynomial identity, what kind of ordinary identity ean one get in Amitsur's 
theorem? Recalling that R- is aLie subalgebra of R under the bracket operation, 
it is natural to ask if, in particular, the Lie nilpotence of R- implies the Lie 
nilpotence (or some other special type of identity) of R. The best known result 
in this direction is due to Zalesskii and Smirnov. 

Theorem 4 ([22]) Suppose that R is generated as a ring by R- and 1. lf R- is 
Lie nilpotent then R is Lie nilpolent. 

As we shall see later, if R is not generated by its skew elements together with 
1, then the eonclusion of the above theorem cannot be true . Let us notice that 
for semiprime algebras st.andard arguments show that if R- (respectively R+) 
is Lie nilpotent, then R- (respeetively R+) must be commutative. Such result 
cannot be improved as it is readily seen by considering the algebra M 2(F)of2x 2 
matrices over F. In fact, if M2 (F) is endowed with the transpose involution, then 
M2 (F)- is commutative, whereas lf it is endowed with the symplectic involution, 
then M 2 (F)+ is central and , so, commutative. 

A group algebra FG has a natural involution induced linearly on FG by setting 
g* = 9- 1 , for all 9 E G. Throughout , when referring to an involution * on FG, 
we shall always understand that * is the one described above. With this in mind , 
how does the above question fit in the setting of group algebras? In this case the 
situation is quite clear. It turns out that the presence Df 2-elements in the group 
G makes quite a difference for the final result. We start by showing, as in the 
Corollary in [7], that in case the center of G has infinitely many elements not of 
order 2, then the Lie nilpotence Df the symmetric or skew elements forces the Lie 
nilpotence of the group algebra. 

Lemma 1 Let G be a group whose center Z satisfies 1 Z2 1= (Xl . lf FG+ or FG
is Lie nilpotent 01 index n then FG is Lie nilpotent of index n . 

Proof. We give the proof for FG- . Since FG- is Lie nilpotent of index n, 
[Xl - xi, .. . , Xn - x~] is a *-polynomial identity for FG-. Now, for any z E Z, 

(1) 
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and 
(2) 

both vanish when evaluated in FG. Since any Lie commut.ator is multi linear and 
char F f. 2, putting together (1) and (2) we get that 

(Z - Z*)[Xl, X2 - x;, ... , X n - x~] 

also vanishes in FG . It is clear that a repeated application of this argument leads 
to the conclusion that for ali Zl, ..• ,Zn E Z, 

(3) 

vanishes in FG. Recalling that for all i = 1, ... , n , zi = Zj-l, then (3) says that 
(z? - 1) ... (z~ - l)[xl, ... , xn ] vanishes in FG for ali Zl, ... , Zn E Z. It is easy 
to see that in a group algebra this leads to the conclusion that [Xl , . . . , X n ] is a 
polynomial identity for FG (see for instance [7, Lemma 1]). 

In the absence of 2-elements Giambruno and Sehgal proved that the Lie nilpo
tence of FG+ or FG- forces the Lie nilpotence of FG. 

Theorem 5 ([7]) Suppose that G has no 2-elements. If FG+ or FG- is Lie 
nilpotent then FG is Lie nilpotent. 

Later G. Lee settled the case when FG+ has 2-elements. Let K8 denote the 
quaternion group of order 8. The final result is the following. 

Theorem 6([13]) If K8 ~ G then FG+ is Lie nilpotent if and only if FG is Lie 
nilpotent. In case K8 C G, then FG+ is Lie nilpotent if and only if G = K8 X E x P 
where E 2 = 1 and P ;::; either 1 or a finde p-group in case char F = p > 2. 

The case when FG- is Lie nilpotent and the group G has 2-elements seems 
more complicated. We start with an example in order to show that one can have 
quite wild situations in this case. 

Lemma 2 Suppose that G contains an abelian subgroup A of index 2. If either 
A 2 = 1 or (G \ A)2 = 1, then FG- is Lie nilpotent of index 2. 

Proof. Since FG- is spanned by alI elements of the type 9 - g-1, 9 E G, it is 
enough to show that any two such elements commute. Let g , h E G and suppose 
first that A2 = 1. If either 9 or h are in A, we have that g2 = 1 or h2 = 1 and 
thus either 9 - g-l = O or h - h- 1 = O and there is nothing to prove. So, we may 
assume that 9 and h are both in xA where x E G \ A. Write 9 = xa and h = xb 
with a , b E A and compute: 

[xa - (xa)-1, xb - (xb)-1] 
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Since A <J G we can write ax = xa' and bx = xb' with a', b' E A. Hence 

[xa - (xa)-I, xb - (xb)-I] = x 2 a'b + a- I b,-lx-2 _ x 2b'a _ b- 1a'-lx- 2 • 

As x 2 E A and A 2 = 1 we have that x4 = 1 so x 2 = x- 2 and it follows that 
[g - g-l, h - h-I] = O. 

Assume now that (xA)2 = 1. As above , we need only to consider the case 
when g, h E A but, since A is abelian, the result follows immediately. 

In case the group algebra FG is semiprime, it was proved by the authors that 
actually the example given in the above lemma is exhaustive of ali possibilities. 
Recall that such group algebras were characterized by Passman (see [18, Theorem 
4.2.13] or [20, Theorem 6.6.4]: FG is semiprime if and only if either char F = O 
or char F = p > O and the FC-subgroup of G is a p'-group. 

Theorem 7 ([9]) Suppose that FG is semiprime. Then FG- is Lie nilpotent if 
and only if one of the following oecurs. 

(i) G is abeliano 

(ii) A = (g E G I o(g) 1: 2) is a normal apelian subgroup ofG and (G\A)2 = l. 
(iii) G eontains an elementary abelian 2-group of index 2. 

We now turn to the non semi prime case. Clearly in this case ehar F = p > 2. 
We split the conclusion into two different cases according as G is a torsion group 
or it contains elements of infinite order. 

Theorem 8 ([9]) Suppose that ehar F = p > 2 and G is a torsion group. lf FG
is Lie nilpotent, then 

(i) the p-elements form a nilpotent p-abelian subgroup P of G (henee F P is Lie 
nilpotent); 

(ii) ã = G / P is either abelian 01' it contains a normal abelian subgroup Ã sueh 
that (ã \ Ã)2 = 1 01' it eontains an elementary abelian 2-group of index 2. 

Theorem 9 ([9]) Suppose that char F = p > 2 and G is not a torsion group. 
Then FG- is Lie nilpotent if and only if there exists a normal subgroup H of G 
sueh that H is nilpotent, p-abelian and (G \ H)2 = 1. 

We finish this short survey with an application of Theorem 7 to the study of 
the unitary group of a group algebra. 

For an algebra R let U(R) denote the group of units of R. If R is endowed 
with an involution, then one defines in a natural way the group ofunitaries of R 
as 

Un(R) = {u E U{R) I u'u' = I}. 

There is a dose relation between the group of unitaries of an algebra and its skew 
elements. For instance one can easily prove the following result o 
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Theorem 10 ([9]) Let R be a finite dimensional semisimple algebra with ínvolu
tíon over an algebraically closed field F. Then Un(R) satísfies a group identíty if 
and only if R- is commutative. 

Recall that an element u E Un(R) is called a Cayley unitary if there exists a 
quasi-regular element a E R- such that u = (1 + a)(l- a)-l. The above relation 
between group identities on Un(R) and the commutativity of R- should not be 
surprising if we look at the general linear group. In fact, it was shown in [4] that 
the Cayley unitaries, fill in the orthogonal group or a subgroup of the symplectic 
group of index 2. 

For group algebras , it was proved in [6] and [8] that, for a torsion group G 
over an infinite field F, a group identity in U(FG) forces a polynomial identity 
on FG. This result led to a complete classification of torsion groups G such that 
the group of units of FG satisfies a group identity ([19], [14], [15]). 

In the case of the unitary group Un(FG) , the classification of torsion groups 
for which Un(FG) satisfies a group identity is still open in general. About partial 
results , in [10] Gonçalves and Passman classified all finite groups G such that 
Un(FG) does not contain a free group of rank 2, provided the field F is non
absolute; i.e., it is not an algebraic extension of a finite field. 

Inspired by the connection between skew elements and unitary units and the 
classification given in Theorem 7 above, in [9] the authors proved a result in case 
Un(FG) satisfies a group identity subject to a small restriction and char F = O. 

Since every free group of finite rank can be embedded in a free group of rank 
2, every group which satisfies a group identity also satisfies a group identity in 
two variables. Moreover, by a suitable change of variables (by applying suitable 
endomorphisms of the free group) one can always assume that w is of the form: 

(4) 

where fi, . . . , ft E {±1, ±2} and TJ E {I , -I}. 
We say that a word w(x, y) is 2-free ifit does not become trivial when evaluated 

on elements of order 2. For instance, if in (4) we take fi, . .. , ft E {± 1 }, then w 
becomes 2-free. Notice that groups which are n-Engel satisfy a group identity 
which is 2-free. 

As a consequence of Theorem 7, we get the following. 

Theorem 11 ([9])Let F be a field of characterístic O, G any group and T the set 
of torsion elements of G. Suppose that Un(FG) satísfies a group identity which is 
2-free. Then T is a subgroup and one of the following conditions holds 

(i) T is an abelian group. 

(ii) A = (9 E T I o(g) i= 2) ís a normal abelían subgroup of G. 

(iií) T contains an elementary abelian 2-subgroup B such that [T : B] = 2. 

Conversely, íf G = T is a torsion group and G satisfies one of conditions (i) , (ii) , 
(iii) , then Un(FG) satisfies a group identity. 
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