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Invariant IdeaIs of Abelian Group AIgebras 
Under the Action of SimpIe Linear Groups 1 

D. S. Passman 

Abstract: Let <!S be a group that aets on an abelian group 
V. Then <!S aets on the eommutative group algebra K[V], 
and we are eoneerned here with classifying the <!S-stable ideais 
of !{ [V]. Specifieally, we diseuss reeent work related to linear 
group aetions. For example, we eonsider the ease where V is a 
veetor spaee over a division ring D and where <!S = De is the 
multiplieative group of D . However, for the most part, we are 
eoneerned with infinite, loeally finite, quasi-simple groups <!S 
of Lie type and their finite-dimensional representations. We 
first diseuss the known results for rational representations and 
then we move on to deseribe the teehniques required to deal 
with <!S-modules V that are not rational. 
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To my friend Sudarshan Sehgal, on the occasion of his almost retirement. 

1. INTRODUCTION 

If iJ is a nonidentity group, then the group algebra K[iJ] always has at least 
three distinct ideaIs, namely O, the augmentation ideal wK[iJ], and K[iJ] itself. 
Thus it is natural to ask if groups exist .for which the augmentation ideal is the 
unique nontrivial ideal. In such cases, we say that wK[iJ] is simple. Certainly 
iJ must be a simple group for this to occur and, since the finite situation is easy 
enough to describe, we might as well assume that iJ is infinite simple. The first 
such examples, namely algebraically dosed groups and universal groups, were of
fered in [BHPS] . From this, it appeared that such groups would be quite rare. But 
A. E . Zalesski'í has shown that, for locally finite groups, this phenomenon is really 
the norm. lndeed, for alllocally finite infinite simple groups, the characteristic O 
group algebras K[iJ] tend to have very few ideaIs. See [Z4] for a survey of this 
material. Additional papers of interest indude [HZ3], [LP], [Z2] and [Z3]. 

While some work still remains to be done on the simple group case, it never
theless makes sense to move on to the next stage of this program by considering 
certain abelian-by-(quasi-simple) groups. Specifically, these are the locally finite 
groups iJ having a minimal normal abelian subgroup V with iJ/V infinite simple 
(or perhaps just dose to being simple) . Note that <!S = iJ/V acts as automor
phisms on V , and hence on the group algebra K[V] . Furthermore, if ! is any 
nonzero ideal of K[iJ], then it is easy to see that ! fi K[V] is a nonzero <!S-stable 
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ideal of K[V] . Thus, for the most part, this second stage is concerned with clas
sifying the \5-stable ideaIs of K[V]. Even in concrete cases, this turns out to be 
a surprisingly difficult task. Fortunately, there has been some recent progress on 
this problem, and our goal here is to survey the results af [BE], [OPZ], [PZl], 
[PZ2] and [P]. For the most part, the methods used in these papers are quite 
different from the usual group ring techniques. 

2. MULTIPLICATIVE ACTION OF DIVISION RINGS 

Recall that a field is said to be locally finite or absolute if every finite subset 
generates a finite subfield . In other words, F is locally finite precisely when it is a 
subfield of the algebraic closure of a finite field. Now suppose that W is a finite
dimensional vector space over an infinite locally finite field and let \5 = GL(W) 
act naturally on W . Then 5J = W )cl \5 is an infinite locally finite group and 
an example of the type of second-stage group described above. In particular, it 
would be of interest to determine the GL(W)-stable ideaIs of the group algebra 
K[W]. Notice that in this case, \5 contains F e, the multiplicative group of F, and 
consequently every \5-stable ideal of K[W] is also F e -stable. Thus it is reasonable 
to first study the r -stable ideaIs of K[W], and we proceed to do this in a fairly 
general setting. 

To this end, let D be a division ring of any characteristic and let V be a right D
vector space. Then G = De acts as automorphisms on V by right multiplication 
and consequently G acts on any group algebra K[V]. Note that if A is a D
subspace of V, then A is G-stable and hence the augmentation ideal wK[A].K[V] 
is a G-stable ideal of K[V]. We start with the following elementary lemma since 
its proof gives an indication af both the action of G and the structure of K[V] . 

Lemma 2.1. Let D be a division ring and let V be a right D-vector space. lI 
char K i= char D, then any De -stable ideal 01 K[V] is semiprime. 

Proo! If char D = p > O, then Vis an elementary abelian p-group. In particular, 
if char K i= p, then we know that K[V] is a commutative von Neumann regular 
ring. Hence every ideal of K[V] is semiprime. 

On the other hand, if char D = O, then we must have char K = q > O for some 
prime q. Let I be a De-stable ideal of K[V] and suppose by way af contradiction 
that VI> I . Then we can choose an element a E VI\ Iof minimal support size, 
say n + 1. Thus a = koxo + klXl + ... + knxn, with xo, Xl, . . • , Xn E V and with 
ko, kl , ... , kn E K \ O. Without loss of generality, we may assume that ko = 1. 
Since a E VI is nilpotent modulo I, we can suppose that a q' E I for some integer 
s 2: O. Of course a q' = kf xg' + kf xf + .. . + ka' xa' . 

Now char D = O so De :> Qe, where Q is the field of rational numbers, and 
hence l/q' E De. Thus d;' l/q" acts on V by taking the unique q'th root of 
each element in this uniquely divisible group, and d acts trivially on the field 
K. Since aq' E I and I is d-stable, we see that (3 = (aq')d E I and (3 = 
kf Xo + k'( Xl + . . . + ka' Xn. Obviously suppa = supp(3, and note that kf = ko 
since ko = 1. Thus a - (3 has support size < n, and a - (3 == a mod I. In 
particular, a - (3 E VI \ I, contradicting the ~inimality of n. We conclude that 
VI = I, as required. O 

If char K = char D, then there are certainly De -stable ideaIs of K [V] that are 
not semiprime. In particular, the semiprime hypothesis in the following key result 
applies only to those situations. 
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Theorem 2.2. Let D be an infinite division ring and let V be a finite-dimensional 
right D-vector space. Furthermore, let G = De act on V, by right multiplica
tion, and hence on the group algebra K[V]. Then every G-stable semiprime ideal 
of K[V] can be written in a uníque manner as a finite irredundant intersection 

n7=1 wK[A;].K[V] of augmentation ideais, where each Ai is a D-subspace of V. 
As a consequence, the set of these G-stable semiprime ideais ás Noetherian. 

The proof of this result is contained in a series of papers. To start with, [BE] 
handles D = Q, the field of rational numbers, with a proof using valuation
theoretic techniques reminiscent of the arguments in [Bg], but somewhat more 
subtle. Next, [PZl] handles infinite locally finite fields F, btiilding up the result 
from the finite field case using the usual infinite paths in trees and compactness 
properties. Note that the resuIt in the finite field case differs from that given in 
Theorem 2.2. On the one hand, we have 

Lemma 2.3. Let F be a finite field and let V be a finite-dimensional F -vector 
space, viewed multiplicatively. Assume that char F =f. char K, and let G = F e 

act on V. Then every G-stable ideal of K[V] contained in wK[V] is a finite 
intersection of augmentation ideals wK[A)·K[V) with A an F-subspace of V. 

On the other hand, unlike the infinite case, when F is finite there are F e -stable 
ideaIs of K[V) not contained in wK[V]. Furthermore, the ideaIs contained in 
wK[V] are not uniquely writable as finite irredundant intersections of augmen
tation ideais. Indeed, it is precisely this failure of uniqueness that causes much 
of the difficuIty in the work of [PZl). Finally, [OPZ) handles arbitrary division 
rings via going-up and going-down type results. Specifically, it is shown that if 
D has an infinite central subfield satisfying the conclusion of Theorem 2.2, then 
the same is true of D . Furthermore, if D is an infinite subdivision ring of E and 
if E satisfies the conclusion of Theorem 2.2, then so does D. As an immediate 
consequence of this key resuIt, we have 

Corollary 2.4. Let F be an infinite field and suppose V is a finite-dimensional 
F-vector space. If char F =f. char K, then wK[V) is the unique proper GL(V)
stable ideal of K[V). In the remaining cases, when char F = char K, then wK[V) 
is at least the unique proper GL(V)-stable semiprime ideal of K[V] . 

As was mentioned previously, the semiprime hypothesis is definitely required 
in Theorem 2.2 . Furthermore, the condusion that I is a finite intersection of 
augmentation ideais cannot be replaced by I being a finite product of such ideais. 
Indeed, we have 

Example 2.5. Suppose char D = char K and let V be any right D-vector space 
having a proper D-subspace B. Then I = wK[B]·K[V] + wK[V]2 is a De -stable 
ideal of K[V] that ás neither a finite intersection nor a finite product of augmen
tation ideais wK[Ai)·K[V], with each Ai a D-subspace of V . 

This example and Lemma 1.1 are both contained in [P) . We dose this section 
by briefly describing the relevant structure when V is an infinite-dimensional D
vector space. As will be apparent, there is less precise information here, and in 
fact the best we can do is 

Theorem 2.6. Let D be an infinite division ring and let V be a right D-vector 
space of arbitrary dimension o IfG = De acts on V, then every G-stable semiprime 
ideal of K[V) can be written as an intersection niwK[Ai] ·K[V) of augmentation 
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ideais, where each Ai is a D-subspace of V. In particular, every such proper ideal 
is contained in w K (V]. 

Again, the semiprime assumption can be dropped when char D =I char K. 

3. RATIONAL REPRESENTATIONS OF GROUPS OF LIE TYPE 

Corollary 2.4 otrers an example of a group GL(V) of Lie type acting rationally 
and irreducibly on the vector space V. However, our main concern here is with 
somewhat smaller groups like SL(V). Recall that a group G is said to be quasi
simple if G /7l( G) is a nonabelian sim pIe group and if G is equal to its commutator 
subgroup [G, G]. For example, if V is a finite-dimensional vector space over an 
infinite field F with dimF V 2: 2, then PSL(V) is simple and hence SL(V) is 
quasi-simple. Such groups of Lie type do not contain subgroups that act like the 
multiplicative group F e on V, but they do contain subgroups, the maximal tori, 
which act appropriately at least on certain subspaces of V . Indeed, this is the 
basic idea for an attack that was suggested in the paper [HZ2]. We start with 
some definitions and recall some old results. 

Let V be an arbitrary group and let H act as automorphisms on V. Then H 
is said to act in a unipotent or unitriangular fashion on V if there exists a finite 
subnormal chain 1 = Vo <l VI <l ••• <l vt = V of H -stable subgroups such that H acts 
trivially on each quotient V;H/V;. The following two lemmas are slight variants 
of results in [RS] and [Zl], respectively. 

Lemma 3.1. Let H act in a unitriangular manner on V, and let J ç I be 
H -stable ideais of the group ring K(V]. If! =I J, then there exists an element 
O' E 1 \ J such that H centralizes O' modulo J. 

Proa! Let 1 = Vo <l VI <l ••• <l vt = V describe the unitriangular action of H on 
V. We proceed by induction on t, the result being clear for t = O since K[l] = K. 
Assume the result holds for t - 1, and choose "I E 1 \ J so that sUPP'Y meets 
the minimal number, say n + 1, of cosets of vt-l. By replacing "I by 'Yy-l for 
some y E sUPP'Y if necessary, we can assume that 1 E supp "I. Thus we can write 
"I = 'YO+'YI XI + .. ·+'Ynxn with O =I "li E K[vt-l] and with 1,Xl,.· .,Xn in distinct 
cosets of vt-l. Now define 

l' = {ao 10'= 0'0 + 0'1X1 + ... + O'nXn E 1 with ai E K[vt-d}, and 

J' = {,80 1/3 = /30 + /31 XI + ... + /3n xn E J with /3i E K[vt-l]}. 

Then l' and J' are ideaIs of K[vt-l], since vt-l <J V, and l' ;2 J'. Furthermore, 
since H acts trivially on V/vt-l. we see that l' and J' are H-stable. Note also 
that in the above notation, if 0'0 = ,80, then O' - /3 is an element of 1 whose 
support meets at most n cosets of vt-l . Thus the minimality of n + 1 implies that 
O' - /3 E J and hence that O' E J. In particular, it now follows that "lo E l' \ J' . By 
induction, there exists an element 0'0 E l' \ J' centralized m'ldulo J' by H, and 
let O' = 0'0 + O'IXl + ... + O'nXn be its corresponding element in I. Then 0'0 ft J' 
implies that O' ft J. Furthermore, if 9 E H, then 0'9 -O' has its O-term in J'. Thus, 
by the above remarks, 0'9 - O' E J , and hence H centralizes O' modulo J. O 

Again, let V is an arbitrary group and I is an ideal of the group algebra K(V]. 
If U is a normal subgroup of V, then (1 n K[U]) .K(V] is an ideal of K(V], and we 
say that U controls 1 whenever 1 = (I n K[U])·K(V]. In other words, this occurs 
precisely when In K[U] contains generators for 1. As is well-known, there exists 
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a unique normal subgroup C(I), called the controller of I, with the property that 
U <I V controls I if and only if U 2 C(I). In particular, if Ul and U2 control I , 
then so does their intersection Ul n U2. Furthermore, if H acts on V and stabilizes 
I, then H stabilizes C(I). 

Lemma 3.2. Let H act in a unitriangular manner on the arbitrary group V with 
Z = Cv (H) <I V, and let I be an H -stable ideal of K[V] . If I is not controlled by 
Z , then there exists an element a E K[Z] \ (I n K[Z]) and an element v E V \ Z 
having only finitely many H -conjugates modulo Z, such that a ·wK[T] ç In K[Z], 
where T = {v.,-l I x E NH(VZ)} is a subgroup of Z . Furthermore, for any 
x, y E NH(VZ), we have v.,y-l = v.,-l·vy- l . 

As an immediate consequence of Lemma 3.1 and the work of the preceding 
section, we have 

Proposition 3.3. Let D be an infinite division ring and suppose that V is a finite
dimensional D-vector space. If char D =ft char K , then w K [V] is the unique proper 
GL(V)-stable ideal of K[V]. If, in addition, D = F is a field and dimp V 2: 2, 
then wK[V] is the unique proper SL(V)-stable ideal of K[V]. 

Proof. Write ~ = GL(V) or SL(V) as a group of matrices and let ~ be the 
subgroup of ~ consisting of all upper triangular matrices with diagonal entries 
equal to 1. Then ~ acts in a unitriangular manner on V with Cv (~) = Z ~ D+ . 
Suppose I =ft O is a ~-stable ideal of K[V] . Then, by Lemma 3.1 with J = O and 
H = ~, there exists a nonzero element a E I that is centralized by~. Since D 
is infinite, it is easy to see that O' E K[Z] and hence In K[Z] is a nonzero ideal 
of K[Z]. Next, let '!' be the subgroup of ~ consisting of diagonal matrices. Then 
'!' normalizes Z and hence it stabilizes In K[Z]. Furthermore, since dimp V 2: 2 
when ~ = SL(V), we see that '!' acts on Z as De acts on D+. We therefore 
conclude from Theorem 2.2 that In K[Z] = wK[Z] and, since ~ is transitive on 
the nonidentity elements of V, the result follows . O 

To proceed further, we restrict our attention to locally finite groups. In other 
words, we let ~ be a quasi-simple group of Lie type defined over an infinite locally 
finite field F of characteristic p > O. If F is algebraically closed, then ~ is an 
algebraic group and the structure of ~ and its rational irreducible representations 
is given, for example, in [St]. On the other hand, if F is just an arbitrary locally 
finite field , then ~ is the direct limit of groups of the same Lie type defined over 
finite subfields of F. Thus we can again obtain information about ~ and its 
rational representations by lifting the known results on finite groups contained in 
[St]. In particular, ~ has a Sylow p-subgroup ~, playing the role of the group of 
upper triangular matrices in the preceding argument , and N~(~) = ~ ~ '!' where 
'!' is the analog of a maximal torus. Furthermore, if V is a finite-dimensional 
irreducible ~-module, then Cv (~) = Vo is a one-dimensional subspace of V on 
which '!' acts via the homomorphism 1/ : '!' --+ GL(Vo). 

Suppose that V is a vector space over the field E of characteristic p > O. Since 
we want V to contain no proper ~-stable subgroup, it follows that the representa
tion <p: ~ --+ GL(V) cannot be realizable over a smaller field. In particular, since 
~ is a locally finite group and char E> O, we know that E must be the field gen
erated by X((Ô), the character values of 18 . Furthermore, as was shown in [PZ2] , 
Eis also generated by 1/('!'), when we identify GL(Vo) with E e , and hence E ç F. 
In addition, when <p is a rational representation of 18 , then the latter paper offers a 
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rough description of 1J(':t) , sufficient to handle the problem at hand. For the most 
part, if <.5 is a group of rank n, then 1J(':t) = {X~l X~2 ... x~n I Xl, X2, .. . ,Xn E F e } 

where aI, a2, . .. , an are nonnegative integers depending upon the weight of the 
representation. Of course, in some of the twisted cases, 1J(':t) also involves the 
known field automorphisms which define <.5 . Thus, for the most part, E = F and 
IW : 1J(':t) I < 00 . With this, and some additional work to handle the specific field 
automorphisms, the arguments of Proposition 3.3 can be extended to yield the 
main result of [PZ2], namely 

Theorem 3.4. Let <.5 be a quasi-simple group of Lie type defined over an infinite 
locally finite field F of chamcteristic p > O and let V be a finite-dimensional 
vector space over a field E of the same chamcteristic with dimE V > 2. Let 
<jJ : <.5 -t GL(V) be a mtional irreducible representation, and assume that E is 
genemted by X(<.5), the chamcter values of<.5 associated with <jJ . lf K is a field of 
chamcteristic different from p, then wK[V] is the unique proper <.5-stable ideal of 
the group algebm K[V] . 

4. POLYNOMIAL FORMS 

The remainder of this survey is concerned with the contribution of paper [P] to 
this problem. As we will see later on, the nonrational irreducible representations 
of groups of Lie type involve arbitrary field automorphisms. For example, if <.5 is 
as in the preceding discussion, then 1J(':t) = {xrlx~2 .. . x~n I Xl, X2, .• • , X n E F e } 

where each a i is a sum of field automorphisms. Thus, it is necessary to study 
functions of the form (): X f-t X"l X(72 •. • X"k and we first work in the more general 
context of division rings D of finite characteristic p > O. In particular, () is a map 
from D to D, and we let UI, 0'2, ... , O'k be endomorphisms of this ring. We begin 
with a rather general resulto 

Proposition 4.1. Let V be a right D-vector space and let G be a subgroup of the 
multiplica tive group De. Then G acts as automorphisms on V, by right multipli
cation, and hence on the group algebm K [V] with char K =1= char D . 

Z. lf G n X =1= 0- for every subgroup X of finite index in the additive group 
D+, then every nontrivial G-stable ideal of K[V] is contained in wK[V]. 

ii. Suppose G n (X + a) =1= 0 for every subgroup X of finite index in D+ and 
for every element a E D. lf V = D is one-dimensional, then wK[V] is the 
unique proper G-stable ideal of K[V] . 

Proof of the first parto By extending the field, if necessary, we can assume that 
K is algebraically closed. Suppose, by way of contradiction, that I is a proper 
G-stable ideal of K[V] not contained in wK[V]. Since V is an elementary abelian 
p-group, there exists a finite subgroup A of V with In K[A] <l:. wK[A), and 
hence the ideal structure of K[A] implies that eA E I, where eA is the principal 
idempotent of K[A]. Furthermore, since I is G-stable, we have (eA)g E I for all 
9 EG. 

Recall that K[V] is a commutative von Neumann regular ring, and hence so 
is K[V]/ I . In particular, K[V]/ I is semiprimitive and consequently there exists 
an irreducible representation A of K[V] with A(I) = O. Since K is algebraically 
closed, it is easy to see that A: K[V] -t K and that A is determined by a linear 
character À : V -t K e • Furthermore, if L = ker À, then IV : LI :::; p < 00. Now 
define the residual LA ç D by LA = {d E D I Ad ç L}, so that LA = naEA La 
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where La = {d E D I ad E L}. Since La is the kernel of the additive group 
homomorphism D -+ V/L given by d I-t ad + L, we see that La is a subgroup of 
D+ of finite indexo Since IAI < 00, it follows that ID+ : LA I < 00. 

Finally, let 9 E G and note that (eA)g = eM = eAg is the principal idempotent 
of the subgroup Ag = Ag of V. Furthermore, we know that eAg E I ç ker A and 
therefore the restriction of >.: V -+ l{- to Ag cannot be the principal character. 
In other words, Ag ~ ker>. = L and, by definition, this says that 9 ~ LA . We 
have therefore shown that G n LA = 0 and this contradicts the assumption that 
G n X :f= 0 for all subgroups X of D+ of finite indexo O 

The proof of part (ii) is similar, but more subtle, since we have to deal with 
nonprincipal idempotents. Specifically, we show that if I is a nonzero G-stable 
ideal of K[V] properly smaller than wK[V], then there exist two distinct finite 
subgroups A ç B of V and a nonprincipal linear character >.: V -+ K- with 
ker>. = L such that G is disjoint from LA \ LB. But why must LA be properly 
larger than LB? The answer is that these residuaIs can in fact be equal if dimD V > 
2. However, when dimD V = 1, then we know from Theorem 2.2 that no sucli 
ideal I can exist for G = D- . Thus, since the above condition can be shown to be 
equivalent to the existence of I, we see that D- cannot be disjoint from LA \ LB' 
and therefore LA must be properly larger than LB, as required. At present, part 
(ii) does not seem to have applications to the problem at hand. But part (i) can 
be used effectively. We first need some definitions. 

Let 3 be a ring, let A be an infinite left 3-module and let S be a finite abelian 
group. For convenience, let :!,A) denote the set of all infinite 3-submodules of A. 
We say that a (not necessarily linear) function I : A -+ S is eventually null if every 
infinite submodule B of A contains an infinite submodule C with I(C) = O. Obvi
ously the zero function is eventually null and so also is any group homomorphism 
whose kernel is a 3-submodule. Indeed, in the latter situation, the finiteness of S 
implies that r 1 (O) is a submodule of finite index in A. It is , of course, easy to 
see that a finite sum of eventually null functions is eventually null. 

We are concerned with functions which are called polynomial lorms on A. By 
definition, a polynomial form of degree O is the zero function, and for n ~ 1, we 
say that I: A -+ S is a polynomial form of degree ~ n if and only if: 

i. I(a) = O implies that 1(3a) = O. 
ii. For each a E A, the function ga(x) = I(a + x) - I(a) - I(x) is a finite sum 

of polynomial forms of degree ~ n - 1. 
It is clear from (ii) above that the polynomial forms of degree S 1 are precisely the 
group homomorphisms from A to S whose kernels are 3-submodules of A. Now 
suppose that Ris an infinite ring, fix ro , ri, .. . , r n E R and let 0'1,0'2, . . . , O'n be 
endomorphisms of R. Furthermore, let 3 be a central subring of R stable under 
each O'i, and let A = R+ denote the additive subgroup of R so that A is naturally a 
3-module. If /J : A -+ S is a group homomorphism whose kernel is a 3-submodule 
of A, then the map I: A -+ S given by I(x) = /J(rox(11rlxUlr2" ·rn _lx(1nrn ) is 
certainly a polynomial form on A of degree ~ n. The key result here is 

Theorem 4.2. Let A be an infinite 3-module, let S be a finite abelian group, and 
let I : A -+ S be a finite sum of polynomial forms. Then 1 is eventually null. 

It is easy to see by example that I(A) need not be a subgroup of S . Further
more, A need not have a submodule B of finite index with I(B) = O. Again, let 
3 be an arbitrary ring and let I: A -+ S be a polynomial formo Choose I(B) 
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to have minimum size over all subrrtodules B of finite index in A. Then for any 
submodule C of finite index in A, we have f(C) ;2 f(C n B) = f(B) since C n B 
is a submodule of B having finite index in A . In other words, f(B) is the unique 
minimum value over alI such C, and we calI f(B) the final value of f. In view of 
the preceding comments, it would be interesting to know whether the final value 
of a polynomial form f is necessarily a subgroup of S. 

We can now apply the preceding results to some particular groups G ofinterest. 
SpecificalIy, let D be an infinite characteristic p division ting, and let 0"1,0"2, .•. , O"n 

be n > 1 endomorphisms of D . Furthermore, fix a nonzero element d E D and 
consicfêr the map 

(1: x t-t d·xU1 XU2 • •. x U" 

from D to D. Note that there no gain in considering more general product expres
sions for B like dOXUld1XU2d2" ·dn _ 1 x u"dn with O =f:. di E D. Indeed, ifO =f:. dE D 
and if O" is an endomorphism of D, then XU d = dd- 1 X U d = dxud • Thus each of the 
di factors above could be moved to the left at the expense of multiplying each O"i 
by a suitable inner automorphism. 

Let us return to the given map (1 and observe that B(DO) ç DO . If Ais any 
infinite subgroup of D+ , we let G = G(A) = (O(AO)) be the subgroup of DO 
generated by B(AO). Of course, G acts as automorphisms on any right D-vector 
space V by right multiplication, and hence G acts as automorphisms on any group 
algebra K[V] . The folIowing result is proved in [P]. 

Theorem 4.3. Let D, V, G = G(A), and K be as above with A an infinite 
subgroup of D+ and with char D = p > O. If char K =f:. p, then all proper G-stable 
ideais of the group algebra K[V] are contained in the augmentation ideal wK[V). 
Purthermore, B(N) and G(A) are infinite. 

Proof. By Proposition 4.1(i), it suffices to show that G n X =f:. 0 for all additive 
subgroups X of D+ of finite indexo To this end, let X be given and consider the 
function f: A -t D+ / X given by f = JlO where Jl: D+ -t D+ / X is the natural 
epimorphism. Then f is a polynomialform with A viewed .as a moduleover GF(p). 
Therefore, Theorem 4.2 implies that f is eventually nulI and consequently there 
exists an infinite subgroup B of A with f(B) = O. By definition of f , this implies 
that 8(BO) ç X and hence that G n X =f:. 0. O 

5. REPRESENTATIONS AND FIELD AUTOMORPHISMS 

It remains to discuss the nonrational finite-dimensional representations of lo
cally finite groups of Lie type. For convenience, we list the properties of the 
representation 4J: Iô -t GL(V) that are needed for the proof. As is to be ex
pected, two possibly different fields come into play here. Indeed, P is the field of 
definition of the group Iô, while E is the field of character values. 

Hypothesis 5.1. Let P :) E be infinite locally finite fields of characteristic p > O, 
tet V be a finite-dimensional E-vector space with dimE V > 2, and let Iô be a group 
that acts on V by way of the homomorphism 4J: Iô -t GL(V). Assume that 

i. ~ is a p-subgroup of Iô with Cv (~) = Evo, and Evo·4J(Iô) = V. 
ií. 'I' is a subgroup oflô that stabilizes the line Evo, and the action of'I' on this 

line factors through its homomorphic image tf = (PO)t = po xpo x · . ·xpo. 
Indeed, for each i = 1, 2, ... , t, there exists a function Oi: P -t E ç P 
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, b O () <7., <7; 2 <7 ., ,,. 'th gzven Y i xi = Xi ' Xi ' ." Xi w~ 

for ali (Xl, X2, . • . , xt) E '.t. Here ~ denotes the induced action of'.t on Va , 
each ni 2: 1, and each (J'i ,j is a field automorphism of F. In addition, E 
is the linear span of the product 01 (F O )02(r) ... Ot(FO ). 

iii. ~ is generated by one-parameter subgroups ~g = {9x I X E F} such that 
the matrix entries of <fJ(9x) are all F -linear sums of expressíons of the 
form x lt , x lt2 •• • x lt"., where the "'i are automorphisms of F and m > O. Of 
course, these entries are contained in E, and 9x '9y = 9x+y for ali x-;y E F. 

Note that ~ plays the role of a Sylow p-subgroup of IB and, because it is a 
p-group, it necessarily acts in a uni triangular manner on V. Thus ~ must have 
nonzero fixed points in V, but the fact that these fixed points consist of just 
one line EVa is an additional necessary assumption. Next, we see that ':r is the 
analog of a maximal torus, presumably in the normalizer of~. In any case, we 
know that it acts on the line EVa via homomorphisms from F O to E O given by 
products of field automorphisms. Of course, we expect ~ to be generated by one
parameter subgroups, but here the action of these subgroups is no longer rational, 
but rather involves sums and products of field automorphisms. One technique for 
dealing with such expressions is to view products of field automorphisms as linear 
characters. 

To this end , let ~ be a finite subfield of F and let "'1, "'2, ... , "'m be m > O field 
automorphisms of F . If ç: F ~ F is given by ç( x) = x lt , x lt2 ••• x lt"., then êertainly 
ç(~) ç ~ and ç: ~o ~ ~o is a multiplicative homomorphism from ~o to a field . In 
other words , ç is a linear character of the group. For convenience, if X and ç are 
such linear characters of ~o, then we use [X, ç] = L:ye;y. X(y)ç(y-1) to denote the 
unnormalized character inner product. Certainly, character orthogonality implies 
that [X,ç] = O if X#- ç, while [X, X] = I~ol = 1~1-1 == -1 mod p. Of course, the 
inner product [ , ] extends by linearity to a function on sums of characters. Here 
is a sample argumento 

Lemma 5.2. Let F be an infinite locally finite field and let w(x): F ~ F be a 
map that can be written as a finite F -linear combination of functions of the form 
ç(x) = x lt , x lt2 •• • x lt ". , where each "'i is a field automorphism and m 2: O. Assume, 
in addition, that '11(0) = O. 

t . If W(F) is finite, then \lI(F) = O. 
ii. If \li (x) is an additive map with '11 (F) #- O, then F is a finite sum of F

translates of its additive subgroup W(F), that is F = L:~=1 bkW(F) for 
suitable field elements b1 , b2 , • . . , bn . 

Proof. Say w(x) = L:~=1 aiçi(x) with ai E F. By combining terms if necessary, 
we can clearly assume that, as functions, the Çi(X) are alI distinct. In particular, 
there is at most one Çi(X) given by the empty product, and then, since '11(0) = O, 
this term cannot appear in W(x) . In other words , Çi(O) = O for all i and hence, 
since these functions are distinct, then differ on nonzero elements. It follows that 
there exists a finite subfield J ç F such that the various Çi(X) give rise to distinct 
linear characters Çi : ~o ~ ~o • 
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For each Y E ~, define wy(x) = W(y-lx) for alI x E F. Then 
t t 

Wy(x) = La,çi(y-l x ) = L aiÇi(y-l)Çi(X). 
j=1 

Thus, for any fixed subscript j, we have 
t t 

L çj(Y)Wy(X) = L L Çj(y)Çi(y-l).ajçi(X) = L[çj,ç;]·aiçj(x) 
,=1 

where [çj, ei] denotes the unnormalized charaeter inner produet. In particular, 
character orthogonality yields 

L çj(Y)WY(X) = -ajçj(x) for all x E F. 
yEJ"· 

(i) If w(F) is finite, then each Wy(F) is finite and hence, by the above, ajçj(F) 
is finite. But çj(F) is infinite, by Theorem 4.3, and hence we must have aj = O 
for all j. In other words, w(F) = O. 

(ii) Now suppose that w(x) is additive with w(F) =I O, and let the subscript j 
be chosen with aj =I O. Since each wy(x) is clearly also an additive funetion, it 
follows from (*) that ajçj(x) is additive and hence so is çj(x). But çj(x) is given 
to be a multiplicative funetion, so it is an endomorphism of the locally finite field 
F, and hence an automorphism. In particular, çj(F) = F, so (*) yields 

as required . O 

The following is, in some sense, the main result of paper [P] . The argument 
here is quite different from that of Theorem 3.4. 

Theorem 5.3. Let F ::J E, V and <5 satisfy Hypothesis 5.1, and let K be a field of 
characteristic differentfram p . Then the augmentation ideal wK[V] is the unique 
proper <5-stable ideal of the group algebra K[V]. 

Outline of the proof. Use the notation of Hypothesis 5.1, set Z = EVa ~ E+, and 
let I be a proper <5-stable ideal of K[V). We first note that I is not controlled by 
Z. Indeed, it follows from parts (i) and (ii) of the hypothesis that Z contains no 
nonidentity <5-stable subgroup (see, for example, the last paragraph of the proof 
of Lemma 6.1) . In particular, if Z 2 C(I) then C(I), being <5-stable, must be the 
identity subgroup and consequently I = O or K[V), a contradietion. 

Next , since ~ is a p-group, it aets in a unitriangular manner on V and hence, by 
Lemma 3.2, there exists an element a E K[Z)\ (InK[Z)) and an element v E V\Z 
having only finitely many ~-conjugates modulo Z, such that a.wK[T) ç InK[Z]. 
Here T = {vx - 1 I x E N'.J3(vZ)} is a subgroup of Z and, for all x, y E N'.J3(vZ), we 
have vxy - 1 = vx - 1 ·vY - 1 . We study the configuration a ·wK[T) ç InK[Z) . 

The goal now is to show that T is actually a large subgroup of Z ~ E+. To this 
end, choose a one-parameter subgroup ~g of ~ that does not centralize v . Since 
v has just finitely many ~g-conjugates modulo Z , part (iii) of the hypothesis 
and Lemma 5.2(i) easily imply that ~g centralizes v modulo Z and hence ~g 
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normalizes the coset vZ. Furthermore, the various linearity conditions along with 
Lemma 5.2(ii) show that T' a1 + T' a2 + ... + T' a/ç = F+, where T' = {v lC - 1 I x E 
I,f}g} and where a1, a2 , .. . , a/ç are suitable elements of F . But T' ç . T ç E ç F, so 
we conclude that Tb 1 + Tb2 + ... + Tb/ç = E+ for suitable elements b1 , b2 , ... , b/ç E 
E. Indeed, since Eis the linear span of the product (h(F e )02(Fe ) •• . 0t(Fe ) , we 
can assume that each b; is the vo-eigenvalue of an element y; E '!. 

At this point, the action of'! comes into play in a completely different manner. 
Unfortunately, this argument is really quite technical, so we cannot discuss it 
here in full detail. Roughly, we assume that K is algebraically closed and we 
consider those irreducible representations A: K[Z] -t K with A(InK[Z]) = O and 
A( a) f:. O. There must, of course, be representations of this sort, and we show, with 
a good deal of work , that any such Ais necessarily the principal representation of 
K[Z) . In particular, since A(a) f:. O, we now know that a fi. wK[Z]. 

Finally, let f3 = a4>(Y')a4>(Y,) .. ·a4>(Yk) and note that f3 fi. wK[Z) since the 
augmentation ideal is a prime ideal of K[Z]. Furthermore, a4>(Yi).wK[T4>(Yi) ] ç 
In K[Z] and hence f3 ·wK[Z] ç In K[Z], since Z ~ E+ = 2::; Tb; = 2::; T4>(Yi) . 
N ow if J = b E K [Z] I 'Y·W K [Z] ç In K [Z]}, then J is certainly a '!-stable ideal 
of K[Z], and J ~ wK[Z] since f3 E J . Thus, Theorem 4.3 implies that J = K[Z] 
and, in particular, that 1 E J. Consequently wK[Z) ç In K[Z) ç I and, since I 
is ~-stable and Z4>(~) = V, we conclude that wK[V] ç I , as required. O 

6. NONRATIONAL REPRESENTATIONS OF GROUPS OF LIE TYPE 

At this point, it is necessary to apply a number of known results on the repre
sentation theory of groups of Lie type. 
Lemma 6.1. Let ~ be a quasi-simple group of Lie type defined over an infinite 
locally finite field F of eharaeteristie p > O, and let W be a finite-dimensional 
F -vector spaee on whieh ~ aets both nontrivially and absolutely irredueibly. Then 
there exists a subfield E of F of finite index and a ~-stable E-subspaee V of W 
sueh that 

i. V has no proper ~-stable subgroup. 
ii. W=F 0 EV. 

iii. F;2 E, V and ~ satisfy Hypothesis 5.1. 

Proof By results of [BT) and [HZ1], we have W = Wf' 0 F W;' 0 F ... 0 F W;k , 
where each W; is a rationalIy irreducible F[~l-module and where each (F; is a field 
automorphism. Now let I,f} be a Sylow p-subgroup of ~ and let '! be a maximal 
torus of ~ contained in ~~(I,f}). As we have already mentioned, I,f} centralizes a 
uni que line Fwo in W, and therefore Wo = wf' 0 W~2 0 . . . 0 W~k, where each W; 
with i ~ 1 is a highest weight vector in W; . Thus, by the description of the action 
of'! on each W; given in [PZ2], we see that '! acts on Fwo by way of the functions 
01 , O2 , . .• , Ot : F -t F of Hypothesis 5.1 (ii). Furthermore, if E is the subfield of P 
spanned by the product 6dpe )02(r)·· · Ot(r), then it follows fairly easily that 
(F : E) < 00 and that E is the linear span of the product 6d E e )02 (Ee ) • . • Ot (Ee ). 

Next, results of [PZ2] imply that Eis equal to the field GF(p)[X] generated by 
alI values X(~) of the group character x : ~ -t F corresponding to 4> . Thus, since 
~ is 10calIy finite and char F = p > O, the representation associated with W is 
actually realizeable over E. In other words, there exists a ~-stable E-subspace 
V ç W with W = F 0 E V. This proves (ii), and of course ~ must act nontrivialIy 
and irreducibly on E V since it acts nontrivially and irreducibly on F W. 
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Since '.P is a p-group, it acts in a uni triangular manner on V and hence Cv ('.P) =1= 
O. lndeed, since F ®E CV (<.p) ç Cw ('.P), it follows that Cv (<.p) is a line EVa in 
V and, without loss of generality, we can assume that Wa = Va E V. With this, 
we now understand the action of '! on Eva. Furthermore, as can be seen for 
example in [St], '.P is generated by one-parameter subgroups <.pg determined by 
root vectors, and each such subgroup acts on each W, via polynomial maps. Of 
course, in the twisted cases, the defining field automorphisms also come into play. 
Thus, since F ®E V = W = Wfl ®F Wf~ ®F ... ®F W;/o, we can now conclude 
that F :J E, V and 15 satisfy Hypothesis 5.1. 

Finaffy, suppose U is a nonzero I!S-stable subgroup of V . Then O =1= Cu (<.p) ç 
Cv ('.P) = Eva· Furthermore, '! acts on Cu ('.P) and, since Eis the linear span of the 
product 01 (E- )02 (E-) . .. Ot (E-), it follows that Cu ('.P) = Eva. As a consequence, 
we have U ;2 Eva'CP(I!S) = V, and the proof is complete. O 

It is now a simple matter to bring ali these ingredients together. lndeed, with 
just a bit more work on the representations of 15, the preceding lemma and The
orem 5.3 combine to yield 

Theorem 6.2. Let 15 be a quasi-simple group of Lie type defined over an infinite 
locally finite field F of characteristic p > O, and let V be a finite-dimensional 
vector space over a characteristic p field E. Assume that 15 acts nontrivially on 
V by way of the representation cp: 15 -t GL(V), and that V contains no proper 
I!S-stable subgroup. lf K ás a field of characteristic different from p, then wK(V] 
is the unique proper I!S-stable ideal of the group algebra K[V]. 

It follows easily from the celebrated result of (Bel, [Bol, [HS] and [T] that any 
quasi-simple, infinite, locally finite linear group is a group of Lie type defined over 
ao infinite locally finite field F of the same characteristic p. Thus, the preceding 
theorem yields 

Corollary 6.3. Let V be a finite-dimensional vector space over a field E of char
acteristic p > O and let 15 be an infinite locally finite subgroup of G L(V). Assume 
that 15 is quasi-simple and that it stabilizes no proper subgroup of V. lf K ás a 
field of characteristic different from p, then the augmentation ideal wK(V] is the 
unique proper I!S-stable ideal of the group algebra K(V]. 

Finally, we return to the original problem of studying ideaIs in group algebras 
of locally finite abelian-by-simple groups. Recall that if V is a normal abelian 
subgroup of SJ, then SJjV acts on V by conjugation. 

Corollary 6.4. Let V be a finite-dimensional vector space over a field E of char
acteristic p > O, and let V be a minimal normal abelian subgroup of the locally 
finite group SJ . Assume that SJjV is an infinite quasi-simple group that acts faith
fully as an E -linear group on V. lf K is a field of characteristic different from 
p and if I is a nonzero ideal of K[SJ], then I ;2 wK[V] ·K[SJ] and hence I is the 
complete inverse image in K[SJ] of an ideal of K[SJjV] . 

Proaf. Let O =1= I <i K[SJ] and suppose, by way of contradiction, that In K(V] = O. 
Note that V acts in a uni triangular manner on SJ since it centralizes both V and 
SJjV. Thus since Cf,) (V) = V <l SJ and since V does not control I, it follows from 
Lemma 3.2 that these exists O =1= a E K(V] and h E SJ \ V with a·wK[71 = O and 
with T = [h, V], the commutator group determined by the action of h on V. But 
Tis a nonzero E-subspace of V, 80 T i8 infinite, and hence a .wK[71 = O implies 
that a = O, a contradiction. 
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We now know that In K[V] is a nonzero jjjV-stable ideal of K[V]. Further
more, since V is a minimal normal subgroup of 5), it is clear that Q.S = 5)jV 
stabilizes no proper subgroup of V. Consequently, Corollary 6.3 implies that 
In K[V] 2 wK[V], so 12 wK[V].K[jj] and the result follows. O 

In particular, any information on the lattice of ideaIs of K[jjjV] carries over 
immediately to information on the lattice of ideaIs of K[5)]. 

We remark, in closing, that there is still much to be done on variants of this 
particular question o Two problems which immediately spring to mind are: (1) 
Can the results on general polynomial forms or even on the special polynomial 
forms we consider be improved so that Proposition 4.1(ii) becomes applicable? It 
might help if one can prove that the final value of a polynomial form f: A -t S 
is necessarily a subgroup of S . Of course, a positive solution here would lead to 
a more direct proof of Theorem 5.3. (2) Can Theorem 6.2 be extended to handle 
modules V that are completely reducible rather than just simple? In this case, 
one would hope for a.n answer analogous to that given in Theorem 2.2. At first 
glance, both of these problems appear to be quite diflicult, but one never knows. 
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