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STATISTICAL MEASURE OF QUADRATIC VECTOR FIELDS 

Joan C. Artés and Jaume Llibre 

Abstract : In [2] the authors classified the 44 topological 
phase portraits of ali the structurally stable quadratic vector 
fields on the Poincaré sphere §2 modulo limit cycles. In this 
topological study, no information is given about the regions 
in the space of ali coefficients where such phase portraits take 
place. In this paper we use a statistical method to provide 
estimations of the relative frequency for such regions. We also 
give estimations of the relative frequencies for the regions of 
phase portraits having nodes, foci and limit cycles. 

1. INTRODUCTION 

A vector field X : ]1t2 -t ]1t2 of the form X = (P, Q) where P = 2:: aijXiyi and 
Q = 2:: .bijXiyi, O ~ i + j ~ n, is calIed a planar polynomial ,vector field of degree 
~ n. If Li+j=n (laijl + Ibijl) =I O, then we say that X has degree n. In particular, 
the polynomial vector fields of degree 2 are called quadratic vector fields. The 
M = (n+ l)(n + 2) real numbers aij, bij are calIed the coefficients of X. The 
space of these vector fields, endowed with the structure of aftine ]1t M -space in 
which X is identified with the M-tuple (aoo,a10, ... ,aon,boo,blO , •.. ,bon ) ofits 
coefticients, is denoted by Pn(§2). 

The Poincaré compactification of X E Pn(§2), is defined to be the unique 
analytic vedor field p(X) tangent to the sphere §2 = {(x, y, z) E ]1t3 : x 2+y2+z2 = 
I}, w hose restriction to the northern hemisphere § ~ = {(x, y, i) E § 2 : z > O} is 
given by zn-1(!+).(X), where!+ is the central projectionfroin]1t2 to §~, defined 
by !+ (x, y) = (x, y, 1)f(x2 + y2 + 1)1/2. See Section 2 of [2] for more details. The 
closed northern hemisphere {(x,y,z) E §2 : z 2: O} is also calIed the Poincaré 
disco 

Let §1 = {(x, y, z) E §2 : z = O} be the equator of the Poincaré sphere. 
Then, the vector field X E Pn (§2) is said to be topologically structurally stable 
if there is a neighborhood N of X under the given topology and a continuous 
map h : N -t Hom(§2, §1) (homeomorphisms of §2 which preserve §1) such that 
hx = Id and hy maps orbits of p(X) onto orbits of p(Y), for every Y E N. Again 
see Section 2 of [2] for more details. Define by L the set of quadratic vector fields 
X E P 2 (§2) which are topologically structurally stable. 

We denote by t.p : ]1t x §2 -t §2 the fiow generated by the vector field p(X). We 
call phase portrait of the vector field p(X) : §2 -t §2 the decomposition of §2 as 
union of all the orbits of p( X). We consider all the orbits, different from a singular 
point, oriented in the sense of the integral curves of the vector field p(X), i.e. if 
the orbit is t.p.,(t), it is oriented in the sense of the t increasing. We denote the 
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positive sense of the orbits drawing arrows in the pietures. 

1t is known (see for instanee [4]) that the separatriees of a eompaetified polyno
miaI vector field p(X) are the singular points, the local separatriees of the finite 
and infinite hyperbolie seetors, and the limit eycles. Every eonneeted eomponent 
of the eomplement of the set of separatriees of p(X) in § 2 is ealled a canonical 
region. Then, in order to determine the phase portrait of p(X) in §2 , it is suffieient 
to draw all the separatriees of p(X) plus one orbit for every eanonieal region, see 
for details [6]. 

In [2] the authors eharacterize the phase portraits of the topologieally strue
tura]Jy stable quadratie vector fields without limit eycles. Moreover, they prove 
for topologieally strueturally stable quadratie vector fields having limit eycles, 
that identifying the region bounded by the outermost limit eycle surrounding a 
foeus with a single point, then it is obtained the phase portrait of a topologieally 
strueturally stable quadratie vector field without limit eycles. More preeisely two 
of the main results of [2]. ean be stated as follows. 

THEOREM 1. The following statements hold. 
(a) lf X E L !ws no limit cycles, then its phase portrait on lhe Poincaré disc · 
is topologically equivalent modulo orientation to one of the 44 phase portraits of 
Figure 1. 
(b) Each phase portrait of Figure 1 is realizable by some X E L without limit 
cycles. 
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Figure 1. Phase portraits of the topologically 

structurally stable quadratic vector fields without limit cycles. 

87 



88 Joan C. Artés and Jaume Llibre 

Figure 1. Continuation. 
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Figure 1. Continuation. 
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One of the main reasons for introducing the results modulo orientation is to 
reduce the number of different phase portraits to be drawn. Many of these phase 
portraits also can be considered with the opposite orientation, while the others 
are self symmetrical with respect to the orientation. 

THEOREM 2. lf X E I: has limit cycles and we identify the region bounded by 
the oute1'most limit cycle surrounding a focus with a single point, then we obtain 
the phase portrait of some Y E I: without limit cycles. 

In [2] the authors proved that the 44 different phase portraits for structurally 
stable quadratic vector fields on the Poincaré sphere §2 modulo limit cycles can 
be grouped according to Table l. In this table every capitalletter corresponds to 
a pair of infinite singular points while Jower letters correspond to finite singular 
points in the Poincaré compactification of the polynomial vector field ; for more 
details see [2]. LeUer 5 stands always for saddles while F stands for antisaddles . 

Family Singularities # of classes 
1 F 1 
2 spF 1 
3 Pl P2 S1 S2 F 5 
4 Pl P2 5 1 
5 Pl P2P3 S 5 1 
6 S1 s2 FI F2 F3 1 
7 81 82 83 P FI F2 F3 4 
8 5 FI F2 1 
9 p8 5 FI F2 3 

10 Pl P2 81 82 8 FI F2 16 
11 P1 P2 51 82 F 3 
12 P1 P2 P3 8 51 52 F 7 

Table 1. Number of st ructurally stable phase portraits 

for a given configuration of the singularities in §2. 

A qlladratic vector field is defined by 12 parameters, that is, it can be identified 
with a point in JR12, or even better, by means of a rescaling of the variable t, with 
a point of the compact sphere §ll. The structurally stable vector fields occupy an 
open and dense set inside the space of parameters (i.e. the space of all coefficients 
of the quadratic polynomial vector field) see [8]. In the complementary region of 
measure zero Iive all bifurcations of the quadratic vector fields. Some of these 
bifurcaLions will be of algebraic type, but others wiU be analytical. Concretely, 
t,he bifurcations which distinguish among the 12 cases described in Table 1 are 
algebraic. AI! them deal with collision of singular points and these formulas are 
algebraic. But most of the bifurcations that distinguish among the different ph ase 
portraits inside a same case are not algebraic. They deal with saddle to saddle 
connections, and except in few cases where these connections are algebraic, most of 
the times are noto So, it is clear that it will not be possible to achieve an estimate 
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of the size by algebraic or analytic means of the different regions in which the 
parameter space is divided. 

Now, by using the computer program named P4 (Planar Polynomial Phase 
Portraits) we can draw the global phase portrait of our quadratic vector fields in 
the Poincaré disc (see [1]). In fact, P4 is prepared for drawing the phase portrait 
of any planar polynomial vector field, whether it is structurally stable or noto 
Really P4 locates and draws the separatrices of a polynomial vector field. As it 
is well known such vector fields have finitely many separatrices which are: the 
separatrices associated to a hyperbolic sector of a finite or infinite singular point, 
finite and infinite singular points, and limit cyeles. 

The program can be used to determine the phase portrait of any given vector 
field in a family of Table 1, its phase portrait. The program P4 is able to detect 
limit cyeles numerically. It may not detect small limit cyeles, or distinguish be
tween two limit cyeles which are very elose, but it may assure the existence of 
at least one limit cyele, and sometimes even 2 or 3 cyeles surrounding the same 
focus. 

In short, using these two tools (the classification of all structurally stable qua
dratic vector fields on the sphere §2 and the program P4), anda statistical method 
we can provide: first, a relative frequency of the 44 regions of the parameter space 
associated to the different strticturally stable quadratic phase portraits, see Table . 
3; second, a relative frequency of nodes or foci, see Tables 4, 5 and 6; and third, a 
relative frequency of the existence of limit cyeles in quadratic vector fields which 
can be summarized saying that 3.23% of quadratic vector fields have at least one 
limit cyele. . 

In Section 2 we expose the working method used to search and compute the 
sample, and in Section 3 we summarize .the statistical results and point out to 
several remarkable facts suggested by the data presented in this work. 

2. WORKING METHOD 

We generate in a random way 20 million quadratic vector fields. We want to 
obtain a uniform distribution on the parameter space, that is IR 12. Since any phase 
portrait of a polynomial system remains invariant if we multiply all its coefficients 
by a non zero constant, and the origin of coordinates is not a structurally stable 
system and has null measure, we will take all them in §11. In order to generate 
random uniformly distributed points in §11 we cannot take 11 angles and polar 
coordinates since this method concentrates points in some "poles". The best way 
consists in generating 12 Gaussian random variables with mean O and standard 
deviation 1 and then normalize this tuple (see [5]). 

In concrete, we start generating random numbers in the interval (0,1) with 16 
decimal digits using a constant density function which is equal to 1 on this interval 
and O in the complemento The method used for generating such random numbers 
is a prime modulus m multiplicative linear congruential generator method, see [7] 
for more details. Later on we take them in couples and generate two Gaussian 
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distributions using the polar form of the Box-Muller transformation (see [3]). 
Finally we normalize the 12-tuple to §11. 

Under these conditions we are using 192 digits for determining a quadratic 
vector field of the sample which are later on numerically affected by square roots 
and logarithms, and consequently the probability to get a non structurally stable 
quadratie vector field is almost zero. . 

We have cheeked that this sample is signifieative in the sense that we have 
also worked previously with a sample of 2 millions and the relative frequencies of 
the different phase portraits were essentially the same with both samples. More 
speeifieally, the differences between the relative frequeneies obtained with these 
two samples were of order O.Ol. 

First, by studying the singularities of the given quadratie vector fields we can 
deçide to whieh of the 12 families of Table 1 they belong. Some of these 12 
families are easy to study, beeause there is only one possible phase portrait for 
them. These are Families 1, 2,4, 5, 6 and 8. However, Families 2, 4 and 5, have 
finite antisaddles and from the eomputations of P4 we ean know if these points 
are nodes or foei. Moreover, in this last case, there ean be one or more limit eycles 
around the foeus whieh ean be numerically detectable by the programo This is 
something that we willlike to provide a relative frequeney too. 

We reeall thatif a quadratic vector field has a limit eycle, then in its interior 
there is only a unique singular point which is a focus, see [9]. 

The large number of phase portraits of the sample will allow us to ha,-:e an 
aeeurate relative frequeney of the main regions assoeiated to the 12 families of 
Table 1. For every one of the Families 2, 3, 4, 5, 7, 9, 10, 11 and 12, we prepare 
a number of vector fields and draw their phase portraits. Firstly, we decide to 
which subfamily they belong (if needed); seeondly, we determine the number of 
nodes and foci ; and finalIy, we look for the limit eycles (ifthey exist). With these 
reI ative frequencies, for such families, and their weighted proportion with respect 
to the other families , we determine alI the estimations. We have taken a number 
of vector fields of each family according to the number of different subfamilies 
expected. Concretely, we have taken one thousand vector fields multiplied by the 
number of expeeted phase portraits in each family. That is, one thousand for 
Family 2, five thousands for Family 3, and so on, including sixteen thousands 
for Family 10. We remark that these numbers of thousands taken in each family 
were the first of each family which appear from the 20 millions of the sample. We 
note that if instead of taking these numbers of thousands we take four times such 
numbers , the relative frequencies do not present any significative modifieation. 

We have not needed to draw alI 41,000 phase portraits one by one. We have 
prepared a reduced version of program P4 so that the eomputer looks for singular 
points (finite and infinite), detects the saddles and their separatrices, and inte
grates the separatrices during a large period oftime. In most cases the separatrices 
reach an antisaddle (finite or infinite) . We detect how many separatrices end at 
these antisaddles, and by comparing with the phase portraits ofthe 44 structuralIy 
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stable quadratic vector fields, the computer determines the phase portraits. When 
the separatrix is too slow to reach an antisaddle, or it turns around a limit cycle, 
then the program marks that case as unknown and consequently, we need to study 
more carefully only these cases. In total, we have needed to draw about 2,000 
phase portraits. 

However, even 16,000 (respectively 7,000) phase portraits of Family 10 (respec
tively 12) do not seem to be enough to catch alI possible phase portraits in these 
families. More specificalIy, among the selected samples there are neither vector 
fields having phase portraits 10.1, 10.4, 10.7, 10.8, 10.11 and 10.13, nor 12.5 and 
12.7, using the notation of Figure 1. Thus, their relative frequency inside their 
families (and even more, their reI ative frequency in the whole parameter space) 
must be very small. Moreover, among the 7,000 vector fields of Family 12, there 
are only 4 and 9 vector fields having phase portraits 12.1 and 12.4, respectively. 
So, the statistical relative frequency given here for such subfamilies can be subject 
to a big error. We remark that taking four times the sample for Families 10 and 
12 have not detected the existence of the missing phase portraits. 

3. STATISTICAL RESULTS 

The 20 million random phase portraits split among the 12 families according to 
Table 2. 

FaIllily Vector Fields Percentage 
1 5,084,479 25.42% 
2 5,084,875 25.42% 
3 1,479,151 7.40% 
4 1.549,910 7.75% 
5 367,813 1.84% 
6 1,835,737 9.18% 
7 482,608 2.41% 
8 993,161 4.97% 
9 1,760,477 8.80% 

10 961,671 4.81% 
11 285,820 1.43% 
12 114,298 0.57% 

Table 2. Percentage af realizatian 

af each af the 12 main families. 

The 44 structurally stable quadratic vector fields in §2, modulo limit cycles, 
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appear with the frequencies given in Table 3. 

Family % Family % Family % 
1.1 25.42% 2.1 25.42% 3 .1 1.411% 
3 .2 0.23% 3 .3 0.84% 3.4 4.07% 
3.5 0.85% 4.1 7.75% 5 .1 1.84% 
6.1 9.18% 1.1 1.52% 1 .2 0.60% 
1.3 0.13% 1.4 0.16% 8.1 4.97% 
9.1 8.39% 9.2 0.13% 9 .3 0.28% 

10.1 0.00% 10.2 0.04% 10.3 0.04% 
10.4 0.00% 10.5 0.08% 10.6 0.01623% 
10.1 0.00% 10.8 0.00% 10.9 0.03% 

10.10 0.04% 10.11 0.00% 10.12 0.04% 
10.13 0.00% 10.14 0.23% 10.15 0.38% 
10.16 3.91% 11.1 0.37% 11.2 0.17% 
11.3 0.89% 12.1 0.00073% 12.2 0.03% 
12.3 0.45% 12.4 0.00147% 12.5 0.00% 
12.6 0.09% 12.1 0.00% 

Table 3. Percentage cf realizaticn cf each cf 

the 44 phase portraits modulo Iimit cycles. 

Families 2, 7 and 9 have one antisaddle. Thus, it can be a no de or a focus . 
If it is a focus, it can also have one or more limit cycles. The percentages are 
given in Table 4. We only mention the limit cycle configurations as (n) (where 
n is the number of numerically detected limit cycles) that have appeareçl. Other 
configurations may be possible but too small to be appreciated in this sample. 

Family 
2 
1 
9 

Nodes 
25.10% 
40 .20% 
73.93% 

Foci 
74.90% 
59.80% 
26.07% 

(1) 
2.10% 
0.85% 
0.67% 

(2) 
0.00% 
0.00% 
0.00% 

Table 4. Percentage of nodes, foei and limit 

cycles in the families with one antisaddle. 

Families 3, 4, 10 and 11 have two antisaddles. Thus, they can be nodes or foci, 
or both . Around the foci it can also have limit cycles. The percentages are given 
in Table 5. We only mention the limit cycles configurations as (n), (n, m) (where 
n and m are the number of numerically detected limit cycles around one or two 
foci) that have appeared. Other configurations may be possible but too small to 
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be appreciated in this sample. 

Family N-N N-F F-F (1) (2) (1,1) 
3 4.58% 24.06% 71.36% 4.2% 0.02% 0.06% 
4 18.80% 42.10% 39.10% 18.80% 0.10% 2.50% 

10 50.65% 45.19% 4.16% 0.53% 0.00% 0.00% . 
11 37.53% 39.27% 23.20% 2.70% 0.00% 0.00% 

Table 5. Percentage of nodes, foei and limit 

cycles in the families with two antisaddles. 

The Families 5 and 12 have three antisaddles. Thus, they can be either three 
nodes, two nodes and one focus , or one node and two foci (three foci are not 
possible, see [9]) . As before it can also have limit cycles surrounding some focus. 
The percentages are given in Table 6. Other configurations may be possible but 
too scarce to be detected in this sample. 

Family 
5 

12 

N-N-N 
1.90% 

34.49% 

N-N-F N-F-F 
26.40% 71.70% 
53.41% 12.10% 

(1) 
7.10% 
1.50% 

Table 6. Percentage of nodes, foei and limit 

cycles in the families with thre~ antisaddles. 

(2) 
0.10% 
0.00% 

Adding alI this statistical information, we can say that foei are more common 
than nodes; more precisely, from every 10,000 detected antisaddles, 4,021 of them 
are nodes and 5,979 are foci. 

Limit cycles are not difficult to findo Thus, it is estimated that 3.23% of qua
dratic vector fields have at least one limit cycle. Even cases with 2 limit cycles 
are not rare. We have found 29 vector fields with configuration (1,1) and 3 with 
configuration (2). All of them in Families 3, 4 and 5, with the remarkable fact 
that 2.5% of phase portraits of Family 4 have the configuration (1,1). Families 
with 3 or 4 limit cycles are more rare and have not appeared in our sample. 

Some other possibilities have not appeared . Thus, either they are very rare, or 
there is a geometrical impossibility for their realization. We will not mention here 
cases with more than one limit cycle since they may be too scarce to appear in 
this sample, but other absences seem more curious. For example : 

(1) There are no vector fields with Phase Portrait 3.2 with 2 nodes. 

(2) The most common phase portrait in Family 7 is 7.1. However, there are no 
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vector fields having Phase Portrait 7.1 with limit cycles, but there are limit cycles 
for some of the phase portraits of the Subfamilies 7.2, 7.3 and 7.4. 

(3) Family 10 is strongly concentrated towards Phase Portrait 10.16 which oc
cupies 81.3% of the family. Altogether with Phase Portraits 10.14 and 10.15 they 
occupy 94.1% of the family. However, no phase portrait of the 15,048 studied 
from these three subfamilies has a limit cycle. Alllimit cycles in Family 10 seem 
to be concentrated on Subfamilies 10.2, 10.3, 10.5, 10.6 and 10.10. We cannot say 
that limit cycles appear only on these subfamilies since there are many subfamilies 
which do not appear in our sample, but it seems that either they are not possible 
in 10.14, 10.15 and 10.16, or that the probabilities are very small there. 

Other remarkable facts are: 

(1) The family where more often appears the limit cycle configuration (1,1) is 
the 4.1. It is also the most common case for having at least one limit cycle. 

(2) Family 9 is strongly concentrated towards the Phase Portrait 9.1 having 
95,37% of the region corresponding to this family. Limit cycles do not seem very 
common in this family. Even this we have found examples of limit cycles in ali 
the three subfamilies. 

(3) Family 12 apart from being the one with less presence in the parameter 
space (just a 0.57%) is also heavily concentrated towards the Phase Portrait 12.3 
with 78.24%. . 
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