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NILPOTENCE OF SUBNORMAL SUBGROUPS IN U(ZG) 1 

M.M. Parmenter 

To my teacher and friend Sudarshan K. Sehgal on his 65th birthday. 

Abstract : Let V be a subgroup of U(ZG) such that 
G C V and V is subnormal in a finite index subgroup of 
U (ZG). In this paper, we present necessary and sufficient 
conditions for V to be eithcr nilpotent on FC. 
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I'd like to start by recalling the following theorem, first proved for finite groups 
by Polcino Milies [9] and then extended to the general case by Sehgal and Zassen
haus [13] . 

Theorem 1 
U (ZG) is nilpotent if and only if G is nilpotent and the torsion subgroup T of 

G satisfies one of the following: 

(i) Tis central in G. 

(ii) Tis an Abelian 2-group and for x E G, tE T, x-1tx = t±l. 

(iii) T = E X Ks where E 2 = 1 and Ks is the quaternion group of order 8. 
Moreover E is central in G and conjugation by x E G induces on K8 one of 
the 4 inner automorphisms. 

Proofs of this theorem can also be found in [10] and [11]. I like this result 
very much - probably because, unusually in unit groups of integral group rings, 
it actually gives a complete characterization of when a particular group property 
can hold. 

For finite G, the fact that such properties rarely hold in U(ZG) was explained 
by Hartley and Pickel in the following. 

Theorem 2 [4] 
Let G be a nonabelian finite group. Then U(ZG) contains a noncommutative 

free group if and only if G is not a Hamiltonian 2-group. 
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It is perhaps sometimes forgotten that Theorem 2 does not give a complete ex
planation of why U (71G) may fail to be nilpotent when G is not periodic. Families 
of nonperiodic nilpotent G such that U(71G) is solvable but not nilpotent can be 
obtained from Theorem 6.4.8 of(ll] - for example, G =< t ,gltS = 1,gtg- 1 = t 3 >. 
In such cases, an investigation of the proof of Theorem 1 is needed to understand 
why nilpotence fails. 

Our goal in this brief note is to prove the following. 
Theorem 3 
Let G be an arbitrary group and let V be a subgroup of U(71G) such that 

G ç V and V is subnormal in a finite index subgroup of U(71G). The following 
are equivalent. 

1. V is nilpotent 

2. U(71G) is nilpotent 

The corresponding theorem about when V contains a nonabelian free group 
was proved by Gonçalves, Ritter and 8ehgal for G finite in [3], and a generalization 
to arbitrary G was given by Marciniak and 8ehgal in [8]. As before, however, a 
complete proof of Theorem 3 still requires additional argumento We note that a 
partial description of when V is nilpotent is given in Corollary 2.2 of [8] . 

Proof of Theorem 3 
(2) => (1) is obvious. 80 assume V is nilpotent. Then G is nilpotent, and we 

will show directly that one of the three conditions listed in Theorem 1 must be 
satisfied. 

8ince V does not contain a nonabelian free subgroup, Theorem 0.4 of [8] teUs us 
that all finite subgroups of G are normal in G. 80 T( G) is Abelian or Hamiltonian . 
Assume first that T(G) is Hamiltonian and contains an element x of odd order, 
and let H be the finite subgroup Ksx < x > of T(G) . The main theorem of [3] 
then says tha.t V nU(71H) contains a nonabelian free group, which is not the case. 
We conclude that T(G) is a Hamiltonian 2-group, and the conditions of (iii) are 
met o 

80 assume from now on that T(G) is Abelian. We'll show next that ift E T(G) 
and x E G, then xtx- 1 = t or rI . Assume to the contrary that xtx- 1 = ti where 
1 < i < Itl- 1. Let k = 4>(ltl) , and recall that ik == l(mod Itl) . 

Consider the Bass cyclic unit (see [12] for details) 

. 1 - ik _ 
U = (1 + t + ... + t'-I)k + -Itl-t. 

Note that u is nontrivial since 1 < i < Itl - 1. AIso u'" 

ti(i-l))k + l~r i. In general , for any r 2: 1, 
(1 + ti + ... + 
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k 
Hence U X = u and we get 

for some a E 7!... 
So uuxuxJ ... UX ·-

1 (1 + t. + t 2 + ... + ti"-l)k + ai 
(1 + f3t)k + ai for some f3 E 7!.. 
1 using augmentation. 
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Next note that since Vis nilpotent and G ç V, G is a subnormal subgroup of 
V. It follows that there exists a series of subgroups 

G = Vr <J Vr - 1 <J •.. <J Ví < U(7!..G) 

where V1 is of finite index in U(7!..G). 
Now u· E V1 for some s E 7!... Since 7!.. < t > is commutative, we have 

k-1 
US(u')X ... (u')X = 1 

which can be rewritten as 

S· G TT k • u 2 ' (k-1)' d ( (k l))u kl 11 . lnce x E ç Y2, we now xU,x ,· · ·xu an x- - are a m 
V2. Hence uk• E V2. 

But this argument can be repeated - at the next step beginning with 
uk'(uk'Y' " (UkS )X

k
-

1 = 1. Continuing we get ue E Vr = G for some e. Since tis 
of finite order, this means u! = 1 for some f, contradicting the fact that 1.1 is of 
infinite order. 

So xtx- 1 = t±l, as desired. The rest of the proof follows in exactly the same 
way as that of Theorem 1. 

D 

When V = U(7!..G), the Bass cyclic unit argument just presented gives a proof 
of one direction of Theorem 1 which differs from the original (this alternate proof 
can also be found in [10]). 

In a similar spirit to Theorem 3, we have the following. 
Theorem 4 
Let G be an arbitrary group and let V be a subgroup of U(7!..G) such that 

G ç V and V is subnormal in a finite index subgroup of U(7!..G). Then the 
following are equivalent. 

(1) Vis FC 

(2) U(7!..G) is FC 
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Proof 
The proof combines the Bass cyclic unit argument given in Theorem 3 with a 

few details from the proof ofTheorem 6.5.3 in [11] . Note that a slight generaliza
tion of Lemma 6.5.1 in [11] is needed to complete the argumento 

o 
Remark 
For periodic groups one measure of how far from nilpotent U(ZG) usually 

is can be found in [5] where it is shown that Z3(U(Z G)) = Z2(U(ZG)) for all 
periodic G (for finite G, this had been done earlier in [2]). Moreover, Z2(U(ZG)) 
has been completely determined in such cases (in terms of Z(U(ZG))) and is 
contained in G · Z(U(ZG)) ([6], also [1] when G is finite). Some progress in finding 
appropriate analogues for these results when G is not periodic can be found in [7) 
- interestingly, the Bass cyclic unit argument seen in Theorems 3 and 4 was also 
helpful in proving Lemma 2.6 of this latter paper. 
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