NILPOTENCE OF SUBNORMAL SUBGROUPS IN $\mathcal{U}(\mathbb{Z}G)^{\perp}$

M.M. Parmenter

To my teacher and friend Sudarshan K. Sehgal on his 65th birthday.

Abstract: Let V be a subgroup of $\mathcal{U}(\mathbb{Z}G)$ such that $G \subset V$ and V is subnormal in a finite index subgroup of $\mathcal{U}(\mathbb{Z}G)$. In this paper, we present necessary and sufficient conditions for V to be either nilpotent on FC.

Key words: Group ring, nilpotent.

I'd like to start by recalling the following theorem, first proved for finite groups by Polcino Milies [9] and then extended to the general case by Sehgal and Zassenhaus [13].

Theorem 1

 $\mathcal{U}(\mathbb{Z}G)$ is nilpotent if and only if G is nilpotent and the torsion subgroup T of G satisfies one of the following:

(i) T is central in G.

- (ii) T is an Abelian 2-group and for $x \in G, t \in T, x^{-1}tx = t^{\pm 1}$.
- (iii) $T = E \times K_8$ where $E^2 = 1$ and K_8 is the quaternion group of order 8. Moreover E is central in G and conjugation by $x \in G$ induces on K_8 one of the 4 inner automorphisms.

Proofs of this theorem can also be found in [10] and [11]. I like this result very much - probably because, unusually in unit groups of integral group rings, it actually gives a complete characterization of when a particular group property can hold.

For finite G, the fact that such properties rarely hold in $\mathcal{U}(\mathbb{Z}G)$ was explained by Hartley and Pickel in the following.

Theorem 2 [4]

Let G be a nonabelian finite group. Then $\mathcal{U}(\mathbb{Z}G)$ contains a noncommutative free group if and only if G is not a Hamiltonian 2-group.

¹This research was supported in part by NSERC grant A-8775.

It is perhaps sometimes forgotten that Theorem 2 does not give a complete explanation of why $\mathcal{U}(\mathbb{Z}G)$ may fail to be nilpotent when G is not periodic. Families of nonperiodic nilpotent G such that $\mathcal{U}(\mathbb{Z}G)$ is solvable but not nilpotent can be obtained from Theorem 6.4.8 of [11] - for example, $G = \langle t, g | t^8 = 1, gtg^{-1} = t^3 \rangle$. In such cases, an investigation of the proof of Theorem 1 is needed to understand why nilpotence fails.

Our goal in this brief note is to prove the following.

Theorem 3

Let G be an arbitrary group and let V be a subgroup of $\mathcal{U}(\mathbb{Z}G)$ such that $G \subseteq V$ and V is subnormal in a finite index subgroup of $\mathcal{U}(\mathbb{Z}G)$. The following are equivalent.

1. V is nilpotent

2. $\mathcal{U}(\mathbb{Z}G)$ is nilpotent

The corresponding theorem about when V contains a nonabelian free group was proved by Gonçalves, Ritter and Sehgal for G finite in [3], and a generalization to arbitrary G was given by Marciniak and Sehgal in [8]. As before, however, a complete proof of Theorem 3 still requires additional argument. We note that a partial description of when V is nilpotent is given in Corollary 2.2 of [8].

Proof of Theorem 3

 $(2) \Rightarrow (1)$ is obvious. So assume V is nilpotent. Then G is nilpotent, and we will show directly that one of the three conditions listed in Theorem 1 must be satisfied.

Since V does not contain a nonabelian free subgroup, Theorem 0.4 of [8] tells us that all finite subgroups of G are normal in G. So T(G) is Abelian or Hamiltonian. Assume first that T(G) is Hamiltonian and contains an element x of odd order, and let H be the finite subgroup $K_8 \times \langle x \rangle$ of T(G). The main theorem of [3] then says that $V \cap \mathcal{U}(\mathbb{Z}H)$ contains a nonabelian free group, which is not the case. We conclude that T(G) is a Hamiltonian 2-group, and the conditions of (iii) are met.

So assume from now on that T(G) is Abelian. We'll show next that if $t \in T(G)$ and $x \in G$, then $xtx^{-1} = t$ or t^{-1} . Assume to the contrary that $xtx^{-1} = t^i$ where 1 < i < |t| - 1. Let $k = \phi(|t|)$, and recall that $i^k \equiv 1 \pmod{|t|}$.

Consider the Bass cyclic unit (see [12] for details)

$$u = (1 + t + \dots + t^{i-1})^k + \frac{1 - i^k}{|t|}\hat{t}.$$

Note that u is nontrivial since 1 < i < |t| - 1. Also $u^x = (1 + t^i + \cdots + t^{i(i-1)})^k + \frac{1-i^k}{|t|}\hat{t}$. In general, for any $r \ge 1$,

$$u^{x^{r}} = (1 + t^{i^{r}} + \dots + t^{i^{r}(i-1)})^{k} + \frac{1 - i^{k}}{|t|}\hat{t}.$$

Hence $u^{x^k} = u$ and we get

$$uu^{x}u^{x^{2}}\cdots u^{x^{k-1}} = (1+t+t^{2}+\cdots+t^{i^{k-1}(i-1)+i^{k-2}(i-1)+\cdots+(i-1)})^{k} + \alpha \hat{t}$$

for some $\alpha \in \mathbb{Z}$.

some $\alpha \in \mathbb{Z}$. So $uu^x u^{x^2} \cdots u^{x^{k-1}} = (1+t+t^2+\cdots+t^{i^k-1})^k + \alpha \hat{t}$ $= (1 + \beta \hat{t})^k + \alpha \hat{t}$ for some $\beta \in \mathbb{Z}$ = 1 using augmentation.

Next note that since V is nilpotent and $G \subset V, G$ is a subnormal subgroup of V. It follows that there exists a series of subgroups

$$G = V_r \triangleleft V_{r-1} \triangleleft \cdots \triangleleft V_1 < \mathcal{U}(\mathbb{Z}G)$$

where V_1 is of finite index in $\mathcal{U}(\mathbb{Z}G)$.

Now $u^s \in V_1$ for some $s \in \mathbb{Z}$. Since $\mathbb{Z} < t >$ is commutative, we have

$$u^s(u^s)^x\cdots(u^s)^{x^{k-1}}=1$$

which can be rewritten as

$$x^{u^s} x^{u^{2s}} \cdots x^{u^{(k-1)s}} (x^{-(k-1)})^{u^{ks}} u^{ks} = 1.$$

Since $x \in G \subseteq V_2$, we know $x^{u^*}, x^{u^{2*}}, \cdots x^{u^{(k-1)*}}$ and $(x^{-(k-1)})^{u^{k*}}$ are all in V_2 . Hence $u^{ks} \in \overline{V}_2$.

But this argument can be repeated - at the next step beginning with $u^{ks}(u^{ks})^x \cdots (u^{ks})^{x^{k-1}} = 1$. Continuing we get $u^e \in V_r = G$ for some e. Since t is of finite order, this means $u^f = 1$ for some f, contradicting the fact that u is of infinite order.

So $xtx^{-1} = t^{\pm 1}$, as desired. The rest of the proof follows in exactly the same way as that of Theorem 1.

When $V = \mathcal{U}(\mathbb{Z}G)$, the Bass cyclic unit argument just presented gives a proof of one direction of Theorem 1 which differs from the original (this alternate proof can also be found in [10]).

In a similar spirit to Theorem 3, we have the following.

Theorem 4

Let G be an arbitrary group and let V be a subgroup of $\mathcal{U}(\mathbb{Z}G)$ such that $G \subseteq V$ and V is subnormal in a finite index subgroup of $\mathcal{U}(\mathbb{Z}G)$. Then the following are equivalent.

- (1) V is FC
- (2) $\mathcal{U}(\mathbb{Z}G)$ is FC

Proof

The proof combines the Bass cyclic unit argument given in Theorem 3 with a few details from the proof of Theorem 6.5.3 in [11]. Note that a slight generalization of Lemma 6.5.1 in [11] is needed to complete the argument.

Remark

For periodic groups one measure of how far from nilpotent $\mathcal{U}(\mathbb{Z}G)$ usually is can be found in [5] where it is shown that $Z_3(\mathcal{U}(\mathbb{Z}G)) = Z_2(\mathcal{U}(\mathbb{Z}G))$ for all periodic G (for finite G, this had been done earlier in [2]). Moreover, $Z_2(\mathcal{U}(\mathbb{Z}G))$ has been completely determined in such cases (in terms of $Z(\mathcal{U}(\mathbb{Z}G))$) and is contained in $G \cdot Z(\mathcal{U}(\mathbb{Z}G))$ ([6], also [1] when G is finite). Some progress in finding appropriate analogues for these results when G is not periodic can be found in [7] – interestingly, the Bass cyclic unit argument seen in Theorems 3 and 4 was also helpful in proving Lemma 2.6 of this latter paper.

REFERENCES

- Satya R. Arora, A.W. Hales and I.B.S. Passi, Jordan decomposition and hypercentral units in integral group rings, Commun. in Alg. 21 (1993), 25-35.
- Satya R. Arora and I.B.S. Passi, Central height of the unit group of an integral group ring, Comm. in Alg. 21(1993), 3673-3683.
- Jairo Gonçalves, Jürgen Ritter and Sudarshan Sehgal, Subnormal subgroups in U₁ZG, Proc. Amer. Math. Soc. 103 (1988), 375-382.
- 4. B. Hartley, and F. Pickel, Free subgroups in the unit groups of integral group rings, Canad. J. Math. 32 (1980), 1342-1352.
- 5. Yuanlin Li, The hypercentre and *n*-centre of the unit group of an integral group ring, Canad. J. Math. 50 (1998), 401-411.
- Yuanlin Li and M.M. Parmenter, Hypercentral units in integral group rings, Proc. Amer. Math. Soc. 129 (2001), 2235-2238.
- 7. Yuanlin Li and M.M. Parmenter, Some results on hypercentral units in integral group rings, Comm. in Alg. (To appear).
- 8. Zbigniew S. Marciniak and Sudarshan K. Sehgal, Subnormal subgroups of group ring units, Proc. Amer. Math. Soc. 126 (1998), 343-348.
- C. Polcino Milies, Integral group rings with nilpotent unit groups, Canad. J. Math. 28 (1976), 954-960.

- 10. Cesar Polcino Milies and Sudarshan K. Sehgal, <u>An Introduction to Group</u> Rings, Kluwer, 2002.
- 11. S.K. Sehgal, Topics in Group Rings, Marcel Dekker, 1978.
- 12. S.K. Sehgal, Units in Integral Group Rings, Longman, Essex, 1993.
- 13. S.K. Sehgal and H.J. Zassenhaus, Integral group rings with nilpotent unit groups, Commun. in Alg. 5 (1977), 101-111.

M.M. Parmenter

Department of Mathematics and Statistics Memorial University of Newfoundland St. John's, Newfoundland, Canada A1C 5S7