Relative category \mathcal{O} , blocks, and representation type

Brian D. Boe

1 Introduction

Let A be a finite dimensional algebra over a field k. We can place A into one of three classes, according to the indecomposable modules the algebra admits. The algebra has *finite representation type* if it has only finitely many indecomposable modules, up to isomorphism. (As a very special case, A is *semisimple* if its only indecomposable modules are simple.) Otherwise it has *infinite representation type*. Algebras of infinite representation type are either *tame* or *wild*. Tame algebras are the ones where there is some reasonable chance of classifying all the indecomposable modules.

Classifying algebras by their representation type is a first step towards understanding the underlying module category. This has already been done for the classical Schur algebras [Erd, DN, DEMN], quantum Schur algebras [EN], and the algebras corresponding to the blocks of category \mathcal{O} [FNP, BKM], among others.

This article presents a summary of work carried out jointly with Daniel K. Nakano and appearing in [BN].

2 Basic Algebras and Quivers

Let P be the direct sum of the projective indecomposable modules for A, (so P is a progenerator for A). Set $\Lambda = \operatorname{End}_A(P)^{\operatorname{op}}$, the *basic algebra* for A. The Morita Theorem says that A is Morita equivalent to Λ . In particular, they have the same representation type, so it suffices to study the representation type of basic algebras.

A quiver is simply a directed graph (with loops and multiple edges allowed). A *Dynkin quiver* is a quiver obtained from a Dynkin diagram by assigning a direction to each edge. An *extended Dynkin quiver* is defined similarly.

Let $Q(\Lambda)$ be the Ext¹-quiver for Λ ; that is, the directed graph with one vertex i for each simple module L_i of Λ , and with n arrows from i to j where $n = \dim \operatorname{Ext}^1_{\Lambda}(L_i, L_j)$.

2.1 Separating a quiver

Given a quiver Q, form a new quiver Q' having two vertices i', i'' for each vertex i of Q, and an arrow from i' to j'' for each arrow from i to j in Q. Now decompose Q' as a union of connected components. This process is called *separating the quiver* Q. An example is illustrated in Figure 1, in which a quiver is separated into two A_4 (Dynkin) quivers.

Let J be the Jacobson radical of Λ . We say Λ is two-nilpotent if $J^2 = 0$. Theorem (Gabriel [Gab], Dlab-Ringel [DR]). Let Λ be a basic algebra.

- 1. If Λ is two-nilpotent, then:
 - (a) Λ has finite representation type $\iff Q(\Lambda)$ can be separated into a finite union of Dynkin quivers.

- (b) Λ has tame representation type $\iff Q(\Lambda)$ can be separated into a finite union of Dynkin and extended Dynkin quivers (including at least one extended Dynkin quiver).
- 2. In general, (\Rightarrow) holds in (a) and (b).

3 Relative Category O

Let g be a finite dimensional semisimple Lie algebra over $k = \mathbb{C}$. Let Φ and Δ denote the set of roots and simple roots, respectively. Given a subset $S \subset \Delta$, we associate in the usual way a standard parabolic subalgebra with Levi decomposition $\mathfrak{p}_S = \mathfrak{m}_S + \mathfrak{u}_S$. (When S is fixed we usually drop the subscript S.)

Let \mathcal{O}_S be the full subcategory of g-modules V satisfying:

- 1. V is finitely-generated over U(g);
- 2. V is a direct sum of finite dimensional irreducible \mathfrak{m}_S -modules;
- 3. V is locally u_S -finite,

called *relative* (or *parabolic*) category \mathcal{O} . (When $S = \emptyset$, \mathcal{O}_S is the classical Bernstein-Gelfand-Gelfand (BGG) category \mathcal{O} .)

Given a weight λ which is dominant integral on the roots in S, form the finite dimensional p-module $F(\lambda)$ of highest weight λ . Define the generalized Verma module (GVM)

$$V(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} F(\lambda).$$

These are the "standard objects" in \mathcal{O}_S . $V(\lambda)$ has a unique simple quotient, $L(\lambda)$, and all simple modules in \mathcal{O}_S are obtained in this way. Denote by $P(\lambda)$ the indecomposable projective cover of $L(\lambda)$.

The category \mathcal{O}_S decomposes into blocks \mathcal{O}_S^{μ} , consisting of modules having generalized infinitesimal character associated to the weight μ (which we may and do assume to be antidominant, by the Harish-Chandra homomorphism). Each block has only finitely many simple modules, and their projective covers have finite length. We can therefore associate to each block a finite dimensional basic algebra $\Lambda = \operatorname{End}_{\mathcal{O}_S}(P)^{\operatorname{op}}$ (where P is a progenerator—the direct sum of all the indecomposable projectives in the block), whose module category is Morita equivalent to \mathcal{O}_S^{μ} . The central question becomes, What is the representation type of Λ ? (We will refer to this as the representation type of the block \mathcal{O}_S^{μ} .)

Assume henceforth that μ is integral (and antidominant). Set

$$J = \{ \alpha \in \Delta \mid (\mu + \rho, \alpha) = 0 \},\$$

and let Φ_S , $\Phi_J \subset \Phi$ be the root subsystems of Φ generated by S, J. We say that μ is regular if $J = \emptyset$, otherwise singular. By the Translation Principle, $\mathcal{O}_S^{\mu} \simeq \mathcal{O}_S^{\mu'}$ if J = J', so we may focus on J instead of μ , and write \mathcal{O}_S^{μ} as $\mathcal{O}(\Phi, \Phi_S, \Phi_J)$.

4 Representation type of blocks of \mathcal{O}_S

4.1 Ordinary O

The representation type of the blocks of category \mathcal{O} (where $S = \emptyset$) was worked out in 2001, independently by Futorny-Nakano-Pollack [FNP] and Brüstle-König-Mazorchuk [FNP]. The results are summarised in the following table.

$\Phi \mid \Phi_J$		Rep. Type	
Φ	Φ	Semisimple	
A_1	ø	Finite	
A_2	A_1		
A_3	A_2	T	
B_2	A_1	Tame	
All others		Wild	

4.2 Regular blocks of \mathcal{O}_S

This case (where $J = \emptyset$) also has a complete, straightforward answer [BN], as summarised below. Notice that there are no tame blocks in this setting.

Φ	Φ_S	Rep. Type Semisimple	
Φ	Φ		
A_n	A_{n-1}		
B_n	B_{n-1}	Finito	
C_n	C_{n-1}] runte	
G_2	A_1		
All others		Wild	

4.3 Mixed case

Assume that $S \neq \emptyset, J \neq \emptyset$. A complete answer was obtained in [BN] for the representation type of these blocks when $S \cap J = \emptyset$; we call this the *mixed case*. We found several infinite familes of each type (semisimple, finite, tame). The answers are the same for types B and C, so we list them together as BC. Observe that the blocks in the mixed case are all wild unless $S \cup J = \Delta$.

Φ	Φ_S	Φ_J	Conditions	Rep. Type		
A_n	A_{n-r}	A_r	$1 \le r \le n$			
BC_n	A_1	BC_{n-1}		Semisimple		
BC_n	BC_{n-1}	A_1				
G_2	A_1	A_1				
A_n	$A_1 \times A_r$	A_{n-r-1}	$1 \leq r \leq n-2$			
A_n	A_{n-r-1}	$A_1 \times A_r$	r = 1, 2	Finite		
BC_n	BC_{n-2}	A_2				
BC_n	A_r	BC_{n-r}	r = 2, 3			
BC_3	A_2	A_1				
BC_4	A_3	A_1				
D_n	A_r	D_{n-r}	r = 1, 2			
D_n	D_{n-1}	A_1				
E_6	D_5	A_1				
A_n	A_{n-4}	$A_1 \times A_3$		Tomo		
BC_n	BC_{n-3}	A_3				
D_n	D_{n-2}	A_2		Tame		
D_5	A_1	A_4				
All others				Wild		

5 Some techniques

In this section we describe a few of the techniques used to prove the results tabulated in Sections 4.2 and 4.3.

5.1 Rank reduction

Theorem. Assume $S \cap J = \emptyset$. Let $\Delta' \subset \Delta$ and $\Phi' = \Phi_{\Delta'}$. Then if $\mathcal{O}(\Phi', \Phi_S \cap \Phi', \Phi_J \cap \Phi')$ is not semisimple (resp. not finite, not tame) then neither is $\mathcal{O}(\Phi, \Phi_S, \Phi_J)$.

The theorem is proved via a combination of two techniques: the induction– restriction process of [FNP], and a generalization of an equivalence of categories of Enright-Shelton [ES] to the singular setting.

Corollary. If $|\Delta - (S \cup J)| \ge 2$ then $\mathcal{O}(\Phi, \Phi_S, \Phi_J)$ is wild.

Proof. Take $\Delta' = \Delta - (S \cup J)$ and use the ordinary category \mathcal{O} result.

5.2 Wild poset configurations

Let W (resp. W_S , W_J) be the Weyl group of Φ (resp. Φ_S , Φ_J). The isomorphism classes of simple modules in a block $\mathcal{O}(\Phi, \Phi_S, \Phi_J)$ are parametrized by a subset

 ${}^{S}W^{J}$ of W; specifically, ${}^{S}W^{J}$ is the set of minimal length coset representatives for $W_{S} \setminus W/W_{J}$. This set inherits from W a partial ordering by the Bruhat order.

Definition. A diamond in ${}^{S}W^{J}$ is a subposet of the form \checkmark (where the edges represent length one Bruhat order relations).

Proposition. If ${}^{S}W^{J}$ contains a diamond then $\mathcal{O}(\Phi, \Phi_{S}, \Phi_{J})$ is wild.

To prove this, one looks at the Ext¹-quiver. If there is an extension between one of the simple modules parametrized by the diamond and some fifth irreducible, then the quiver does not split into a union of extended Dynkin diagrams; hence the block is wild by the Gabriel-Dlab-Ringel theorem. If there is no such extension, then the block contains a subcategory Morita equivalent to $\mathcal{O}(A_1 \times A_1, \emptyset, \emptyset)$, which is wild by the classical \mathcal{O} result. Now use the rank reduction theorem.

The diamond condition is an easy condition to check, because the poset ${}^{S}W^{J}$ is straightforward to compute. In particular, it can be used to check that many low-rank "base cases" are wild. This can then be combined with rank reduction to prove wildness for many infinite families. We also found a similar poset configuration which can be used to prove wildness in certain cases which do not contain diamonds.

5.3 Detailed structure of generalized Verma modules

In a few cases we needed to use the full force of the Kazhdan-Lusztig theory to compute the radical filtrations of the GVMs in a block. Via reciprocity, we could then deduce the structure of the indecomposable projectives. Finally, we used results of Gabriel and others to determine the representation type of the block.

Example. If there are n simples in the block, and the GVMs have radical filtrations

then the representation type is semisimiple if n = 1, finite if n = 2 or 3, tame if n = 4, and wild otherwise. But if the GVMs have radical filtrations

then the representation type is finite (independent of n).

The block $\mathcal{O}(G_2, \emptyset, A_1)$ is of the first type, with n = 6, so it is wild. However, the block $\mathcal{O}(G_2, A_1, \emptyset)$ is of the second type, with n = 6, so it has finite representation types. Both examples have same Ext^1 -quiver:

which separates into two A_6 -quivers. So the block $\mathcal{O}(G_2, \emptyset, A_1)$ illustrates the failure of the converse of the Gabriel-Dlab-Ringel Theorem.

This is an instance of the theory of Koszul duality, due to Beilinson-Ginsburg-Soergel and Backelin [BGS, Bac]. If w_0 is the longest element of W, the blocks $\mathcal{O}(\Phi, \Phi_S, \Phi_J)$, $\mathcal{O}(\Phi, \Phi_J, \Phi_{-w_0(S)})$, and $\mathcal{O}(\Phi, \Phi_{-w_0(J)}, \Phi_S)$ all have naturally isomorphic Ext¹-quivers, but they often have different representation type.

References

- [Bac] Erik Backelin, Koszul duality for parabolic and singular category O, Represent. Theory 3 (1999), 139–152 (electronic).
- [BGS] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473-527.
- [BN] Brian D. Boe and Daniel K. Nakano, Representation type of the blocks of category \mathcal{O}_S , to appear in Adv. in Math.
- [BKM] Th. Brüstle, S. König, and V. Mazorchuk, The coinvariant algebra and representation types of blocks of category O, Bull. London Math. Soc. 33 (2001), no. 6, 669–681.
- [DR] Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57.
- [DEMN] Stephen R. Doty, Karin Erdmann, Stuart Martin, and Daniel K. Nakano, Representation type of Schur algebras, Math. Z. 232 (1999), no. 1, 137– 182.
- [DN] Stephen R. Doty and Daniel K. Nakano, Semisimple Schur algebras, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 1, 15–20.
- [ES] Thomas J. Enright and Brad Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94.

Brian D. Boe

- [Erd] Karin Erdmann, Schur algebras of finite type, Quart. J. Math. Oxford Ser. (2) 44 (1993), no. 173, 17–41.
- [EN] Karin Erdmann and Daniel K. Nakano, Representation type of q-Schur algebras, Trans. Amer. Math. Soc. **353** (2001), no. 12, 4729–4756.
- [FNP] Vyacheslav Futorny, Daniel K. Nakano, and R. David Pollack, Representation type of the blocks of category O, Q. J. Math. 52 (2001), no. 3, 285–305.
- [Gab] Peter Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71–103.

Brian D. Boe

Department of Mathematics University of Georgia Athens, Georgia 30602 **USA** e-mail: brian@math.uga.edu