
Resenhas IME-USP 2004, Vol. 6, No. 2/3, 291 - 307. 

Sabinin AIgebras: The Basis of a Nonassociative Lie Theory 

José M. Pérez- Izquierdo1 

Abstract: Certain famous concepts and results such as 
Universal enveloping algebras, Poincaré-Birkhoff-Witt Theo­
rem and the Lie correspondence have been, up to some extend, 
synonymous of Lie algebras. Other nonassociative algebras 
seemed not to fit in that contexto This paper presents some re­
cent results on what might be called "nonassociative Lie The­
ory": the Lie correspondence between loops and Sabinin alge­
bras, the existence of nonassociative universal enveloping al­
gebras, the nonassociative Poincaré-Birkhoff- Witt Theorem, 
the Milnor- Moore Theorem for nonassociative Ropf algebras 
and the equationallogic behind the new kind of nonassociative 
identities that arise from these new nonassociative Hopf alge­
bras2. Connections in the spirit of Magnus with some central 
series on loops recently introduced by J . Mostovoy are also 
discussed. 

1 Sabinin algebras and local loops 

Unless explicitly stated, alI over this paper we will assume that the field F has 
characteristic zero. 

Deflnition 1 A nonempty set Q with three maps (a, b) f-7 ab (multiplication), 
(a, b) f-7 a\b (left division) and (a , b) f-7 a/b (right division) is called a loop if the 
following identities hold: 

a\(ab) = b = a(a\b) , (ab)/b = a = (a/b)b and a\a = b/b. 

In the sight oí the other identities, the last identity is equivalent to imposing that 
e = a\a is the identity or unit element for the product, that is, ea = a = ae. 
Usually loops are presented in this way. In the case that we do not impose the 
existence of a unit element then we obtain the definition of quasigroups [2, 15, 3]. 

Deflnition 2 An analytic manifold M is called a local analytic loop if analytic 
maps (a, b) f-7 ab, a\b, a/b are defined in a neighborhood of an element e E M and 
the identities 

a\(ab) = b = a(a\b), (ab)/b = a = (a/b)b , ea = a = ae 

hold whenever the expressions are defined. 

lSupported by MCYT (BFM 2001-3239-C03-02) and the Comunidad Autónoma de La Rioja 
(ANGI 2001/26). The author was also partially supported by FINEP. 

2The proof of some of these results is available in [13] . 
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One of the main tasks in loop theory was to find an infinitesimal object to 
locally classify the analytic local loop. Since Lie groups are the first examples of 
analytic localloops, narnely, those for which (ab)e = a(be) holds, then this object 
should generalize the usual notion of Lie algebra. 

The following identities are equivalent for a loop 

a(b(ae)) = «ab)a)e, «ba)e)a = b(a(ea)) and (ab)(ca) = (a(be))a. 

A loop is called a Moufang loop if it satisfies any of them. In 1955 Malcev proved 
that the tangent space on the identity of an analytic local Moufang loop inherits 
a bilinear product [, ] with the following properties 

[x,x]=O and [J(x,y,z),x] = J(x,y, [x,z]), 

where J(x, y, z) = [[x, y], z]- [[x, z], y]- [x, [y, z]] denotes the jacobian of x, y and 
Zj that is, the tangent space on the identity becomes a Malcev algebra (Moufang­
Lie in the work of Malcev [7]). Later, in 1971, Kuz'min proved the existence of 
an analytic local Moufang loop for any finite-dimensional real Malcev algebra [6]. 
Therefore, the Lie correspondence holds for Moufang loops and Malcev algebras. 
As a moral we learn that associativity is not essential for the Lie correspondence. 

On the way to obtaining an infinitesimal object to locally classify the loop it 
becarne clear that a single binary product on the tangent space of the identity 
was not enough. A left Bolloop is a loop that satisfies the identity 

a(b(ae)) = (a(ba))e. 

The tangent space of an analytic local left BoI loop is a left BoI algebra, that is, 
a vector space V equipped with a bilinear and a trilinear product, denoted by [, ] 
and [, , ] respectively, which satisfy the following conditions: 

1. (V, [, , ]) is aLie triple systemj that is, 

(a) [a, a, b] = O, 

(b) [a, b, c] + [b, e, a] + [e, a, b] = O and 

(c) [x, y, [a, b, c]] = ([x, y, a], b, e] + [a, [x, y, b], e] + [a, b, [x, y, e]]. 

2. [,] is skewsymmetric and it is related with the trilinear operation by 
[a, b, [e, d]]= [[a, b, e], d] + [e, [a, b, d]] + [e, d, [a, b]] + [[a, b], [e, d]]. 

Any Moufang loop is a left Bolloop. Correspondingly, any Malcev algebra is a 
left BoI algebra by setting [a, b, e] = [[a, b], e] - ~J(a, b, e). Sabinin and Mikheev 
[18] proved that the Lie correspondence holds for analytic local (left) BoI loops 
and (left) BoI algebras. Again the moral is that the associativity is not essential 
for the Lie correspondence. 
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The general case is more subtle and many multilinear operations are needed to 
locally classify the loop. Sabinin and Mikheev ([20)) proved that for any analytic 
local loop the tangent space on the identity inherits two families of multilinear 
operations 

that make it a Sabinin algebra. 
Before giving the formal definition of Sabinin algebras, let us present the fol­

lowing three results to illustrate the goodness of this structure. 

Theorem 1 ([20]) Analytic localloops are locally isomorphic if and only if their 
corresponding Sabinin algebras are isomorphic. 

Theorem 2 ([20]) Any finite-dimensional Sabinin algebra over the real numbers 
whose structure constants satisfy certa in convergence conditions (see [20]) is the 
Sabinin algebra of some analytic local loop. 

Theorem 3 ([20]) Let (Q,., \, j, e) be an analytic local loop and q the corre­
sponding Sabinin algebra. lf R is a local subloop of Q then t = TeR is a Sabinin 
subalgebra of q. Conversely, for any subalgebra t of q there exists a unique local 
subloop R in Q such that Te (R) = t. The subloop R is normal if and only if t is 
an ideal of q. 

The definition of Sabinin algebras implicitly used by Shestakov and Umirbaev 
in [22] is formulated in terms of a comultiplication 6.: T(V) -+ T(V) 18> T(V) on 
the tensor algebra T(V) of the vector space V. The map 

a t--+ a 18> 1 + 1 18> a 

from V to T(V) 18> T(V) extends to a homomorphism of unital algebras, the co­
multiplication, 

6.: T(V) -+ T(V) 18> T(V) 

x t--+ L X(l) 18> X(2) 

where we have used Sweedler's notation [23]. With this notation the definition of 
Sabinin algebras is as follows: 

Definition 3 A Sabinin algebra (V, (i , ), <I» is a vector space together with two 
families of multilinear maps (;,): T(V) 18> V 18> V -+ V and 
<I> (Xl , ... ,Xmi Yl, ... ,Yn) (m ~ 1, n ~ 2) satisfying 

1. (Xia,b) = -(Xib,a), 

2. (xabYi c, e) = (xbaYi c, e) - I: (X(l) (X(2) i a, b)Yi c, e), 
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3. Uabc ((xc;a,b) + I:(x(l);(x(2);a,b),c») = ° where Uabc denotes the cyclic 
summation with respect to a, b and c, and 

4· <P(X1, ... ,Xm ;Y1,···,Yn) = <p(xrll ···,Xr ",;YÕll··.,yõJ 'rim ~ 1, n ~ 2 and 
r E Sm,8 E Sn, where Sk stands for the symmetric group on k symbols, 

for all x,y E T(V) and a,b,c,e E V. 

To appreciate the importance of Sweedler's notation compare the previous 
definition with the original definition as formulated in [22]: 

Definition 4 A Sabinin algebra (V, (; , ), <p) is a vector space together with two 
families of multilinear operations ( Xl, ... ,Xm ; a, b ), m = 0, 1, . . . and 
<P(XI, ... , Xm ; YI, ... , Yn) (m ~ 1, n ~ 2) with the properties 

2. (Xl, X2,· .. , X r , a, b, Xr+l, ... , Xm ; Y, z) 
-(Xl, X2,··· , Xr , b, a, Xr+b· .. , Xm ; y, z) 

r 

+ L L(x01 ' • •• ,XOk , (XOk+1 '··· ,XOr ; a, b), ... ,Xm ; y,z) = 0, 
k=O o 

9. Ux ,y ,z ((Xl, ... , Xr, X; y, z) 

+ t L(x01 " ••• ,XOk ; (XOk+1 ,··· ,xor;y,Z), X») = 0, 
k=O o 

where a runs the set of all bijections a: {I, 2, ... , r} --+ {I, 2, ... , r} of the type 
i f-+ ai, aI < (l2 < ... < ak,ak+1 < ... < ar, k = 0,1, ... ,r, r ~ O, Ux,y,z 

denotes the cyclic sum by x, y, z; r E Sm, 8 E Sn and SI stand for the symmetric 
group on 1 symbols. 

Example 1 Lie algebras are the simplest example of Sabinin algebras. Given 
any Lie algebra (L, [, ]) the multilinear operations 

(xI, ... ,xm;a,b) = { O 
-[a, b] 

n~l 

and <P = O 
n=O 

provide a structure of Sabinin algebra on L. 
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Example 2 Any left BoI algebra (V, [, ], [, , ]) becomes a Sabinin algebra with 

(1; a, b) = [a, b], 

(c; a, b) = [a, b, e]- [[a, b], c], 

(ex; a, b) = - í)X{l); c, (X(2); a, b» if Ixl 2: 1 

and <I> = 0, where Ixl denotes the degree of x. We note that this formula differs 
from the formula given in [13] since there right BoI algebras are considered instead. 

2 Sabinin algebras and Lie algebras 

Sabinin algebras and Lie algebras are very much connected. Given any Lie algebra 
L, a subalgebra H and a vector subspace V ~ L with L = H EB V, one may induce 
multilinear operations on V 

(; , ): T(V) 0 V 0 V -t V 

by means of the following recurrence 

where {dI, ... , dn } = 7rv([d1, ["', [dn - I ,dn ]]) with 7rv the parallel projection onto 
V, and {dI} = llv(dd. We have 

Theorem 4 ([20]) (V, (; , ») is a Sabinin algebra, and any Sabinin algebra ap­
pears in this way. 

The Lie algebra L in the previous construction is called a Lie envelope of (V, (; , »). 

Example 3 Let L be aLie algebra, H = 0, V = L and {dI, ... ,dn } = 
[d1 , •.• ,[dn - 1,dn ]]. By the recurrence, (l;a,b) = {(l;a,b)} = -{ab} = -[a,b]. 
If the degree Ixl of x is 2: 1 then ° = {xab} + L{X(1)(X(2); a, b)} = {xab} + 
{x(l;a,b)} + LX(2);>H{X(I)(X(2);a, b)}. Since {xab} + {x(l;a,b)} = {xab}­
{x[a, b]} = O then (x; a, b) = O if Ixl 2: 1 is the solution in this case. Hence we 
obtain the usual structure of Sabinin algebra on L. 

Example 4 Given any nonassociative unital algebra C consider the Lie algebra 
L generated by the right multiplication operators by elements of C. Let H be 
the subalgebra of L that kills the unit elemento Then L = H EB {Rx I x E C}, so 
{Rx I x E C} inherits a structure of Sabinin algebra that moves to C. In particular, 
we obtain multilinear operations (in terms of the product on C) so that C endowed 
with these opera.tions becomes a Sabinin algebra. This construction generalizes 
the usual functor from associative algebras to Lie algebras. 
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3 Sabinin algebras and nonassocÍative algebras 

In [22] Sabinin algebras broke into a different contexto In the important study 
that Shestakov and Umirbaev carried out on primitive elements Prim(C) of a 
nonassociative bialgebra C they defined some operations under which Prime C) is 
closed. As Shestakov and Umirbaev realized, a modification of those operations 
make Prime C) a Sabinin algebra. 

The construction of Shestakov and Umirbaev works as follows. Let B a free 
nonassociative algebra on XUYU{z} with X = {Xl' X2,"'} and Y = {YI, Y2, . .. }. 

There exists a homomorphism (the comultiplication) of unital algebras 

Â:B -+ B®B 

X 1-+ L X(1) ® X(2) 

induced by XUYU{z} ç Prim(B); that is, Â(W) = w®l+ll8iw Vw E XUYU{z}. 
Fix u = «XIX2)" ,)xm and v = «YIY2)" ')Yn E B and define nonassociative 
polynomials3 

q(Xl,'" ,Xm ; YI , ···, Yn; z) = q(u,v, z) 

by the recurrence 

with initial conditions q(l, 1, z) = q(l, v, z) = q(u, 1, z) = O. These polynomials 
can be evaluated on any nonassociative algebra C inducing multilinear operations 
in the obvious way. 

Theorem 5 ([22]) Let C be an algebra with unit 1 and Â: C -+ C®FC be a non­
trivial homomorphism of algebras. Then the set Prim(C) of primitive elements 
of C is closed under [,1 and q(; ; ). 

Another important results about primitive elements of nonassociative bialge­
bras are: 

Theorem 6 ([22]) Let C be an algebra with unit 1 over a field of characteristic 
zero, and Â: C -+ C®FC be a nontrivial homomorphism of algebras. Suppose that 
the algebra C is generated by a set M of primitive elements, and let P(M) be the 
minimal subspace of C that contains M and is closed with respect to the primitive 
operations [, ] and q(; ; ). Let eI, e2, ... , ea , . . . be a basis of P(M). Then the set 
of right- normed words of the type 

« e · e· ) .. ·)e· ti t2 tk 

where i l ::; i 2 ::; • •. ::; i k , k ~ O forms a basis of the algebra C. 

3These palynomials are a minar modification of the polynomials introduced by Shestakov 
and U mirbaev. 



Sabinin Algebras: The Basis of a Nonassociative Lie Theory 297 

Corollary 1 ([22]) Under the assumptions of the th eo rem, the set P(M) coin­
cides with Prime C). In other words, any set of primitive elements which generates 
C generates also the set Prime C) by the operations [, ] and q(; ; ). 

Given any nonassociative algebra C, Shestakov and Umirbaev consider 

(l;a,b) = -[a,bJ, 

(Xl, ... ,Xm ; y,z) = -q(XI, ... , Xm ; y, z) + q(XI, ... , Xm ; Z, y) and 

<li (Xl , ... , Xm ; YI, ... ,Yn) = ;,! rb- L:T,Ó <li (XT1 , . .. ,XT",; YÓ1' ... ,yóJ, 

where T and 8 run the symmetric groups Sm and Sn respectively. The vector space 
C equipped with these new multilinear operations will be denoted by Yill(C). 

TheoreIll 7 ([22]) For any nonassociative algebra C over a field of characteristic 
zero, Yill(C) = (C, (; , ), <li) is a Sabinin algebra. 

ReIllark 1 This structure of Sabinin algebra is the same as the one obtained in 
Example 4. 

We have arrived to an interesting point: 

A associative =} A = (A, [, ]) is aLie algebra 
C nonassociative =} Yill(C) = (C, (; , ), <li) is a Sabinin algebra 

and we know that any Lie algebra arises as a subalgebra of U- for some associative 
algebra U. So it is natural to ask the following question[22]: 

Does any Sabinin algebra arise as a subalgebra of Yill(U) for some 
nonassociative algebra U? 

The answer is provided by the following resulto 

TheoreIll 8 (Poincaré-Birkhoff-Witt) Let (V, (; , ), <li) be a Sabinin algebra 
over a field of characteristic zero. There exist a unital algebra U = U(V, (; , ),4» 
and a monomorphism 

L: V <-+ Yill(U) 

of Sabinin algebras such that (U, L) satisfies the following universal property: 

For any unital algebra C and any homomorphism of Sabinin algebras 
t.p: V -+ Yill(C) there exists a unique homomorphism of unital algebra 
<p: U -+ C such that t.p = <p o Lo 

Moreover, if {ai I i E A} is an ordered basis of V then 

{« a· a· ) .. ·)a· I i l < ... < i and n > O} tI 1.2 1.n _ _ n _ 

is a basís of U. 
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Example 5 Let L be aLie algebra over a field of characteristic zero and U' (L) its 
usual universal enveloping algebra. The Lie map L -+ U'(L)- is in fact a homo­
morphism L -+ G(U'(L)) of Sabinin algebras, so it extends to a homomorphism 
U(L) -+ U'(L) that sends a basis of U(L) to the corresponding basis of U'(L); 
therefore, U(L) is isomorphic to the usual universal enveloping algebra of L. 

Finally, let us mention that U(V, (; , ),4» is a nonassociative bialgebra and, 
by the Friedrichs criterion, 

Prim(U) = V. 

Form this point of view Sabinin algebras over fields of characteristic zero are ex­
actly the primitive elements of nonassociative bialgebras. For instance, the free 
Sabinin algebra on X is recovered as the primitive elements of the free nonasso­
ciative algebra on X. An interesting extension to free nonassociative algebras of 
Witt dimension formula for the Lie elements in the free associative algebra has 
been obtained in [1]. 

4 Sabinin algebras and nonassociative 
Hopf algebras 

An algebra A is called alternative if it satisfies the alternative laws 

Over fields of characteristic =/:- 2 these identities are equivalent to 

(x,y,z) = -(y,x,z) = (y,z,x), 

where (x,y , z) = (xy) z - x(yz) stands for the associator. 
In the same way that A - is aLie algebra for any associative algebra A, when 

starting with an alternative algebra A, A- is a Malcev algebra. However, it 
remains an open problem whether any Malcev algebra appears as a subalgebra of 
A - for some alternative algebra A. 

Since any Ma1cev algebra is a Sabinin algebra, in the sight of Theorem 8 a 
natural question to ask is whether U(M) is alternative or noto Unfortunately the 
answer turns out to be negative; thus, one is led to study the identities, if any, 
satisfied by U (M). 

Let us sketch a philosophical approach to this problem. To start with, consider 
Q an affine algebraic Moufang loop, whatever it might mean. Let P(Q) be the 
algebra of polynomial functions and P(Q)O its Hopf dual. In the case of affine 
algebraic groups the tangent space is aLie algebra and the universal enveloping 
algebra lives inside P (Q) ° . A comultiplication is induced on P (Q) by 6. (f) = 
L: f(1) ® f(2) with f(ab) = L: f(l)(a)f(2)(b) . The product on P(Q)O is determined 
by (ab)(f) = L: a(f(l))b(f(2)) , and a comultiplication by 6.(a) = L: a(l) ® a(2) 
with a(fg) = L: a(1) (f)a(2) (g) . 
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Since a(b(ac)) = «ab)a)c then for any function I E P(Q) we have that 

I (a(b(ac))) = E 1(1) (a)/(2) (b(ac)) = E 1(1) (a)/(2)(1) (b)/(2)(2) (ac) 

= E 1(1)/(2)(2)(1) (a)/(2)(1) (b)/(2)(2)(2) (c) 

= (E 1(1)/(2)(2)(1) ® 1(2)(1) ® 1(2)(2)(2») (a ® b ® c) 

and 

I «(ab)a)c) = E 1(1) ((ab)a)/(2) (c) = E 1(1)(1) (ab)/(1)(2) (a)/(2) (c) 

= E 1(1)(1)(1) (a) 1(1)(1)(2) (b) 1(1)(2) (a) 1(2) (c) 

(E 1(1)(1)(1)/(1)(2) ® 1(1)(1)(2) ® 1(2») (a ® b ® c), 

so 

E 1(1)/(2)(2)(1) ® 1(2)(1) ® 1(2)(2)(2) = E 1(1)(1)(1)/(1)(2) ® 1(1)(1)(2) ® 1(2). 

Since we are interested in the identities satisfied by P(Q)O then we take a, b, c E 
P(Q)O, I E P(Q) and we observe that 

and 

(a ® b ® c)(E 1(1)/(2)(2)(1) ® 1(2)(1) ® 1(2)(2)(2») 

E a(f(1) 1(2)(2)(1) )b(f(2)(1»C(f(2)(2)(2» 

= E a(1) (f(1) )a(2) (f(2)(2)(1) )b(f(2)(1) )C(f(2)(2)(2») 

= E a(1) (f(1»b(f(2)(1»(a(2)c)(f(2)(2») 

= E a(1) (f(1») (b(a(2)C)) (f(2») 

= (E a(1) (b(a(2) c)) ) (f) 

(a ® b ® c)(E 1{l)(1)(1)f(1)(2) ® 1(1)(1)(2) ® 1(2») = (E«a(1)b)a(2»)c)(f). 

Therefore, I: a(1)(b(a(2)c)) = I:«a(1)b)a(2»)c. When starting with the right Mo­
ufang identity «ba)c)a = b(a(ca)) we obtain I:«ba(1»)c)a(2) = I: b(a(l) (ca(2»)) 
instead. Hence the expected identities of U(M) are 

I: a(1)(b(a(2)c)) = I:«a(1)b)a(2»c 

I:«ba(1»)c)a(2) = I: b(a(1) (ca(2»)) 
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While these considerations provide us with natural candidates for identities, 
however one misses the alternative law because after all, the known examples of 
Malcev algebras all arise from alternative algebras. To conclude our philosophical 
approach, observe that in the classical case the tangent space of the algebraic 
group lives inside the primitive elements of P(Q)O and that when a primitive 
element ais plugged into the identities Ea(l)(y(a(2)z» = E«a{l)y)a(2»z and 
E«(ya(l»z)a(2) = E y(a(1)(za(2») then we obtain that 

(a, y, z) = -(y, a, z) = (y, z, a), 

thus recovering the spirit of the alternative laws. 
Let us show now how these ideas have been developed. 

Definition 5 Given any algebra A, the generalized altemative nucleus 01 A is 

Nalt(A) = {a E A I (a, y, z) = -(y, a, z) = (y, z, an. 
Proposition 1 ([9]) For any algebra A, Nalt(A) is closed under the commutator 
product [, l. Moreover, (Nalt(A), [, ]) is a Malcev algebra. 

In the case of A being alternative then we recover the usual construction of 
Malcev algebras from alternative algebras. 

TheoreIn 9 ([14]) Given a Malcev algebra Mover a field 01 characteristic -# 
2,3 there exist a unital algebra U(M) and a monomorphism 01 Malcev algebras 
L: M y Nalt(U(M» such that (U(M), L) satisfies the lollowing universal property: 

For any unital algebra C and any homomorphism 01 Malcev algebras 
'fi: M ~ Nalt(C) there exists a unique homomorphism rj;: U(M) ~ C 
01 unital algebra such that 'fi = cp o Lo 

TheoreIn 10 Let (M, [,]) be a Malcev algebra over a field 01 chamcteristic -# 
2,3, and U(M) its universal enveloping algebra. Then U(M) is a bialgebm that 
satisfies the identities E a(l)(b(a(2)c» = E((a{1)b)a(2»c and E«(ba(1»c)a(2) = 
E b(a(1)(ca(2»). 

This universal enveloping algebra is isomorphic, over fields of characteristic 
zero, to the universal enveloping algebra of M as a Sabinin algebra. 

All these considerations move to left BoI loops and left BoI algebras. The 
identity that the universal enveloping algebra of a left BoI algebra should satisfy 
is 

In case that a is chosen from the primitive elements then this identity becomes 
(a, y, z) = -(y, a, z). 
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Definition 6 Given any algebra A, the left generalized alternative nucleus of A 
is 

LNa1t(A) = {a E AI (a,y,z) = -(y,a,z) Vy,z E A}. 

The left generalized alternative nucleus is closed under the triple product 

[a, b, e] = a(be) - b(ae) - e(ab - ba) 

and in fact (LNa1t(A), [, , ]) is aLie triple system [12]. 

Proposition 2 ([12]) Let A be an algebra and V a subspace of LNalt(A) closed 
under [, , ] and [,]. Then (V, [, , ], [, ]) is a left BoI algebra. 

TheoreIn 11 ([12]) Let (V, [, , ], [,]) be a left Bol algebra, then there exist a 
unital algebra U(V) and a linear injective map ~: V Y LNa1t(U(V)) a H a such 
that 

L([a, b]) = ab - ba and L([a, b, e]) = a(be) - b(ae) - c(ab - ba) 

and the following universal property holds: 

For any unital algebra A and any linear map L' : V -+ LNa1t(A) a H ai 
with L'([a, b]) = a'b' - b'a' and L'([a, b, e]) = a'(b'e/) - b'(a'c/) - e/(a'b' -
b'a' ) there exists a homomorphism of unital algebras cp: U(V) -+ A 
satisfying L' = cp o L. 

Over fields of characteristic zero this universal enveloping algebra is isomorphic 
to the universal enveloping algebra of Vasa Sabinin algebra. 

At this point it is clear that a linearizing process for linearizing identities of 
quasigroups on coassociative (i.e. (.6. ® Id) 0.6. = (Id®.6.) 0.6.) and cocommutative 
(i.e . .6. = TO.6. with T(X ® y) = Y ® x) bialgebras has emerged. The way it works 
is quite simple: In any side of the identity p ~ q of the quasigroup substitute any 
repeated oceurrence of a variable, let say a, by a(l}, a(2), ... In case that a occurs 
only in one side, then multiply the other side by E(a), where E denotes the eounit, 
to keep the linearity of both sides of the linearized identity in that variable. 

EXaIllple 6 The natural operations on a group are the multiplication and the 
inverse map S: a H a-lo The identities satisfied by these two operations are: 
(ab)e = a(be) (associativity), S(a)(ab) = b = a(S(a)b) (the left multiplication 
operator is bijective) and (ba)S(a) = b = (bS(a))a (the right multiplication op­
erator is bijective). To linearize these identities on a bialgebra H we need to 
assume that the bialgebra is endowed with an extra linear operation S: H -+ H . 
Now the linearizing process gives: (ab)e = a(be) (the bialgebra must be associa­
tive), L: S(a(l})(a(2)b) = E(a)b = L: a(l) (S(a(2))b) and L:(ba(1))S(a(2)) = E(a)b = 
L:(bS(a(1)))a(2). In the presence of the associativity the last four identities are 
equivalent to saying that the bialgebra has unit element 1 and L: S(a(1))a(2) = 
E(a)1 = L: a(1)S(a(2)); that is, the linearization of the identities that define a 
group originates the definition of Hopf algebras (S is called the antipode). 
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This example motivates that a natural definition of the notion of nonassociative 
(nonunital) Hopf algebras will come from the linearization of the identities defining 
the structure of quasigroup. 

Definition 7 An H-bialgebra (H,~, 10,', \, j) is a bialgebra (H,~, 10,') with two 
extra bilinear operations, the left and right division, 

such that 

\:HxH 
(x,y) 

and 

-+ H 
H- x\y 

j:HxH 
(x,y) 

-+ H 
H- xjy 

Example 7 Given a loop Q and a field F, the loop algebra of Q is defined as 
F[Q] = EBaEQ Fa with the multiplication, left division and right division induced 
by those of Q, and ~ and e:: induced by ~(a) = a ® a and e::(a) = 1 for any a E Q. 
The loop algebra of any loop is an H-bialgebra and it is obvious that if Q satisfies 
some identity then F[Q] will satisfy its linearization. 

Example 8 The universal enveloping algebras of Sabinin algebras are H­
bialgebras. 

The linearizing process gives some insights in the study of identities on H­
bialgebras. 

Theorem 12 Let ~ be a set of identities for quasigroups and p ~ q a consequence 
of~. lf C is a cocommutative and coassociative H-bialgebra that satisfies the 
linearization Df the identities in ~ then C satisfies the linearization Df p ~ q. 

Example 9 In any quasigroup the Moufang identities are equivalent. Moreover, 
it is a not obvious result in the theory of quasigroups that if a quasigroup satisfies 
any of them then it is a loop [21, 5]. As a consequence, in any cocommutative 
and coassociative H-bialgebra the linearizations of the Moufang identities are 
equivalent, and any of them implies that there exists unit elemento 

The definition of H-bialgebra and the universal enveloping algebras of Sabinin 
algebras allow us to formulate the nonassociative version of the well- known 
Milnor-Moore Theorem [8]. 

Theorem 13 (Milnor-Moore) Let H be an H-bialgebra over a field Df charac­
teristic zero. lf H is generated by Prim(H) then 

H s:: U(Prim(H)). 
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5 Sabinin algebras and central series 

Free groups were studied by Magnus by embedding them in formal power series 
rings on noncommuting variables. Given a free group G on {Xi I i E A} and the ring 
Z[[x~ I i E All of formal power series on {x~ I i E A}, the map Xi t--+ 1 + X~ induces 
an embedding M: G -+ Z[[Xi I i E A]] of G in the group of units of Z[[Xi I i E A]], 
so one may identify G with M (G). Through this embedding some interesting 
questions about G become rather obvious. For instance, the lower central series 
of a group G is defined as 

G = ''11 (G) [::: 12 (G) [::: . . . 

with In+l(G) = [G'In(G)] and [a,b] = a-Ib-Iab. In the case that G is free then 
In(G) ç G n (1 + In), where I denotes the ideal of all formal power series with 
zero constant term, so it is evident that n~1 In (G) = 1. In fact, In (G) is fully 
recovered as In(G) = G n (1 + In). 

In general, for an arbitrary group G no such embedding is available. So, one 
has to choose a candidate to play the role of the formal power series ring: the 
group algebra. From F[G] and the augmentation ideal I the dimension subgroups 
are defined by 

Dn(G) = {a E G I a E 1 + r} . 
These subgroups provide another central series 

G = DI(G) [::: D 2 (G) [::: ... 

As before, In(G) ç Dn(G) although the equality in this case does not always 
hold. The precise relationship between these subgroups is beautifully explained 
in [4]. 

From the group algebra F[G] and the augmentation ideal I one defines another 
cocommutative Hopf algebra 

00 

g(G) = EBr/r+l . 

n=O 

Since ~(a - 1) = (a - 1) ® 1 + 1 ® (a - 1) + (a - 1) ® (a - 1) then a-I induces 
a primitive element in g(G). Thus g(G) is generated by Prim(Ç(G», and by the 
Milnor-Moore Theorem it must be isomorphic to the universal enveloping algebra 
of the Lie algebra Prim(Ç(G». 

The map 

Dn(G)/ Dn+1 (G) -+ In / In+l 

aD n+ I ( G) t--+ (a - 1) + In+ 1 

defines a monomorphism of abelian groups 

00 

D(G) = EBDn(G)/Dn+I(G) -+ g(G). 
n=l 
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Moreover, given a -1 E In and b - 1 E Im then [a - 1, b - 1] + In+m+l = (a - 1) (b-
1) - (b - l)(a -1) + In+m+l = ab - ba + In+m+l = ba(a-1b-1ab - 1) + In+m+l. 
Since ba E 1 + I then [a -1, b -1] + In+m+l = (a-1b-1ab -1) + In+m+l. In other 
words, through this monomorphism V( G) inherits the structure of aLie ring with 
operations 

and 

and we have a monomorphism of Lie algebras 

F ®71 V(G) -+ 9(G). 

Over fields of characteristic zero the image of F ®71 V( G) coincides with 
Prim(9(G)) . 

Theorem 14 ([16]) Given any group G and a field F of characteristic zero then 
9(G) ~ U(F ®z V(G)) . 

The Lie ring structure defined in V( G) was well known for group theorists. In 
fact, the abelian group 

00 

C(G) = EB,n(G)hn+l(G) 
n=l 

becomes aLie ring with virtually the same operations. This construction allowed 
the fruitful introduction of Lie methods in the theory of finite and infinite groups. 

Given a loop Q, by analogy we may consider the loop algebra F[Q}, the aug­
mentation ideal I, the dimension subloops Dn(Q) = Q n (1 + In) and V(Q) = 
EB~=l Dn(Q)jDn+l(Q). The algebra 

00 

9(Q) = EBInjr+l 
n=O 

inherits the structure of H-bialgebra, and since it is generated by the primitive 
elements then by the Milnor-More Theorem it must be isomorphic to the universal 
enveloping algebra of the Sabinin algebra Prim(9(Q)). As before, 

Dn(Q)jDn+l(Q) -+ InjIn+l 

aDn+1 (G) H (a -1) + In 

is a monomorphism of abelian groups that induces F ®711>(Q) -+ 9(Q), and the 
image of F ®71 1>(Q) coincides with Prim(9(Q)). 

Theorem 15 ([11]) Given any loop Q and a field F of characteristic zero then 
9(Q) ~ U(F ® z V(Q)). 
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Let us explain a little bit some details about the proof of this result since it 
involves a new important ingredient introduced by J. Mostovoy: the linearizers. 
To prove that the image of Ft;9zD(Q) coincides with Prim(Ç(Q)) first one defines 
certain operations on Q and prove that they induce multilinear operations on the 
abelian group 1)(Q). Then one checks that in the image of F t;9z 1)(Q) these 
operations correspond to the operations defined by Shestakov and Umirbaev. At 
this point the result follows from Corollary l. 

As we will see in a moment, the dimension subloops are closed under too many 
operations. The main problem then is to discriminate which ones will serve. Given 
a function f: Q x ... x Q -+ Q the linearizer of f on the slot i is 

fi("" ai-I, a, b, ai+2,"') 

f(· . . ,ai-I, a, ai+2, .. . )f(· . . ,ai-I, b, ai+2, .. ·)\f(· .. ,ai-I, ab, ai+2, ... ). 

It is clear that if f is defined in terms of " \ and /, and it satisfies the property 

f (aI, ... , an) = 1 if ai = 1 for some i 

then any linearizer of falso satisfies the same property. The linearization of f, 
in the sense of Section 4, extends f to a multilinear operation j: F[Q] ® ... t;9 
F[Q] -+ F[Q] with j(al"'" an) = E(al)'" E(an)l if ai E F for some i. 
Since li. Ij , Ii\Ij, li / li ç IHi , this property obviously implies that 
f(D n1 (Q), ... , Dnk (Q)) ç Dnl+"+nk (Q) (recall that j extends f). Similarly 
Ii(Dn,(Q), ... ,Dnk+,(Q)) ç Dn,+.+nk+,(Q)· This behavior of f and li with 
respect to the dimension subloops and the very definition of fi imply that the 
operation 

is well defined and provides a multilinear operation 

f:1)(Q) ®z··· t;9z 1)(Q) -+ D(Q). 

The iterated linearizers h , ... ,l,m+l , ... ,m+l (aI, ... , am , bl , . . . ,bn , c) of the associa­
tor f(a, b, c) = (a(bc))\«ab)c) will correspond to the operations of Shestakov and 
Umirbaev [11] . 

By analogy with groups, given a normal subloop N of a loop Q there exists 
a unique smallest normal subloop [N, Q] such that N /[N, Q] lies in the center of 
Q j[N, Q]. The lower central series of Q is defined as 

with rn+l(Q) = [rn(Q) , Q] and generalizes the usual lower central series for 
groups. It is natural to try to induce multilinear maps on F ®z e(Q), with 
e(Q) = EB~=1 'Yn (Q)hn+l(Q), so that it becomes a Sabinin algebra. However , 
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contrary to what happens with the dimension subloops, even for the iterated lin­
earizers of the associator it may occur that 

as shown in [10]. Therefore, it seems quite difficult to induce such an structure 
on F ®z e(Q). All these considerations have motivated the definition of the 
commutator-associator senes by J. Mostovoyas a substitute for the usuallower 
central series [10]. 
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