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IrreducibIe conformaI subaIgebras of CendN and gCN 

Pavel Kolesnikov1 

Abstract: We present classification of irreducible confor
maI subalgebras of the associative conformaI algebra CendN, 
and discuss analogous problem for its adjoint Lie conformaI al
gebra gCN. 

1 Introduction 

The notion of conformal algebra appeared in the frame of mathematical physics 
(conformaI field theory). Roughly speaking, conformaI algebra is a "restriction" 
of vertex algebra: conformaI operations encode singular part of operator product 
expansion (see [8] for details) . 

AIgebraical definition of conformaI algebra is a formalization of some machin
ery in the theory of local fields [9] (here the word "field" means formal distribu
tion). This construction could be naturally generalized in the frame of pseudoten
sor categories [2]; the notion of pseudoalgebra [1] obtained has certain relations 
with quantum groups, Poisson algebras, etc. 

The idea of this generalization is to replace a field lF with a (cocommutative) 
Hopf algebra H, consider H-module C instead of vector space A over lF, and turn 
lF-linear multiplication A®A -7 A into (Hi8lH)-linear map Ci8lC -7 (H®H)®HC. 
In particular, the case H = lF[D] (with the canonical Hopf algebra structure) 
corresponds to conformal algebras. 

The main object of our consideration is the conformaI algebra CendN of confor
maI endomorphisms offree N-generated module VN, N 2: 1 (see, e.g., [3,4,5 , 9]). 
This is an analogue of endomorphism algebra EndN ~ MN(lF) of N-dimensional 
vector space over a field lF. The important difference between usual and confor
maI algebras is that CendN is infinite (i.e. , infinitely generated over H = lF[D]; 
that would mean that. infinite dimensional algebra has finite dimensional faithful 
representation, in the language of usual algebras). 

Moreover, CendN contains pro per irreducible subalgebras in contrast to EndN 
(c.f. classical theorem by Burnside or, more generally, the Density theorem by 
Jacobson [7]). 

Conformal analogue of Burnside theorem was conjectured by V. Kac [9]; it 
was partially proved in [3] (for finite subalgebras and for N = 1 as well). Here 
we prove this conjecture in general and develop structure theory of associative 
conformaI algebras with finite faithful representation. 

We preferably use the language of pseudoalgebras in order to simplify some 
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241 



242 Pavel Kolesnikov 

observations in conformal algebras. In the Iast section, we transIate another con
jecture from [3]: on irreducibIe conformaI subalgebras of Lie conformaI algebra 

C d(-) 
gCN = en N . 

Throughout the paper, IF be an algebraically closed field of zero characteristic, 
Z+ be the set of non-negative integers, and 8a; denotes the usual derivation with 
respect to a variabIe x. 

2 Pseudoalgebras and conformai algebras 

Let H be a cocommutative Ropf algebra, and let C be a left H -module. An 
H-bilinear map 

* : C ® C --+ (H ® H) ®H C 

is called pseudoproduct (we mean H ® H and higher tensor powers of H to be 
endowed with outer product module structure over H). 

Definition 1. An H -module C endowed with pseudoproduct * is called H
pseudoalgebra. PseudoaIgebra C is said to be finite, if C is a finitely generated 
H-module. 

Since we prefer using the language of pseudoalgebras but avoid presenting 
formal definition of the corresponding pseudotensor category [1, 2] , it is necessary 
to adduce the expression for composition of pseudoproducts. Let C be an H
pseudoalgebra with pseudoproduct *. Then the map * could be extended as 
follows (c.f. [1]): 

* : (Hem ®H C) ® (H®m ®H C) --+ (H®n+m ®H C), 

(F ®H a) * (G ®H b) = (F ® G ®H 1)(~n-1 ® ~m-1 ®H id)(a * b), 

F E H ®n, G E H ®m, 

where ó.k - 1 (I) = 1(1) ® ... ® I(k)' I E H, is the iterated coproduct. 
Let us consider two simplest cases: H = IF (one-dimensional Ropf algebra), 

and H = IF[D] (universal enveloping of one-dimensional Lie aIgebra). In the first 
case, the definition of pseudoalgebra coincides with usual definition of an aIgebra 
over the fieId IF. In the second case, we actually get the definition of conformaI 
algebra as it was stated in [8] (see [1]). 

The Iast sentence should be expIained. Indeed, for any two elements a, b E C 
their pseudoproduct could be uniquely expressed as follows [1]: 

and the coefficients of this distribution are just the n-products of conformaI aIge
bra: a n b = Cn · 
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The operations (. n .) : C ® C -t C satisfy the relations 

(C 1) a n b = O , n» O; 
(C2) Da n b = -na n-1 b, n E Z+; 
(C3) a n Db = D(a n b) + na n-1 b, n E Z+. 
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These conditions are usually recognized to be the axioms of conformal algebra [8]. 
So, Definition 1 for H = lF[D] is equivalent to the following 

Definition 2. Conformal algebra is a vector space C over lF endowed with a linear 
operator D and with a family of lF-bilinear maps (. n .), n E Z+, satisfying the 
axioms (Cl)-(C3). 

From now on, H denotes the polynomial Hopf algebra lF[D]. 
There is a powerful technique (invented in [9]) for processing calculations in 

conformaI algebras: the notion of À-product. Namely, for any two elements a, b 
of a conformaI algebra Cone may consider the generating function (a À b) of the 
sequence {a n b I n E Z+} with respect to a formal variable À. Then 

Àn 
(a À b) = L .. ®H (a n b) E lF[À, D] ®H C 

n. 
n;:::O 

is a polynomial in À, called À-product of a and b. Axioms (Cl)- (C3) could be 
easily rewritten in terms of this À-product, and this operation could be considered 
as a foundation of the definition of conformaI algebra (see, e.g., [3, 6]) . In fact, À

product coincides with pseudoproduct, if one (informally) identifies À with -D®I, 
see [1]. 

The "conformaI versions" of associativity, commutativity and Jacobi identity 
could be easily expressed in terms of pseudoproduct [1] as well as (in a more 
complicated form) via n-products [11]: 

Associativity: a * (b * c) = (a * b) * c, 

a n (b m c) = L (~) (a n-s b) m+s c; 
s;:::o 

(Anti)Commutativity: a * b = (712 ®H id)(b * a), 

a n b = ±( _1)n L i(-D)S(b n+s a); 
s;:::O s. 

Jacobi: a * (b * c) - (712 ®H id)(b * (a * c» = (a * b) * c, 

a n (b m c) - b m (a n c) = L (;) (a n-s b) m+s C 

_;:::0 

(here 712 means the permutation of corresponding tensor factors). One may see 
that these identities are similar to the "classical" ones. 

Remark 1. It is easy to construct "conformaI analogue" of any homogeneous 
polylinear identity f = f(X1,"" x n ). Namely, it is sufficient to replace any 
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monomial ll:il, ... ,iJXil .. . XiJ from f with expression ll:il, ... ,in (a ®H idc)[Xil * ... * 
XiJ, where §n 3 a : k t-+ ik, and [ ... ] means the same bracketing as in the initial 
monomial. 

These identities have a very natural motivation: associativity (resp., commu
tativity, Lie, etc.) of conformal algebra C means that C could be embedded into 
the space offormal distributions A[[Z,Z-I]] over associative (resp., commutative, 
Lie, etc.) algebra A. 

Various elementary properties of usual algebras hold for conformal algebras. 
In particular, if C is an associative conformaI algebra, then the same H-module 
endowed with new operation 

[a * b] = (a * b) - (T12 ®H id)(b * a) 

is aLie conformal algebra denoted by CC -), as usual. 
The notion of representation of an associative (or Lie) conformaI algebra is 

also very natural [1, 4, 9] . 

Definition 3. Let C be an associative or Lie conformaI algebra, and let V be a 
left H-module (H = JFlD] as before). Then V is said to be conformal C-module, 
if an H-bilinear map 

* : C ® V ~ (H ® H) ®H V, 

is defined, such that the usual relations hold: 

a * (b * x) = (a * b) * x , in associative case; 

a * (b * x) - h2 ®H id)(b * (a * x)) = (a * b) * x, in Lie case; 

(a,bE C, x E V) . 

This notion could also be expressed in terms of bilinear "n-actions" , n E Z+, such 
that the analogues ofaxioms (Cl)-(C3) hold, as well as associativity (or Jacobi 
identity, for Lie case). 

Representation is said to be finite, if V is a finitely generated H -module. 

3 ConformaI aIgebras CendN and gCN: 
construction 

explicit 

Let us adduce a general construction of various examples of conformaI aIgebras, 
one of these exampIes would be the main object of our study. 

Let A be an associative aIgebra, and let A[v] be the algebra of polynomials 
over A on a commuting variable v. Denote by ô = Ôv the usual derivation of 
A[v] with respect to v. Consider free H-module :D(A) := H ® A[v] endowed with 
pseudoproduct * given by 

(_D)n 
a * b = bC_I) ® 1 ®H ab(2) == L --I - ® 1 ®H aôn(b), a, b E A[v] 

n. 
n~O 
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(here we use Sweedler's notation for A[v] endowed with natural H-comodule struc
ture). In terms of n-products, the last expression means a n b = aôn(b) for 
a,b E A[v]. 
Proposition 1. :D(A) is an associative conformaI aIgebra. 

There exists another construction appearing directly from consideration of 
formal distribution algebras [9]: by :D°(A) we denote the same H-module H ®A[v] 
endowed with 

Proposition 2. :Do (A) is an associative conformai aIgebra. 

Proposition 3. ~O(A) := :D(A), the isomorphism is given by 

:DO (A) 3 a == 1 ® a( v) f----+ a( -1) ® a(2) == a( v - D) E :D(A). 

Example 1. Conformal subalgebra Cur A = H®A C ~(A) generated by constant 
polynomials, called current conformaI algebra over A. 

Example 2. ConformaI algebra W = :D(F) is called conformaI Weyl algebra. 

Example 3. The main objects of our study could be constructed as matrix 
algebra over W: 

CendN = MN(W) = :D(MN(F)); 

C d(-) 
gCN = en N . 

The last example provides us with the explicit construction of CendN. One 
may see that CendN is just a conformaI analogue of matrix algebra MN(F). There 
is another source of similarity: by the initial definition (see, e.g., [9]) CendN is 
the conformaI algebra of conformaI endomorphisms of free N -generated H -module 
(see [1, 5]). 

It would be natural to expect a great degree of similarity between algebraical 
properties of MN(IF) and CendN. But one of the main algebraical features distin
guishes these algebras: CendN is not finite, although MN(lF) is finite-dimensional. 

By the very definition, CendN has finite faithful representation. The canonical 
module could be constructed as follows: define the family of n-actions 

on the free N-generated H-module VN = H ® IFN by 

These operations satisfy (C1)-(C3) and associativity. The action of CendN (gcN) 
on VN is c1early faithful and irreducible. 

The following definition is motivated by the c1assical theorem by Burnside. 
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Definition 4. Conformai subalgebra C of CendN (or gc N) is called irreducible, 
if there are no non-trivial C-submodules of VN. 

Example 4. Left (conformai) ideal CendN,Q = CendN(Q(_I) ® Q(2») generated 
by an element of the form 

where Q E MN(lF[v]), is irreducible iff detQ(v) =f. O. 

Example 5. Current subalgebra CurN == Cur MN{lF) C CendN is irreducible as 
wellas its conjugates Cur~ = Q-l CurN(Q(_I) ® Q(2»), degvdetQ = O (see [3] 
for details). 

Remark 2. We prefer using the isomorphic structure :l)(MN(lF)) for CendN, 
instead of :l)O(MN(lF)) used in [3, 5, 9] et aI. One may apply the isomorphism 

.. from Proposition 3 in order to translate ali these constructions into the language 
of formal distributions. 

4 Subalgebras of CendN 

The following statement (conformal version of Burnside theorem) has been con
jectured in [9], now we can conclude that it is true. 
Theorem 1. Examples 4 and 5 exhaust alI irreducible conformal subalgebras of 
CendN· 
Sketch of the proof. Let C ç CendN be an irreducible subalgebra. For every a E C 
consider linear operators a(n) : VN -+ VN, a(n)u := a n U, n E íZ+, u E VN. The 
set S(C) = {a(n) I a E C,n E íZ+} C EndlF VN is a subalgebra of MN(W), where 
W = lF(D,8D I [8D,D] = 1) is the first Weyl algebra. Moreover, [D,S(C)] ç 
S(C). Hence,Sl = lB1D]S(C) is also a subalgebra, and this subalgebra must be 
dense in MN(W) with respect to the finite topology [7]. 

The density of SI allows to conclude that lF(v]C is a left ideal of CendN, so it 
is of the form CendN,Q, where det Q =f. O [3]. Therefore, we have 

lF(v]C = C + vC + v2C + ... = CendN,Q 

There are three cases: 
(1) the sum (*) is direct; 
(2) C n vC :F O; 
(3) C n vC = O but (*) is not direct . 

It is possible to show that (1) corresponds to finite subalgebra C :::::: CurN, condi
tion (2) implies C = CendN,Q, and (3) is impossible. 

Corollary 1. Let C be an associative conformaI algebra with /inite faithful 
irreducible representation. Then C :::::: CendN,Q or C :::::: CurN, for some N ~ 1, 
det Q :F O. AlI these algebras are simple. 
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Corollary 2 [5, 9]. Simple nnite associative conformal algebra is isomorphic to 
Cur N, for some N 2: 1. 

These results allow to get some advance in structure theory of associative 
conformaI algebras with finite faithful representation. 

Theorem 2. Semisimple associative conformal algebra with nnite faithful repre
sentation is a direct sum of those described by Theorem 1. 

Theorem 3. For every associative conformal algebra C with finite faithful rep
resentation there exists nilpotent ideal I of C such that C/I is semisimple. 

5 Some subalgebras of gCN 

In the previous section, we have presented structure theory of associative con
formal algebras with finite faithful representation, in particular, Theorem 1 com
pletely describes simple ones. In the case of Lie algebras, the picture seems to be 
more complicated. 

Finite irreducible subalgebras of gCN (i.e., finite Lie conformal algebras with 
faithful finite irreducible representation) were described in [5] (note that they are 
not necessarily simple). It was proved in [3] that the following subalgebras of 
Lie conformaI algebra gCN act irreducibly on the canonical module (detQ(v) i O 
everywhere) : 

gCN,Q = Cend~~; 
OCN,Q = {a(Q(-l) ® Q(2») I a E CendN, l1(a) = -a}, Qt( -v) = Q(v); 

spcN,Q = {a(Q(-l) ® Q(2») I a E CendN, l1(a) = a}, Qt( -v) = -Q(v), 

where 11 is the anti-involution of CendN defined by the rule l1(a(D, v)) = at(D, D
v). 

Conjecture [3]. ConformaI subalgebras gCN,Q' OCN,Q, spcN,Q and their conju
gates (with respect to automorphisms of CendN ) exhaust all infinite irreducible 
subalgebras of gc N. 

This conjecture was partially proved in [6]; another result could be found in 
[12]. 
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