Harish-Chandra categories and Kostant's theorem

Vyacheslav Futorny¹

Abstract: We give a survey of the theory of Harish-Chandra categories and its applications based on joint results with Yu.Drozd, A.Molev and S.Ovsienko.

1 Introduction

We fix an algebraically closed field k of characteristic 0. Let U be an associative k-algebra, $\Gamma \subset U$ its subalgebra. Denote by Irr(U) the set of isomorphism classes of irreducible U-modules in some category \mathcal{C} . One of the important problems in the representation theory is the relation between the sets $Irr(\Gamma)$ and Irr(U). First of all we restrict ourselves to the category \mathcal{C} of Harish-Chandra U-modules with respect to Γ , i.e. those U-modules that decompose into a direct sum of irreducible Γ -modules. In some cases we can use $Irr(\Gamma)$ to parametrize Irr(U) in \mathcal{C} . Hence the first problem is the following:

Question 1: Let $V \in Irr(\Gamma)$. Can it be lifted to a module in Irr(U)?

In particular, we have a positive answer to this question when U is free over Γ as left (right) module and thus

Question 2: When is U free over Γ ?

As an example of such situation consider the case $U = U(\mathfrak{g})$, where \mathfrak{g} is a simple finite-dimensional Lie algebra, and $\mathbb{Z} \subset U$ is the center of $U(\mathfrak{g})$. The famous result of Kostant [K] establishes that $U(\mathfrak{g})$ is free over Z as left (right) module. Another example is provided by the result of Bernstein and Luntz ([BL]) who showed that the polynomial algebra $P(\mathfrak{g}) = S(\mathfrak{g}^*)$ of the Lie algebra \mathfrak{g} is free over the invariants $P(\mathfrak{g})^G$, where G is the corresponding Lie group.

Suppose now that any element of $Irr(\Gamma)$ admits a lifting to an irreducible Umodule. Then we can get a first approximation of the classification (up to a finite indeterminacy) of Irr(U) if the number of such liftings is finite. It leads to the following problem:

Question 3: Given $V \in Irr(\Gamma)$ is the number of liftings to Irr(U) finite?

For example if $U = U(\mathfrak{g})$ and $\Gamma = \mathbb{Z}$ is the center of U then there exist infinitely many isomorphism classes of irreducible U-modules with a given character of Γ .

Finally, in some cases the elements of $Irr(\Gamma)$ can be used not only to parametrize the elements of Irr(U) but also to parametrize the basis elements of modules in

¹The author was partially supported by FAPESP.

Irr(U). This is possible when dim V = 1 for any $V \in Irr(\Gamma)$ and the multiplicity (W:V) of V in any $W \in Irr(U)$ is less or equal to 1. Therefore we have

Question 4: Given $V \in Irr(\Gamma)$ and $W \in Irr(U)$ is (W : V) finite?

There is a hope for a positive answer to Question 4 when Γ is "sufficiently" large, i.e. GKdim is maximal.

Examples. 1. (Okunkov, Vershik, [OV]) Let $U = U_n = \mathbb{C}[S_n], U_1 \subset \ldots \subset U_n$ is a chain of natural embeddings, Z_k the center of $\mathbb{C}[U_k]$ for all $k = 1, \ldots, n$. Then $\Gamma = \langle Z_1, \ldots, Z_n \rangle$ is a maximal commutative subalgebra of U which is generated by the Jucys-Murphy elements $X_i = (1i) + \ldots + (i-1i), i = 1, \ldots, n$. In this case the elements of $Specm\Gamma$ parametrize $Irr(S_n)$.

2. Let $U = U(\mathfrak{gl}(n))$, $U_k = U(\mathfrak{gl}(k))$, $U_n \supset U_{n-1} \supset \ldots \supset U_1$, Let $Z_k \subset U_k$ be the center of U_k and $\Gamma = \langle Z_1, \ldots, Z_n \rangle$ (the *Gelfand-Tsetlin subalgebra of U*). It was shown in [DFO] that generically the elements of $Irr(\Gamma)$ parametrize Irr(U). Moreover, it was shown by Ovsienko [O] that any element of $Irr(\Gamma)$ admits only finitely many liftings to Irr(U).

3. Let $P(\mathfrak{g})$ be the polynomial algebra of a simple finite-dimensional Lie algebra \mathfrak{g} . We can view $P(\mathfrak{g})$ as a Lie algebra with respect to the Poisson bracket. Fomenko, Mischenko and Vinberg ([FM], [V]) constructed a series of commutative subalgebras in $P(\mathfrak{g})$ of maximal GKdim which leads to a family of maximal commutative subalgebras in $U(\mathfrak{g})$.

Under some conditions the positive answer to Question 2 gives also positive answers to Questions 3 and 4. This is related to the study of Harish-Chandra categories.

2 Harish-Chandra categories

Consider an associative algebra A and a subalgebra $\Gamma \subset A$. Let $cfs \Gamma$ be the *cofinite spectrum* of Γ ,

cfs $\Gamma = \{\mathbf{m} \in Specm\Gamma | \dim \Gamma / \mathbf{m} < \infty\}.$

If $\mathbf{m} \in \operatorname{cfs} \Gamma$ then $\Gamma/\mathbf{m} \simeq M_{l(\mathbf{m})}(\mathbf{k})$. Denote by $L_{\mathbf{m}}$ the corresponding simple Γ -module, dim $L_{\mathbf{m}} = l(\mathbf{m})$.

Let A-mod denote the category of finitely generated left modules over an associative algebra A. The Harish-Chandra category $H(A, \Gamma)$ associated with the pair (A, Γ) is a full abelian subcategory in U-mod which consists of finitely generated A-modules M such that

$$M = \bigoplus_{\mathbf{m} \in \mathrm{cfs}\,\Gamma} M(\mathbf{m}),$$

where

$$M(\mathbf{m}) = \{ x \in M \mid \exists k, \ \mathbf{m}^k x = 0 \}.$$

The objects of the category $H(A, \Gamma)$ are called Harish-Chandra modules for the pair (A, Γ) . Harish-Chandra modules play a central role in the classical representation theory (cf. [Di]). In particular, weight modules over a semisimple Lie algebra \mathfrak{g} are Harish-Chandra modules with respect to the pair $(U(\mathfrak{g}), U(H))$, where U(H) is the universal enveloping algebra of a Cartan subalgebra H. Another important example is given by the Gelfand-Tsetlin modules [DFO1] over the universal enveloping algebra $U(\mathfrak{gl}_n)$ of the general linear Lie algebra \mathfrak{gl}_n . These modules are Harish-Chandra modules with respect to the Gelfand-Tsetlin subalgebra of $U(\mathfrak{gl}_n)$.

A Harish-Chandra module M is called *weight* if the following condition holds: for all $\mathbf{m} \in \operatorname{cfs} \Gamma$ and all $x \in M(\mathbf{m})$ one has $\mathbf{m} x = 0$. The full subcategory of $H(A, \Gamma)$ consisting of weight modules will be denoted $HW(A, \Gamma)$. The *support* of a Harish-Chandra module M is the subset $\operatorname{Supp} M \subseteq \operatorname{cfs} \Gamma$ which consists of those \mathbf{m} which have the property $M(\mathbf{m}) \neq 0$. If for a given \mathbf{m} there exists an irreducible Harish-Chandra module M with $M(\mathbf{m}) \neq 0$ then we say that \mathbf{m} extends to M. A central problem in the theory of Harish-Chandra modules is the existence and uniqueness of such extension. In the case when the extension is unique, the irreducible Harish-Chandra modules are parametrized by the equivalence classes of the elements of cfs Γ . A theory of Harish-Chandra modules for a general pair (U, Γ) was developed in [DFO].

An effective tool for the study of the category $\mathbb{H}(A, \Gamma)$ is the notion of a Harish-Chandra subalgebra introduced in [DFO]. A subalgebra Γ is quasi-commutative if $\forall \mathbf{m} \neq \mathbf{n}$,

$$Ext^{1}_{\Gamma}(L_{\mathbf{m}}, L_{\mathbf{n}}) = 0,$$

and it is quasi-central if $\forall a \in A$, $\Gamma a \Gamma$ is finitely generated as left (right) Γ -module. A subalgebra Γ is called *Harish-Chandra subalgebra* if Γ is quasi-commutative and quasi-central.

Example. 1) Let $A = U(\mathfrak{g})$, $\Gamma = U(\mathfrak{a})$, where \mathfrak{g} is a finite-dimensional Lie algebra and \mathfrak{a} its reductive Lie subalgebra. Then Γ is a Harish-Chandra subalgebra in A. 2) Let $A = U(\mathfrak{gl}_n)$ and let Γ be the Gelfand-Tsetlin subalgebra of A. Then Γ is a Harish-Chandra subalgebra in A. Define a category $\mathcal{A} = \mathcal{A}_{U,\Gamma}$ with the set of objects $\operatorname{Ob} \mathcal{A} = \operatorname{cfs} \Gamma$ and with the space of morphisms $\mathcal{A}(\mathbf{m}, \mathbf{n})$ from \mathbf{m} to \mathbf{n} ,

$$\mathcal{A}(\mathbf{m},\mathbf{n}) = \lim_{\leftarrow n,m} U/(\mathbf{n}^n U + U\mathbf{m}^m).$$

The category \mathcal{A} is endowed with the topology of the inverse limit while the category of k-vector spaces (k-mod) is endowed with the discrete topology. Consider the category \mathcal{A} -mod_d of continuous functors (*discrete modules*) $M : \mathcal{A} \to \mathbb{k}$ -mod.

Theorem 2.1. ([DFO], Theorem 17) The categories \mathcal{A} -mod_d and $H(A, \Gamma)$ are equivalent.

Now suppose that the subalgebra Γ of A is commutative. In this case cfs Γ coincides with the set Specm Γ of all maximal ideals in Γ . We endow this set with the Zariski topology. For $\mathbf{m} \in \operatorname{Specm} \Gamma$ denote by $\hat{\mathbf{m}}$ the completion of \mathbf{m} . Clearly, $\hat{\mathbf{m}} \subseteq \Gamma_{\mathbf{m}}$, where $\Gamma_{\mathbf{m}} = \lim_{k \to k} \Gamma/\mathbf{m}^{k}$. Consider the two-sided ideal $I \subseteq A$ generated by the completions $\hat{\mathbf{m}}$ for all $\mathbf{m} \in \operatorname{Specm} \Gamma$ and set $A_W = A/I$. Theorem 2.1 implies the following.

Corollary 2.2. The categories $\mathbb{H}W(U,\Gamma)$ and \mathcal{A}_W -mod are equivalent.

Let $Irr(\mathbf{m})$ be the set of isomorphism classes of simple modules L in $H(A, \Gamma)$ with $L(\mathbf{m}) \neq 0$. Then the functor $F_{\mathbf{m}} : H(A, \Gamma) \rightarrow \mathcal{A}(\mathbf{m}, \mathbf{m}) - mod, M \rightarrow M(\mathbf{m})$, induces a bijection between $Irr(\mathbf{m})$ and simple $\mathcal{A}(\mathbf{m}, \mathbf{m})$ -modules.

The subalgebra Γ is called *big in* $\mathbf{m} \in \operatorname{Specm} \Gamma$ if $\mathcal{A}(\mathbf{m}, \mathbf{m})$ is finitely generated as a left (or, equivalently, right) $\Gamma_{\mathbf{m}}$ -module.

Theorem 2.3. ([DFO], Corollary 19.) If Γ is big in $\mathbf{m} \in \operatorname{Specm} \Gamma$ then there exist finitely many non-isomorphic irreducible Harish-Chandra U-modules M such that $M(\mathbf{m}) \neq 0$. For any such module dim $M(\mathbf{m}) < \infty$.

This theorem gives sufficient conditions for positive answer to Question 3. Hence the general strategy in Harish-Chandra categories $H(A, \Gamma)$ with a commutative Γ should be the following:

- check whether A is free over Γ as a left (right) module. It gives a positive answer to Question 1.

- check whether Γ is a Harish-Chandra subalgebra and whether $\mathcal{A}(\mathbf{m}, \mathbf{m})$ is finitely generated as $\Gamma_{\mathbf{m}}$ -module. This gives a positive answer to Question 3.

Examples. 1) $A = U(\mathfrak{g}), \Gamma = U(H)$, where \mathfrak{g} is a simple finite-dimensional Lie algebra, $H \subset \mathfrak{g}$ is a Cartan subalgebra. Then $\mathcal{A} = \bigoplus_{\xi \in H^*/Q} W_{\xi}$, where W_{ξ} is a ξ -weight lattice and Q is the root lattice.

2) Let G a finite group, N < G a normal subgroup, $U = \Bbbk[G], \Gamma = \Bbbk[N], \hat{N}$ the space of characters of N. Then G acts on N by conjugations and on \hat{N} as follows: $\chi \mapsto \chi^g, \chi^g(x) = \chi(gxg^{-1}), x \in N$. Denote by Y = Y(G, N) the groupoid with objects $ObY = \hat{N}$ and morphisms $Y(\chi_1, \chi_2) = \{g \in G | \chi_1 = \chi_2^g\}, \chi_1, \chi_2 \in \hat{N}$. Let X = Y/N and $\Bbbk X$ its linear envelope. Then $\mathcal{A} \simeq \Bbbk X$.

3 Kostant's Theorem

This section is based on the paper [FO]. Let U be an associative algebra with an increasing filtration $\{U_i\}_{i\in\mathbb{Z}}, U_{-1} = \{0\}, U_0 = k, U_iU_j \subseteq U_{i+j}$. Let $\overline{U} = \operatorname{gr} U = \overline{U} = \bigoplus_{i=0}^{\infty} U_i/U_{i-1}$. Assume that U is almost commutative, i.e. there exists an epimorphism $\phi : k[X_1, \ldots, X_n] \to \overline{U}$. Besides, assume that $\operatorname{Ker} \phi$ is generated by a regular sequence and \overline{U} has no nilpotent elements. Such algebra U is called special filtered in [FO].

Theorem 3.1. ([FO], Theorem 1) Let U be a special filtered associative algebra, $\Gamma = \langle g_1, \ldots, g_k \rangle$ a commutative subalgebra such that $\overline{g}_1, \ldots, \overline{g}_k$ form a regular sequence in \overline{U} . Then U is free as a left (right) Γ -module.

This theorem can be used to give an easy proof of Kostant's theorem [K].

3.1 Case of \mathfrak{gl}_n

Consider the full lineal Lie algebra \mathfrak{gl}_n with the standard basis $E_{ij}, i, j = 1, \ldots, n$. Let $U = U(\mathfrak{gl}(n))$ and $\Gamma = \Bbbk[z_1, \ldots, z_n]$ is the center of U, where

$$z_m = \sum_{(i_1,\dots,i_m)\in\{1,\dots,n\}^m} E_{i_1i_2}E_{i_2i_3}\dots E_{i_mi_1}, \qquad (3.1)$$

m = 1, ..., n. Then U is filtered by the PBW theorem and $\overline{U} = S(\mathfrak{gl}(n)) = \mathbb{k}[x_{ij}, i, j = 1, ..., n]$. Hence U is special filtered algebra. Consider an $n \times n$ matrix (x_{ij}) with entries x_{ij} and consider its characteristic polynomial

$$det(\lambda I - (x_{ij})) = \lambda^n + \bar{z}_1 \lambda^{n-1} + \ldots + \bar{z}_n.$$

Then the variety $V(\bar{z}_1, \ldots, \bar{z}_n) \subset \mathbb{k}^{n^2}$ is a variety of nilpotent matrices by the Cayley-Hamilton theorem, where $\bar{z}_1, \ldots, \bar{z}_n$ are the graded images of the generators of Γ . Since this variety is irreducible and $\dim V = n^2 - n$ we immediately conclude that the sequence $\bar{z}_1, \ldots, \bar{z}_n$ is regular and, hence, U is free over Γ by Theorem 3.1.

3.2 Classical Kostant's theorem

Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra, $U = U(\mathfrak{g})$, Γ the center of U. Then U is special filtered. Let $I(\mathfrak{g})$ be the space of \mathfrak{g} -invariants in $S(\mathfrak{g})$. Then $I(\mathfrak{g}) = \langle f_1, \ldots, f_d \rangle$, where f_i are homogeneous algebraically independent elements. Since the variety $V(f_1, \ldots, f_d)$ is irreducible of dimension $\dim \mathfrak{g} - d$ then the sequence f_1, \ldots, f_d is regular. Let $\phi : S(\mathfrak{g}) \to U(\mathfrak{g})$ be a symmetrization map,

$$x \otimes y \rightarrowtail 1/2(x \otimes y + y \otimes x).$$

Then $\phi(I(\mathfrak{g})) \simeq \Gamma$ and $\Gamma = \langle \phi(f_1), \ldots, \phi(f_d) \rangle$. Using the fact that $\overline{\phi(f_i)} = f_i$ and applying Theorem 3.1, we conclude that U is free as a module over Γ .

3.3 Gelfand-Tsetlin modules

Let $U = U(\mathfrak{gl}(n)), U_k = U(\mathfrak{gl}(k)), k = 1, \ldots, n, Z_k \subset U_k$ the center of U_k and $\Gamma = \langle Z_1, \ldots, Z_n \rangle$ is the *Gelfand-Tsetlin* subalgebra. Then the Harish-Chandra category $H(U, \Gamma)$ is the category of Gelfand-Tsetlin modules. Note that Z_m is a polynomial algebra in m variables $\{c_{mk} | k = 1, \ldots, m\}$,

$$c_{mk} = \sum_{(i_1,\dots,i_k)\in\{1,\dots,m\}^k} E_{i_1i_2}E_{i_2i_3}\dots E_{i_ki_1}, \qquad (3.2)$$

and Γ is a polynomial algebra in $\frac{n(n+1)}{2}$ variables $\{c_{ij} \mid 1 \leq j \leq i \leq n\}$.

Theorem 3.2. ([O]) U is free over Γ .

Let $X = (x_{ij})_{i,j=1}^n$ and $X_i = X_{1\dots i}^{1\dots i}$ is a principal matrix, $i = 1, \dots, n$. The graded images \bar{c}_{ij} , $i \geq j$, of the generators c_{ij} are the coefficients of the polynomial $det(\lambda I_i - X_i) = 0$. Consider the variety $V = V(\bar{c}_{ij})$. It was shown in [O] that this variety is equidimensional and dimension of every irreducible component of V is n(n-1)/2. Hence the sequence \bar{c}_{ij} , $1 \leq j \leq i \leq n$ is regular. By Theorem 3.1 U is free over Γ . It also follows from [O] that Γ is a a Harish-Chandra subalgebra. Moreover, Question 3 has a positive answer in the category $H(U, \Gamma)$.

Examples. 1) Let n = 2, $V = V(x_{11}, x_{22}, x_{12}x_{21})$. In this case V has two irreducible components of dim = 1.

2) Consider $T_n = \{(x_{ij})|x_{ij} = 0, i \geq j\}$, $T_n \subset \mathbb{A}^{n^2}$, dim $T_n = n(n-1)/2$. Then $\sigma T_n \sigma^{-1} \subset V$ for all $\sigma \in S_n \hookrightarrow GL_n$. Assume n = 3. In this case V has a component which not of type $\sigma T_n \sigma^{-1}$:

 $V(x_{11}, x_{22}, x_{33}, x_{12}, x_{21}, x_{31}x_{13} + x_{32}x_{23}).$

4 Yangians

In this section we closely follow the work [FMO]. The Yangian $Y(n) = Y(\mathfrak{gl}(n))$ of \mathfrak{gl}_n is a unital associative algebra over k with countably many generators

 $t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots$ where $1 \leq i, j \leq n$, and the defining relations

$$(u-v)[t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u),$$
(4.3)

where $t_{ij}(u) = \sum_{k=0}^{\infty} t_{ij}^{(k)} u^{-k} \in Y_n[[u^{-1}]]$ and u, v are formal variables. This algebra originally appeared in the works of Takhtajan-Faddeev [TF] and Kulish–Sklyanin [KS]. The term "Yangian" and generalizations of $Y(\mathfrak{gl}_n)$ to an arbitrary simple Lie algebra were introduced by Drinfeld [D1]. Note that the universal enveloping algebra $U(\mathfrak{gl}_n)$ is a subalgebra of Y(n) and also a homomorphic image of Y(n).

Drinfeld generators ([D2])

 $a_i(u), \quad i = 1, \dots, n, \qquad b_i(u), \quad c_i(u), \quad i = 1, \dots, n-1$

of the algebra Y(n) are defined as certain quantum minors of the matrix $(t_{ij}(u))$. The coefficients of the series $a_i(u)$, $i = 1, \ldots, n$ form a commutative subalgebra of Y(n) and can be viewed as an analogue of the Gelfand-Tsetlin subalgebra of $U(\mathfrak{gl}_n)$. The Harish-Chandra modules for Y(n) with respect to this subalgebra are natural analogues of Gelfand-Tsetlin modules for \mathfrak{gl}_n . In the theory of finitedimensional representations of Y(n) the important role is played by the following restricted version of the Yangian. Let p be an integer. The restricted Yangian $Y_p(\mathfrak{gl}_n)$, of level p has the generators $t_{ij}^{(k)}$, $i, j = 1, \ldots, n$, $k = 1, \ldots, p$, subject to the relations

$$[T_{ij}(u), T_{kl}(v)] =$$

$$\frac{1}{u-v}(T_{kj}(u)T_{il}(v) - T_{kj}(v)T_{il}(u)),$$

where

$$T_{ij}(u) = \delta_{ij} u^p + \sum_{k=1}^p t_{ij}^{(k)} u^{p-k}.$$

We can define a filtration on $Y_p(\mathfrak{gl}_n)$ by assigning $degt_{ij}^{(k)} = k$. We also have the following analogue of the PBW theorem for the algebra $Y_p(\mathfrak{gl}_n)$ which shows that $Y_p(\mathfrak{gl}_n)$ is a special filtered algebra.

Proposition 4.1. ([C], [M]) The associated graded algebra $\overline{Y}_p(\mathfrak{gl}_n) = \operatorname{gr} Y_p(\mathfrak{gl}_n)$ is a polynomial algebra in variables $\overline{t}_{ij}^{(k)}$, $i, j = 1, \ldots, n, k = 1, \ldots, p$.

Set $T(u) = (T_{ij}(u))_{i,j=1}^n$ and consider the following element in $Y_p(\mathfrak{gl}_n)[u]$, called quantum determinant

$$\operatorname{qdet} \mathbf{T}(u) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) T_{1\sigma(1)}(u) T_{2\sigma(2)}(u-1) \dots T_{n\sigma(n)}(u-n+1).$$
(4.4)

The coefficients d_s of the powers u^{np-s} , $s = 1, \ldots, np$ of qdet T(u) are algebraically independent generators of the center Γ of $Y_p(\mathfrak{gl}_n)$ ([C], [M]).

Theorem 4.2. ([FO]) For all $n \ge 2, p \ge 1$ the restricted Yangian $Y_p(\mathfrak{gl}_n)$ is a free module over its center.

Remark. 1. If p = 1 then Theorem 4.2 is the classical Kostant's theorem;

2. If $p = \infty$ then the statement of the theorem was proved by Molev, Nazarov and Olshansky in [MNO];

3. When p = 2 the result of the theorem is due to Geoffriau [G].

4.1 Yangian $Y_p(\mathfrak{gl}_2)$

Consider now the Yangian $Y_p(\mathfrak{gl}_2)$. Drinfeld generators $a_1(u)$ and $a_2(u)$ are defined in this case by

$$a_1(u) = t_{11}(u) t_{22}(u-1) - t_{21}(u) t_{12}(u-1), \qquad a_2(u) = t_{22}(u).$$
(4.5)

Denote $\Gamma = \langle d_i, t_{22}^{(k)} \rangle, i = 1, ..., 2p, k = 1, ..., p.$

Theorem 4.3. ([FMO]) 1. $Y_p(\mathfrak{gl}_2)$ is a free module over the subalgebra Γ ;

2. Γ is a Harish-Chandra subalgebra;

3. Γ is a maximal commutative subalgebra of $Y_p(\mathfrak{gl}_2)$;

4. Every character of Γ defines finitely many irreducible Harish-Chandra $Y_p(\mathfrak{gl}_2)$ -modules.

Theorem 4.2 gives positive answers to Questions 1 and 3 of the Introduction in the category $H(U, \Gamma)$.

Example. If p = 2 then the variety

$$V = V(\bar{d}_i, \bar{t}_{22}^{(k)}, i = 1, \dots, 2p, k = 1, \dots, p)$$

has three irreducible components of $\dim = 3$:

$$\begin{aligned} x_{11}^{(1)} &= x_{11}^{(2)} = x_{22}^{(1)} = x_{21}^{(1)} = x_{21}^{(2)} = 0, \\ x_{11}^{(1)} &= x_{11}^{(2)} = x_{22}^{(1)} = x_{12}^{(1)} = x_{12}^{(2)} = 0, \\ x_{11}^{(1)} &= x_{11}^{(2)} = x_{22}^{(1)} = x_{12}^{(2)} = x_{21}^{(2)} = 0, \end{aligned}$$

where $x_{ij} = \bar{t}_{ij}$.

Finally, we can establish sufficient conditions that guarantee positive answer to Question 4 of the Introduction for modules in $H(U, \Gamma)$.

Suppose $\mathbf{m} \in \operatorname{Specm} \Gamma$ is generated by $t_{22}(u) - \beta(u)$ and $D(u) - \gamma(u)$, where

$$\beta(u) = \prod_{i=1}^{p} (u + \beta_i), \gamma(u) = \prod_{i=1}^{2p} (u + \gamma_i).$$

We say that **m** is generic if $\beta_i - \beta_j \notin \mathbb{Z}$.

Theorem 4.4. ([FMO]) If **m** is generic then $\mathcal{A}(\mathbf{m}, \mathbf{m}) = \Gamma_{\mathbf{m}}$ and hence there exists a unique irreducible $V \in H(U, \Gamma)$ with $V(\mathbf{m}) \neq 0$. Moreover, dim $V(\mathbf{m}) = 1$.

References

- [BL] Bernstein J., Lunts V., A simple proof of Kostant's theorem that U(g) is free over its center, Amer.J.Math. 118 (1996), 979-987.
- [C] Cherednik I., Quantum groups as hidden symmetries of classic representation theory, in "Differential Geometric Methods in Physics" (A. I. Solomon, Ed.), World Scientific, Singapore, 1989, pp. 47–54.
- [Di] Dixmier J., Algèbres Enveloppantes. Paris: Gauthier-Villars, 1974.
- [D1] Drinfeld V., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
- [D2] Drinfeld V., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212–216.
- [DFO] Drozd Yu., Ovsienko S., Futorny V., Harish Chandra subalgebras and Gelfand Zetlin modules, in: "Finite dimensional algebras and related topics", NATO ASI Ser. C., Math. and Phys. Sci., 424, (1994), 79-93.
- [DFO1] Drozd Yu., Ovsienko S., Futorny V. On Gelfand-Zetlin modules, Suppl. Rend. Circ. Mat. Palermo, 26 (1991), 143-147.
- [FM] Fomenko T., Mischenko A., Euler equations on finite-dimensional Lie groups, Izv. Akad.Nauk SSSR Ser.Mat. 42 (1978), 396-415.
- [FMO] Futorny V., Molev A., Ovsienko S., Harish-Chandra modules for Yangians, Representation Theory, to appear.
- [FO] Futorny V., Ovsienko S., Kostant's theorem for special filtered algebras, Bull. London Math. Soc. 37 (2004), 1-13.
- [G] Geoffriau F., Une propriété des algèbres de Takiff, C. R. Acad. Sci. Paris 319 (1994), Série I, 11–14.
- [K] Kostant B. Lie groups representations on polynomial rings. Amer.J.Math. 85, (1963), 327-404.
- [KS] Kulish P., Sklyanin E., Quantum spectral transform method: recent developments, in "Integrable Quantum Field Theories", Lecture Notes in Phys. 151 Springer, Berlin-Heidelberg, 1982, pp. 61–119.
- [M] Molev A., Gelfand-Tsetlin basis for representations of Yangians, Lett. Math. Phys. 30 (1994), 53-60.

- [MNO] Molev A., Nazarov M., Olshanski G., Yangians and classical Lie algebras, Russian Math. Surveys 51:2 (1996), 205-282.
- [OV] Okunkov A., Vershik A., A new approach to representation theory of symmetric groups, Selecta Math. New Series, 2 (1996), 581-605.
- [O] Ovsienko S. Finiteness statements for Gelfand-Tsetlin modules, In: Algebraic structures and their applications, Math. Inst., Kiev, 2002.
- [TF] Takhtajan L.A., Faddeev L.D., Quantum inverse scattering method and the Heisenberg XYZ-model, Russian Math. Surv. 34 (1979), no. 5, 11–68.
- [V] Vinberg E. On certain commutative subalgebras of a universal enveloping algebra, Math.USSR Izvestiya 36 (1991), 1-22.

Vyacheslav Futorny

Institute of Mathematics and Statistics University of São Paulo Caixa Postal 66281- CEP 05315-970 São Paulo **Brazil** e-mail: futorny@ime.usp.br