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A generalization of the concept of differentiability 

José Carlos Simon de Miranda and Luiz Fichmann 

Abstract. In this work we unify and generalize the existing definitions 
of derivatives of functions by presenting a new concept on differentia
bilitY· 

1. Introduction 
There are classic definitions for derivatives of functions from a Banach 

space to another one, due to Gateaux, Hadamard and Fréchet. The rate 
of change of a function restrícted to straíght línes through a given point 
is its Gateaux-derivative at that point; although a function may have this 
derivative at a point, it may not have the local rate of change whích would 
correspond to its Fréchet-derivative. In this work (Theorem 3.1) we show 
that Hadamard derivative at a point is the rate of change of the function 
along each and every embedded C1-curve that passes through that point; 
thus, the class of functions that has Hadamard-derivative contaíns that of 
Fréchet differentiable functions and is contained in Gateaux dífferentiable 
class of functions, since limits through straight línes are weaker than limits 
through embedded C 1_ curves whích are weaker than límits through neigh
bourhoods. It is important to note that in alI these derivatives the type 
of sets whích is used to calculate the rate of change is the fundamental 
element for distinguishing one from another. These facts lead us to imag
ine the use of other sets to calculate these limits, namely topological or 
differentiable manifolds. We have chosen manifolds that are embedded in 
amne spaces; for example, if we take C 1_ curves embedded in straight línes 
we obtain Gateaux-dífferentiability and taking all embedded C 1_ curves 
we obtaín Hadamard differentiability. What would happen if we chose Cl_ 
curves embedded in two-dimensional planes, C I - curves embedded in n
dimensional spaces, m-dimensional manifolds embedded in n-dimensional 
ailine spaces or infinite-dimensional manifolds? Differentiable manifolds 
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are locally images of differentiable embeddings in the already known dif
ferentiabilities which are defined by the type of sets in which the rate of 
change is calculated. How can we generalize these ideas? In this work we 
propose a hierarchical choice of types of sets to define the new differentia
bilities. By its turn, each of these sets, recursively, are C 1_ differentiable 
manifolds according to smaller sets in its hierarchy tíll we arrive at the first 
differentiability performed through a topological manifold. This hierarchi
cal choice is formally made by the concept of vias of Banach spaces and each 
via defines a differentiability. This definition of differentiablity will not only 
include the former ones but also generalize the concept of differentiability. 
As a matter of fact, Fréchet, Hadamard and Gateaux derivatives will have 
their own corresponding vias. The class of Fréchet differentiable functions, 
which is the one contained in the other ones, and that of Gateaux, which 
contains the other ones, will still remain as the extremes of an inclusion 
ordered set of "via-differentiability classes" but a wide spectrum of di f
ferentiabilities arises in between them. One of these differentiabilities is 
Hadamard-differentiablity. We wish you a good reading! 

2. Some Basics 
Let x, Y be real Banach spaces. We denote by L(X, Y) the set of contin
uous linear functions from X to Y. For Xo E U C X, U open set of X and 
f: U --t Y, we say that 

i) f is Gateaux differentiable at Xo and write G-differentiable at Xo if and 
only if there exists the G-derivative 8 f (xo, .) : X --t Y given by, for v E X, 

J:f( ) l' f(xo + tv) - f(xo) u Xo, v = 1m ~~---'-_-=--:'~ 
t~O t 
tElR 

ii) f is Hadamard differentiable at Xo (H-differentiable at xo) if and only 
if there exists the H-derivative H f'(xo) E L(X, Y), given by, for v E X, 

H f'(xo)v = lim 
(t , I)~(O ,O) 

(t,I)ElRxX 

f(xo + tv + tl) - f(xo) 
t 

Hadamard differentiability was originally defined for functions f : U C 

X --t Y, where X and Y are topological vector spaces (see [1, 3, 4, 6, 
10]). Let us call, for instance, the original definition, in our context, H
differentiabitity. 
Let G be the class of all functions g: 1---> U, I C ]R neighbourhood of O, 

such that g(O) = Xo and ::I g'(O) = lim g(t) - g(O) EX. 
t ..... o t 

The function f is H-differentiable at Xo if and only if:3 iI f'(xo) E L(X, Y) 
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such that Vg E G, ~(f o g)'(O) = lim (f o g)(t) ~ (f o g)(O) E Y 
t->O 

and (f o g)'(O) =H J'(XO)g'(O)o 
We estabilish the equivalence between this Hadamard's original definition 
and the one given above in item ii) (which was presented in [9]), in Propo
sition 2010 
iii) f is Fréchet differentiable at Xo (F-differentiable at xo) if and only if 
there exists the F-derivative f'(xo) E L(X, Y) such that 

lim f(xo + h) - f(xo) - J'(xo)h = O E Y 
h~O Ilhll 
hEX 

Let us define the classes of differentiable functions at Xo, relative to these 
differentiability types by: 
Fxo (X, Y) = {f : U -> Y I Xo E U C X, U open set, 

f is F -differentiable at xo} 
Hxo(X, Y) = {f: U -> Ylxo E U C X, U open set, 

f is H -differentiable at xo} 
Gxo(X, Y) = {f : U -> Ylxo E U C X, U open set, 

f is G-differentiable at Xo and of(xo, o) E L(X, Y)}o 

Many results concerning these derivatives are shown in [9] from which 
we select: 

Proposition 201 (some results from [9]). 

a) ~ f'(xo) => ~H f'(xo) <=> ~H f'(xo) =} ~of(xo, o) 
and whenever some of them exist, they are equaio 
Thus we have Fxo(X, Y) C Hxo(X, Y) C Gxo(X, Y) o 
b) lf f E Hxo(X, Y) then f satisfies 

(O)XQ Ilf(xo + h) - f(xo)1 1 = O(h) 
(that is, 

~M > O, ~r > O I Vh E X, Ilhll < r => Ilf(xo + h) - f(xo)11 :::; Mllhllo) 
c) lf dimX < 00 then Fxo(X, Y) = Hxo(X, Y)o 

Proof. a) If f E Fxo(X, Y), taking h = tv + ti, since 

f(xo + tv + tl) - f(xo) - t f'(xo)v 
t 

f(xo + h) - f(xo) - f'(xo)h Itlllv + III f'( )i 
Ilhll o t + Xo 

and the second member above goes to O when (t, i) -> (O, O) E]R x X 
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(for h ~ 0, f E Fxo(X, Y) and Itl llv + III is bounded as t --> O), 
t 

then f E Hxo(X, Y) and H f'(XO) = f'(xo) . 
Take now f E Hxo(X, Y). If f is not H-differentiable at Xo we have that 
:3g E G, EO > ° and tn #- 0, tn --> ° in ~ as n ~ 00 in N such that 

II (J o g)(t;~ - f(xo) - H f'(xo)g'(O)" ~ EO 'in E N. 

Taking in = g(tn) - g(O) - g'(O) and V = g'(O) we have 
tn 

/I f(xo + tnv ~~nln) - f(xo) - H J'(xo)V" ~ EO 'in E N, 

a contradiction since f E Hxo(X, Y). 
Then f is H-differentiable at Xo and iI f'(xo) =H f'(xo). 
On the other hand, suppose f H-differentiable at Xo. If f ~ Hxo(X, Y) we 
have that :3v E X, EO > 0, tn #- 0, tn --> ° in ~ and ln --> ° in X as n --> 00 in 

N such that " f(xo + tnv ~~nln) - f(xo) _ iI f'(xo)v" ~ co 'in E N. 

Take 9 :] - 1, 1[~ U given by g(tn) = Xo + tnv + tnln 'in E N 
and g(t) = Xo + tv otherwise. 

We see that 9 E G since lim g(t) - g(O) = lim(v + l(t)) = v where 
t~O t t~O 

{ l(tn) = ln \In E N. and 1'1 (f o g)(tn) - (f o g)(O) _H f'(x ) '(O) II > c 
l(t) = O otherwlse tn o 9 - o 

\In E N, a contradiction since f is H-differentiable at xo. 
Then f E Hxo(X, Y) and H f'(xo) =H f'(xo). 
Now, if f is H-differentiable at xo, given v E X it is sufficient to take 
g(t) = Xo + tv to see that f E Gxo(X, Y) and 6f(xo,.) =Êl f'(xo). 

. . f(xo + tl) - f(xo) 
b) If f E Hxo(X, Y), takmg v = O E X we have hm = O. 

(t.l)~ (0,0) t 
(t,I)ERxX 

Then fixing c > O (c = 1, for example), :J 61 > O ,6> O with 6 < 61 1 

O'" Itl < 6, Illll < 61 =} Ilf(xo + tl) - f(xo)11 < cltl· 
8et r = 62 and M = J' For h E X with O < I1hll < r we have that h = tl where 

Ilhll h r t = 8' L = TIhTI 6, and Itl < "8 = 6, Illll = 6 < 61, then 

Ilf(xo + h) - f(xo)11 < cll~" = Mllhll. 80 f satisfies (O)xo' 

c) 8uppose dimX < 00 and f E Hxo(X, Y) . If f is not F- differentiable at Xo 
we have that :Jco > O and hn '" O, hn -4 O in X as n -4 00 in N such that 

II f(xo + hn ) - f(xo) _H f'(xo)hn II > '-' E IM 8 t = ~ 
Ilhnll - co vn 1~. e Vn IIhn ll' 
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so Ilvnl l = 1, Vn E N. Since dim X < 00, taking a subsequence, if necessary, 
we will have Vn -4 v for some v E X with Ilvll = 1. Then, for tn = Ilhnll and 
ln = Vn - v, we have hn = tnvn = tnv + tn1n and 

< ll f(xo+tnv+tnln)-f(xo) Hf'() Hf'( )lll O 
100 - Xo V - Xo n -4 as n -4 00, 

- tn 
since f E Hxo(X, Y) , a contradiction! Thus f E Fxo(X, Y). 

o 
Gateaux difIerentiability encompasses a greater class of functions than the 
other ones. Even for the simpIe case X = IR2 and Y = IR there are exampIes 
of functions f such that f E Gxo(X, Y) and f ri. Hxo(X, Y) = Fxo(X, Y). 
From now on, X and Y are real Banach spaces, X =I {O} =I Y and Xo E X. 
Whenever it is necessary, functions f : UI C X -> Y and 9 : U2 C X -> Y 
are identified when they coincide on U, open set of X , Xo E U C UI n U2. 

Definition 2.1 (Limit through a set). Let U C X, S C X and Xo be an 
accumulation point of S nu. 
The limit through S of the function g:U -> Y at Xo will be denoted by 
lim g(x) and is defined by lim g(x) = L E Y {:} 

x - xo x-+xo 
xES xES 
Vê> O, :38> O I (x E S nu fi 0< Ilx - xol! < 8) '* Ilg(x) - LI! < E. 

Observe that when SeU is a neighbourhood of Xo the definition above 
reduces to the ordinary limit of a function. 
ExampIe: Take X = IR2, Y = IR, U = (IR:+- - {I}) x IR:+-, where 
IR:+- = {t E IRlt > O}, and 9 : U -> Y written g(x) = Ioga b where x = (a, b). 
Let Xo = (1,1) and for each r E IR define Sr = {(a, b) E IR:+- x IR:+-Ib = ar}. 
So for all r E IR we have lim g(x) = r. This exempIifies the important fea-

X-Zo 
xESr 

ture of limits through sets: A function may not have limit, in the ordinary 
sense, at Xo but still can exhibit infiniteIy many limits through sets at Xo . 

The following Lemmas will be usefuJ. 

Lemma 2.1. Let UI, U2 and S be subsets of X such that Xo is an accu
mulation point of UI n U2 n S, and let gi : Ui -> Y, i = 1,2, be functions. 
lf there exists the limits lim gl (x) = LI and lim g2 (x) = L2 then there 

x-xo x-+Xo 
xES xES 

also exists the limits lim [g1 + g21(x) = LI + L 2 and lim tgl(X) = tL1 for 
X-+XJ) x-xo 
xES xES 

all t E IR. 

Proof. Immediate. o 
Lemma 2.2. i) Assuming the same notation in Definition 2.1, let also 

S C S such that Xo is still an accumulation point of S nU. Then, the 
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follwing implication holds: 

( lim g(X) = L) :::} (lim g(x) = L) 
x--+xo x-+xo 
xES xES 

ii) lf S = Snv, Xo E V open set of X, then we may replace the implication 
above by an equivalence. 

Proof. Immediate. o 

3. Differentiability in types of sets and Hadamard 
derivative 

Let f : U c X ---> Y, Xo E U be as in the previous section. 
Our goal here is to prove that the differentiability of f at xo, be it in the 
sense of Gateaux, Fréchet or Hadamard, is equivalent to the existence of a 
bounded linear operator T E L(X, Y) such that the relation 
(1) lim f(xo + h) - f(xo) -T(h) = O E Y 

h~O Ilhll 
hES 

is fullfilled for all sets S E S C P(X) where S is a special class of subsets 
ofX. 
More specifically: 

I) For G-differentiability (with bounded linear derivative), S should be the 
class of all open neighbourhoods of O in all unidimensional subspaces of X. 
H) For F-differentiability, S should be the class of all open neighbourhoods 
of O in X. 
IH) For H -differentiability, assuming that f satisfies (O)xo' S should be 
the class of all embedded CI-curves passing through O. 

We note that each one of these classes is constituted by a type of embedded 
submanifold passing through O which is characterized by the dimension of 
the submanifold and by the dimension of the subspace which the manifold 
is embedded. We indicate these classes by 

I) S(1,1) = {V C E C XIE subspace of X, dim E = 1, V open neighbour
hood of O in E}. 
H) S(X,X) = {V C XIV open neighbourhood of O}. 
IH) S(1,X) = b(V) C Xh' : V C ~ ---> X C1-embedding, V open neigh
bourhood of O in~, .,,(0) = O}. 

This leads us to define other types of classes of subsets of X. Set N x = 

N* = N \ {O} if dim X = 00 and set N x = {n E N* In:::; dim X} if 
dimX < 00. 
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Definition 3.1. For m, n E N x, m ::; n, we define the following classes 
of embedded submanifolds of X: 
S(m,n) = {,(V) C XIr : V C IRm -> E topological embedding, E subspace 
of X, dim E = n, V open neighbourhood of O in IRm , ')'(0) = O}. 
S(1 \ = {,(V) C XIr : V C lRm -> E C 1-embedding, E subspace of X, 

m,n) 

dim E = n, V open neighbourhood of O in IRm , ')'(0) = O}. 
S(m,X) = {,(V) C XI')' : V C IRm -> X topological embedding, V open 
neighbourhood ofO in IRm , ')'(0) = O}. 
S{m,x) = {,(V) C XI')' : V C lRm -> X C1-embedding, V open neighbour

hood ofO in lRm , ')'(0) = O}. 

By topological embedding we mean a map ')' which is a homeomorphism 
onto its image and by C 1-embedding we mean a topological embedding of 
class C 1 whose differential is injective at every point. 
Since in the definition above the domain of ')' is always finite dimensional, 
the differentiability of ')' is to be understood, as usual, in the sense of 
Ftéchet. 
Note that S {m,n) C S(m,n) C S (m,X) and S{m,n) C S{m,X) C S(m,X) 

also S(n,n) = S{n,n) = {V C E C XIE subspace of X, dim E = n, V open 
neighbourhood ofO in E}, 'tIm,n E Nx, m::; n. 
In the next section we generalize these classes of embedded submanifolds 
using the notion of "vias of Banach spaces", so that we do not restrict 
ourselves only to the case where the domain of ')' is finite dimensional, 
neither only to Fréchet differentiability. Each "via" will determine a class 
S of embedded submanifolds of X and a type of differentiability for f 
at xo, which will be precisely the existence of a bounded linear operator 
TE L(X, Y) such that (1) is fullfilled for alI sets SE S. We will see that 
the classes given in Definitions 3.1 are associated to particular "vias". 
Let us, for now, define the type of differentiability according to a class 
Se P(X). 

Definition 3.2. Given Se P(X) such that O is an accumulation point of 
every S E S , we define the class Sxo(X, Y) of S-differentiable functions at 
xo, by: 

Sxo(X, Y) = {f : U -> YIU open neighbourhood of Xo in X, 3T E L(X, Y) 
such that (1) is fullfilled 'tiS E S}. 

For the classes of Definition 3.1, more specifically, 
when S = S (m,n) we put Sxo (X, Y) = (m, n )xo (X, Y) 

when S = S{m,n) we put S xo(X, Y) = (m,n)~o(X, Y) 
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when S = S(m,X) we put Sxo(X, Y) = (m,X)xo(X, Y) 
when S = S{m,X) we put Sxo (X, Y) = (m, X);'o (X, Y)'v'm, n E Nx, m ~ n. 
Let us put also Sxo (X, Y) = (X, X)xo (X, Y) if S = S(X,X). 

From what we have observed above about the inclusion of classes we can 
see that (m,X)xo(X,Y) C (m,n)xo(X,Y) C (m,n);,o(X,Y) and 
(m, X)xo (X,Y) C (m,X);,o(X,Y) C (m,n);,o(X,Y), also 
(n, n)xo(X, Y) = (n, n);,o (X, Y) 'v'm, n E Nx, m ~ n. 
The unicity of operator T E L(X, Y) when (1) is satisfied 'v'S E S, for S 
given in Definition 3.1, will be shown in the next proposition, where we 
will see that T = 6f(xo, .), the G-derivative of f at Xo· When f is s
differentiable at Xo we call T = Sdf(xo) = S f'(xo), the S-derivative of f 
at Xo. 
The next proposition characterizes Gateaux and Fréchet differentiabilities. 

Proposition 3.1. a) Gxo(X, Y) = (1, l)xo (X, Y) 
b) Fxo (X, Y) = (X, X)xo (X, Y) 
c) Let S be one of the classes given in Definition 3.1, then 
Fxo(X, Y) C Sxo(X, Y) C Gxo(X, Y) and if f E Sxo(X, Y) and T E 
L(X, Y) is such that (1) is fulfilled 'v'S E S, then T = 6f(xo, .), the G
derivative of f at Xo. 

Proof. a) For S E S(I,1) we have :Jv E X, Ilvll = 1, :JV c]R. open neigh
bourhood of O E]R. such that S = {tv E Xlt E V}. Then we see that: 
:JT E L(X, Y)I (1) is true for f through S, 'v'S E S(1,1) {:} 

:JT E L(X, Y)llim f(xo + tv) - f(xo) - tTv = O, 'v'v E X, Ilvll = 1 {:} 
t-O t 

8f(xo,.) = T E L(X, Y). So, f E (1, l)xo(X, Y) {:} f E Gxo(X, Y). 
b) If SE S(X,X) then S is an open neighbourhood of O, thus: 
f E (X,X)xo(X, Y) {:}:JT E L(X, Y)I (l)is true for f through S, 'v'S open 
neighbourhood of O {:} f E Fxo(X, Y). 
c) If f E Fxo(X, Y) then (1) is satisfied for f with T = f'(xo) E L(X, Y), 
through S, 'v'S open neighbourhood of O. 
Since, for SE S, we have S C X and Xis an open neighbourhood of O, 
by Lemma 2.2, we see that (1) is satisfied for f with T = f'(xo), through 
S, 't:/S E S. Then f E Sxo(X, Y). 
To see that Sxo(X, Y) C Gxo(X, Y) it is sufficient to show that 
(m, n);,o(X, Y) C Gxo(X, Y) 'v'm, n E Nx, m ~ n, taking in view the 
inclusions mencioned after Definition 3.2. 
We will show first that given SE S(1,1), :JS E S(m,n) such that S C S. 

For S E S(1,1) we have :Jv E X, Ilvll = 1, :JV C ]R. open neighbourhood of 

O in]R. such that S = {tv E Xlt E V}. 
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Let El =< {V} > be the one dimensional subspace of X generated by v, so 
5 C El' We take then Em, En subspaces of X, dimEm = m, dimEn = n, 
such that El C Em C En C X and define "( : Em ~ En as the inclusion 
(which is Cl-embedding) and set S = "((Em) = Em. Then 5 C S and 
S E S(m,n)' Now if f E (m, n )~o (X, Y) we have that (1) is fullfilled for 

i, for some T E L(X, Y), VS E S(lm,n)' In particular, by Lemma 2.2, 

(1) is fulfilled also through 5, V5 E S(1,l)' Then i E Gxo(X, Y) and 
T = Óf(xo, .). 

o 
In Proposition 4.5 of the next section we will relate Gateaux-differentiability 
with some "vias" whose class of embedded submanifolds is S(1,l) and we 
will relate Fréchet-differentiability with some "vias" whose class of embed
ded submanifolds is S(X,X)' We show also there that the class of embedded 
submanifolds S(l ,X) will give Fréchet-differentiability too. 
Let us do now the Hadamard-differentiability characterization: 

Theorem 3.1. i E Hxo (X, Y) {::}f satisfies (O)xo and f E (1 , X)~o (X, Y). 

Proa! There is no loss of generality in considering Xo = O and f(xo) = O. 
a) Suppose i E (1, X)~o (X, Y) with (O)xo satisfied by i and 
f 1= Hxo(X, Y). 
Now, i 1= Hxo(X, Y) =? VT E L(X, Y), 3v E X, 36"0 > O I Vó > O, 
3t" E]R, 0< It,,1 < Ó, 3l" E X, O:::; Ill,,11 < 8 such that we have 

(2) Ilf(t"v + t"ló) - T(t"v)11 
It,,1 ~ 6"0 

Sl 
For T = (I,X) di(O), take v E X and 6"0 > O as the ones given by (2). 
We can construct sequences {Ói hEN, {t"i hEN and {lÓi hEN, t Ói , lÓi' given by 

r Itó·1 Ói 
(2) where 8 = Ói, that obey O < UHl < -2 < 2' 
Now, by Proposition 3.1 (c), i is Gateaux differentiable at O and, conse
quentIy, there are at most finitely many indexes í for which lÓi = O. 
From these sequences we can choose subsequences {Óij hEN and {lÓi . hEN 

J 

such that alI tÓi . have same sign, say, all of them are positive, and lÓi. =I O. 
J J 

Rename these subsequences and call them simply {tn }nEN, {ón }nEN and 

{ln}nEN. Clearly, {8n} 1 O, {tn} 1 O with tn+! < t;, and {ln} ~ O as 
n~ 00. 

. . l' Ilf(tnln)11 éO 
Observe that v =I O smce v = O lmp IeS Iltnlnll ~ Illnll ~ 00 as n ~ 00, 

a contradiction with the fact that f obeys (0)0. 
(h j - hj +l ) . 

Define hj = tjV + tjlj and Vj+l = for alI J E N. 
tj - tj+l 
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We have 

,/(t) = { Vj+C-t~j-Zj)C(t-~)-Zj)(Vj+l-Vj) iftE[tj,tj+Zj] 

;y'(t) otherwise. 
Now, it is easy to verify that r'(tj) = lim ,'(t) = Vj+l and ,'(tj + Zj) = 

t->tj 

lim "('(t) = Vj, whatever the choice of {Zj}jEN* is. 
t.,-.tj+Zj 

Consequenlty, , is CI on (O,tI). 
Observe that 

IIr(t) - i(t)11 ::; It - tjl (t - t~j - Zj) 2 11Vj+1 - vjll ::; It - tjlllvj+I - vjll 

for alI tE [tj, tj + Zj] and IIr(t) - i(t)11 = O for alI t E (Zj + tj, tj-I]. We 
also have 
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II'l(t) - i'(t)11 :::; I t - tj - Zj 11 3(t - tj) - Zj Illvj+l - vjll :::; 211vj+l - vjll 
Zj Zj 

for alI tE (tj, tj+Zj]-{tj_l} and Ib'(t)-;y'(t)11 = O for all tE (tj+Zj, tj-l). 
In this way, we have 11')'(t) - i(t)11 :::; It - tjlllvj+l - vjll ---+ O on [tj, tj + Zj] 
and Ib'(t) - f(t)11 :::; 21lvj+l - vjll ---+ O on [tj, tj + Zj]- {tj, tj-d 
since Ilvj+l - Vj II ---+ O as j ---+ 00. 

So, we conclude that 11')'(t) - i(t)11 ---+ O as t ---+ 0+, i.e., ')'(t) ---+ O as 
t ---+ 0+ and Ib'(t) - i'(t) 11 ---+ O on (O, tI) - {tjlJ E N}. Now, i'(t) = Vj 
on (tj , tj-l) and Vj ~ v which iroplies that ')"(t) ---+ v as t ---+ O through 
(O, tI) - {tj lj E N}. 
Since')' is C l on (O,tl) we have liro ')"(t) = v. 

t~o+ 
tER 

Note that ')'(0) = O, Iiro ')'(t) = ')'(0) = liro ')'(t). 
t-+O - t-+O+ 

We also have liro ')"(t) = v = liro ')"(t). 
t-+O- t-+O+ 

. . ')'( t) - ')'(0) 
Now, ')"(0) = v, Slllce 11ro = v and 

t-+O- t 

liro ')'(t) - ')'(0) = Iiro ')'(t) - i(t) + liro i(t) = v . 
t-+O+ t t-+O+ t t-+O+ t 

The latter equality is due to the fact that liro i(t) = v and, 
t-+O+ t 

11')'(t) ~ i(t) 11:::; Ilvj+l - vjll ---+ O as j ---+ 00. 

Thus, we have obtained ')"(0) = v and ')' is C l on ( - 00, tI). 

Observe that if we were obliged to choose negative tj to forro the initial 
sequence then we would have constructed, siroilarIy, ')': (iI,oo) ---+ X. 
Let X = ({v}) Efj. W and write x = XIV + w, W E W, the decoroposition of 
x. Define 7fl : X ---+ ~ by 7fl(X) = Xl. 
Since ')"(t) ---+ v as t ---+ O we have 3s1 , 52 E ]R, 81 < O < s2 such that 

7fl(')"(t)) > ~ 'r/t E (SI,82). Now, for all tl,t2 E (8l,82),t2 > tI we have 

7fl(')'(t2) - ')'(iI)) = 7fn(t2) - 7fn(tl) = 1t2 (7fn)' (t)dt = 
tI 

= 1:2 
7fn'(t)dt > 11t2 (~) dt = C2 ; t l

) > O 

and, consequently, ')'(t2) =I=- ')'(tl), that is, ')' is injective on (81,82). 

Let L E N be such that tL < 82. Clearly')': [-1, tL] ---+ X is a continuous 
bijection over its iroage. 
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To prove that ,-1 : ,([-1, tL]) -> [-1, tLl is continuous just observe that 
alI closed set F C [-l,tLl is compact and that its inverse image by (-y-l), 
i.e., ,(F) is also a closed set, since it is the continuous image of a compact 
set. 
So, we have obtained,: (-1, tL) -> X, a C1-embedding such that ,(tj) = 

hj for ali j > L. Then S = ,((-I,tL)) E S{l,X). Since f is S{l,xr 
differentiable at O, (1) is valid for f through s. Now, {hj Ij > L} C S 
and hj -> O as j -> 00, so, 

. f(hj ) - T(hj ) 
O =}~ Ilhjll = 

lim {[f(tjv+tjlj)-tjT(V)] 1 _ T(lj) }. 
j-->oo tj IIv + lj 11 IIv + lj 11 

Thus, .Jim f(tjv + tjlj) - tjT(v) = O, a contradiction with (2). 
J-->OO tj 

Thus f E Ho(X, Y). 

b) Suppose f E Ho(X, Y) and let T =H 1'(0). 
,(t) 

Let S = ,(V) E S{I,X) and v = ,'(O) =f. O. Define l(t) = -t- - v so that 

,(t) = tv + tl(t). 

Now, lim ,(t) = ,'(O) = v and we have liml(t) = O. So, 
t -->O t t-O 

lim f(h) - T(h) = lim f{r(t)) - T(-y(t)) = 
~Ê~ IIhll :~ IIr(t) 11 

1. f(tv + tl(t)) - T(tv) - tT(l(t)) t 
1m .:.....:....-----'-.:..:....--'---'---...:.....:...:....:.. .,...-,..,.,....--~ 
;~ t Itlllv + l(t)1I 

lim [f(tv + tl(t)) - tT(v) t _ T(l(t)) t ] O 
t-+O t Itlllv + l(t)1I Itl IIv + l(t)1I = , 
tER 

d ue to the existence of a neighbour hood of O E ]R for w hich 1/11 v + l ( t) 11 
is limited, as a consequence of v =f. O and l(t) -> O as t -> O, and also 

to the facts that T(l(t)) -> O and f(tv + tl(t)) - tT(v) -> O, by virtue of 
t 

f E Ho(X,Y), 
as t -> O. 
So we proved that f E (1, X)à(X, Y) with S{l ,X) 1'(0) =H 1'(0) and 
since f E Ho(X, Y), we have that f satisfies (0)0. O 

Now we present some results that lead us to conclude that 
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(n,X)~o(X, Y) = (l,X)~O(X, Y) 'in E N x , and then, by the previous the
orem, this set, together with property (O)xo' will characterize Hadamard
differentiability. 

Theorem 3.2. Form,n E Nx, m ~ n, we have (n,X)~o(X,Y) C 

(m,X)~o(X,Y). 

Proof. Let 5 E S(m,X)' so 5 is written as 5 = ')'(V) , ')' : V C ]Rm -+ X 

Cl-embedding, V open neighbourhood of O in ]Rm, ')'(0) = O. Let M = 

')"(O)(]Rm) the tangent space of 5 at O and write X = M EB W (this is 
possible by Hahn-Banach Theorem, since dimM = m < (0). 80 'ix E X , 3! 
(XI,X2) E M x W I x = Xl + X2. Let 71"i(X) = Xi, i = 1,2. 
Define 4> : U C X -+ X, where U = ')"(O)(V) + W by 4>(x) = ')'(rXI) + X2, 

where r = [')"(O)t l E L(M, ]Rm). Now 4> is of class C I on U in Fréchet 
sense, since it is a composition of functions of this kind. Moreover 
4>'(x) = ')"(rX1)Or071"1 +71"2, thus 4>'(0) = ')"(0) OrO 71"1 +71"2 = 71"1 +71"2 = l, 
the identity on X. 
Inverse Function Theorem, for Banach spaces, guaranties the existence of 
U C U, O E U open set of X such that 4> : U -+ 4>(U) is a C1-diffeo
morphism. Now, 4>(U n M) = 4>b'(O)V) = ')'(r(')"(O)V)) = ')'(V) = 5 C 

4>(U); and if N ::J M is a subspace of X, dim N = n, we have 4>(UnN) ::J 5. 
Letting V = r(U n M) we have O E V C V C ]Rm and ')'(V) = 4>(U n M) C 

4>(U n N). 
The set S = 4>(U n N) E S(n,X) since U n N is an open set of N, O E U n N 
and 4>l ünN is a C1-embedding. 
80, if f E (n, X)~o (X, Y) then (1) is true for f through S and, consequently, 

(1) is true through ')'(V) C S. Now since ')'(V) is an open set in 5 = 

')'(V), by Lemma 2.2, (1) is valid through 5, too. This means that f E 
(m,X)~o(X,Y). [] 

The next definition will give us a new characterization for S-differentiabil
ity. Let us fix S C P(X) one of the classes of embedded manifolds given 
in Definition 3.1. 

Definition 3.3. We will call a set W C X an S-type union if and only if 
W = U '-'s, where, for each S E S, Vs is a neighbourhood ofO in S. 

SES 

Using this definition, S-differentiability at Xo may be interpreted in the 
following way: 

Proposit ion 3.2. f E Sxo(X, Y) with Sdf(xo) = T if and only if we have 

(8) 'r:/€ > 0, 3W C X, an S-type union I 'r:/h E W, 
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Ilf(xo + h) - f(xo) - Thll :s êllhll 
Proof. Sinee the limit (1) through SE S means Vê> O, 3Vs neighbourhood 
of O in S sueh that (h E Vs, h =f O) ===> Ilf(xo + h) - f(xo) - T.hll < êllhll, 
the proof is immediate. O 

Proposition 3.3. (a) The statements (i) and (ii) are equivalent 
(i) lfW C X is an S-type union then W is a neighbourhood ofO in X. 

(ií) Sxo(X, Y) = Fxo (X, Y). 
(b) lfSxo(X,Y) i=Fxo(X,Y) we canfindfunctions f,g both inSxo(X,Y) 
but not in Fxo (X, Y) such that f satisfies (O)xo and 9 doesn't satisfy (O)xo' 

Proof. To see that (i) ===> (ii), let f E Sxo(X, Y). Then, Vê> O, 3W C X 
an S-type union sueh that (3) is fulfilled with T = sdf(xo). Now, by 
(i) , W is a neighbourhood of O in X which implies that (1) is valid for 
h ---t O, h E X. Then f E Fxo{X, Y). 

To see now that (ii)===> (i) and also (b), let us suppose that there is an 
S-type union W C X whieh is not a neighbourhood of O in X. We ean 
ehoose a sequenee {hn}nEN, hn E X - W with hn ---t O when n ---t 00. Let 
Y,Yn E Y be sueh that IlylI = 1, IIYnll = IIhn ll, Vn E N, and let us define 
the functions f,g : X ---t Y by f(xo + hn) = Yn, g(xo + hn) = y, Vn E N, 
and f(x) = g(x) = O otherwise. We have f,g E Sxo(X, Y) sinee f = 9 = O 
on Xo + W and then, for all ê > O, W is an S-type union for whieh (3) is 
valid with T = O for both f and g. Now we see that f satisfies (O)xo and 
9 doesn't satisfy (O)xo and both f and 9 are not Fréehet-differentiable at 
Xo (g is not even eontinuous at xo). O 

The next two eorollaries of Theorem 3.1 are, by their own, interesting 
results of differential topology. 

Corollary 3.1. lf dimX < 00 and W is an S(l ,X) type uníon then W is 
a neigbourhood of O in X. 

Proof. If W is an S(l,X) type union whieh is not a neighbourhood of O in 

X, we ean find f E (I,X);o(X,Y),f satisfies (O)xo' with f ~ Fxo(X,Y) 
(Proposition 3.3). But, by Theorem 3.1, we have f E Hxo(X, Y) and with 
the fact that dimX < 00 we have f E Fxo(X, Y) (Proposition 2.1(c)), a 
contradiction. O 

Corollary 3.2. Given a sequence {hj hEN, hj E ]Rn, hj ---t O as j ---t 00, 

we can choose from {hjhEN a subsequence that is contained in the image 
S of a C1-embedding curve, that is, contained in some SE S(l,n)' 

Proof. It is sufficient to give the proof for the case when {j E Nlhj = O} is 
finite and we ean suppose, taking a subsequence, that hj =f O Vj E N. 
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If each and every S E S(l,n) contains only a finite number of points hj then 
we can choose Vs, neighbourhood of O in S, such that Vs does not contain 
any of the points of the sequence {hj }jEN. Form W the union of alI such 
Vs, an S(l ,n) type union. Thus we arrive at the following contradiction: 
W n {hj Ij E N} = 0, hj -+ O, and, by corollary 3.1, W is a neighbourhood 
of O in )Rn. So, there must exist at Ieast one S, S n {h j IJ E N} is inifnite. O 

Theorem 3.3. For each n E Nx we have (n,X)io(X, Y) = 
(l,X)io(X, Y). 

Proof. Wealreadyknowthat (n,X)io(X'Y) C (l,X);o(X,Y) (Theorem 
3.2). 
Let SE S(n,X)' so S = 'Y(V), V neighbourhood of O in )Rn , 'Y: V -+ X is 

a C1-embedding in Fréchet sense. 
Thus, there is a bijective correspondence between embedded C 1 curves 
through O in V C )Rn and embedded C 1 curves through O in S eX. 
Since, by corollary 3.1, the intersection of an S(l,nftype union in )Rn with 

V is a neighbourhood of O in )Rn, we have that an S(l,Xftype union in 
X will contain a neighbourhood of O in S. This is so because 'Y is an 
homeomorphism from V on S. 
Now Iet f E (1, X)io (X, Y). Then, for alI ê > O, reIation (3) is valid for f 
with T = st1 ,X)df(xo) for some W, Sh,xrtype union. Since W contains a 
neighbourhood of O in S, we have that (1) is vaIid for f, through S. Thus 
f E (n, X)io (X, Y). O 

As, by Proposition 3.3, if Sxo(X, Y) I- Fxo(X, Y) we have examples of 
f E Sxo(X, Y) that satisfies (O)xo and 9 E Sxo(X, Y) which doens't satisfy 
(O)xo' with both f and 9 not F-differentiable at xo; we could emphasize 
the property (O)xo in any S-differentiability by: 

Definition 3.4. We will say that a function f E Sxo (X, Y) is strongly 
S-differentiable at XO, and write f E ~o(X, Y) if f satisfies (O)xo ' 

Let us note that if f E Sxo(X, Y), and we take any S-type union W given 
in (3), for any ê > O, then the inequality Ilf(xo + h) - f(xo)11 ::; Mllhll is 
satisfied for h E W 
Proposition 3.3 says that if Sxo(X, Y) I- Fxo(X, Y), then 
Fxo(X, Y) ~ &o(X, Y) ~ Sxo(X, Y). 
We could also say that Exo(X,Y) = Fxo(X,Y) and lIxo(X,Y) 
Hxo(X, Y) (Proposition 2.1(b)). 
In this notation we have already proved: 

Corollary 3.3. For each n E Nx we have (n,X)l (X,Y) = Hxo(X,Y). 
~o 
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Corollary 3.4. IfdimX < 00, for eachn E Nx we have (n ,X)1o(X, Y) = 

(n,X)1 (X, Y) = Hxo(X, Y). 
Xo 

Proof. If f E (n,X)1o(X,Y) then f E (l,X);,o(X,Y) (Theorem 3.2) and 
then there is some W, S{I,xrtype union, where condition (O)xo is valid if 
we replace h E X by h E W. But since dimX < 00 , W is a neighbourhood 
of O in X (Corollary 3.1), and then, for convenient r > O, h E W with 
Ilhll < r is the same as h E X with Ilhll < r; then f satisfies (O)xo' Thus, 
f E (n, X)1 (X, Y) = Hxo(X, Y). O 
~o 

We want to show, as the last result of this section, that 
(4) (1,X)1o(X'Y) C (n,n)xo(X,Y) C (m,m)xo(X,Y) C (l,l)xo(X,Y) 

'Vm,n E Nx , m::; n. 
In the case dim X = n < 00 we have already seen that 

(l ,X);o(X, Y) = Hxo(X, Y) = Fxo(X, Y) = (n , n)xo(X, Y) 

We will see that if m < n we have (n, n)xo(X, Y) y;, (m, m)xo(X, Y), 
and if dimX = 00 all inclusions in (4) are, actually, proper inclusions. 

Proposition 3.4. (a) Let m, n E N x, m::; n , then we have 
(n ,n)xo(X, Y) C (m, m)xo (X, Y) and if m < n we have 
(n,n) xo (X,Y) -=I- (m ,m)xo(X,Y). 
(b) If dim X = 00 then (1,X)1o(X,Y) C (n,n) xo (X,Y) 'Vn E N*. 

Proof. Let f E (n ,n)xo(X, Y). If S E S(m,m) then S is an open neigh
bourhood of O in an rn-dimensional subspace of X. Let {Vl,"" vm } be a 
base for this subspace and let {vm +1, ... , vn } be such that {Vl, ... , vn } is lin
early independent and write 8 = ({Vi, ... ,vn }) the subspace generated by 
{Vl,""Vn }. We have Se 8 and 8 E S(n,n)' So (1) holds for f through 8 
and, by Lemma 2.2, through S too. 
Thus f E (m,m)xo(X, Y). 
Assume now m < n. Let A == lRn , A C X and cf> : lRn ~ A be an isomor
phism. 
Define ,: lR ~ lRn by ,(t) = (t,t2 ,t3 , . .• ,tn ) and let cp: X ~ Y be such 
that IIcp(xo + cf>(,(t)) II = 1Icf>(,(t))lI, 'Vt E IR, and cp(x) = O otherwise. 
Forall subspace 8 C A C X such that dim8 = m < n let L = cf>-1(8) C 
lRn . Clearly, dimL = m < n and we can choose U = (Ui, ... , un ) E lRn - {O} 
such that (u, v) = O for all V E L. Calling j the first integer such that 
Uj -=I- O, we write 
(T'(t) , u) = (UI +2tU2+ ... +ntn-1Un) = tj - l(jUj+(j+l)Uj+1t+ ... +ntn-jun) 
and chooseE > O such that the sign of (T'(t), u) is that of Ujtj- l on (-E , E). 
Thus, O is the only solution for I(t) E L, t E (-E, E) . This implies that 
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there exists UL, neighbourhood of O in L such that UL n ,(IR) {O} 
and, consequently, U = <jJ(UL) is a neighbourhood of O in S such that 
U n <jJ(r(lR)) = {O}. Taking T = O E L(X, Y), since cp = O on U, (1) is ful
filled for cp through S . Now, since for alI subspace S C X with dimS = m 
we have dim(S n A) :::; m, we conclude that cp E (m,m)xo(X,Y), with 
S(m,m)dcp(xo) = O. 
Now, if cp E (n,n)xo(X, Y), by Proposition 3.1 (c), we would have 
S(n .n)dcp(xo) =s(m,m) dcp(xo) = O. But (1) is not true for cp with T = O 
through S = A E S(n,n), since <jJ(r(lR)) C A. Then cp ri. (n ,n)xo(X, Y). 

(b) For n E N x, we have S(n,n) S{n,n) C S{n,X) and then 

(n, X);o (X, Y) C (n, n )xo (X, Y) but (n, X);o (X, Y) = (1, X);o (X, Y) 
(Theorem 3.3). 
So, if dim X = 00, we will have (1, X);o (X, Y) C (n, n )xo (X, Y) Vn E 
N*. O 

We observe that the function cp given in the proof of previous proposition 
satisfies conditions (O)xo' since IIcp(xo + <jJ(r(t)) II = 11<jJ(r(t))II for t E ]R 

and cp(x) = O otherwise. We could give 9 E (m,m)xo(X,Y) with 9 ri. 
(n, n)xo(X, Y) such that 9 doesn't satisty (O)xo simply putting Ilg(xo + 
<jJ(r(t))1I = 1 Vt E ]R and g(x) = O otherwise, for example. Then we see 
that, if m < n, (n, n) (X, Y) [, (m, m) (X, Y) and also 

-'--'--'-X o F Xo 
(n,n)xo(X,Y) - (n,n)xo(X,Y) ~ (m ,m)xo(X,Y) - (m,m)xo(X,Y). 

4. The concept of "vias" and "via-differentiability" 
We will extend, now, the ide as of previous section, by taking more gen
eral classes of embedded submanifolds of X, not restricted only to finite 
dimensions neither only to Fréchet-differentiability in the C 1 case. These 
classes will appear through the concept of "vias of Banach-space". Each 
via, let us call one by 7T, for example, will generate a class 7rSx of embedded 
submanifolds of X, or simply S7r' when X is fixed, and a class 7Txo (X, Y ) 
of functions f : U C X -7 Y, U neighbourhood of xo, which we will call 
the class of 7T-differentiable functions at xo, exactly as in Definition 3.2, for 
S = S7r' In this case, Sxo(X, Y) = 7rxo (X, Y). The classes of embedded 
submanifolds of the previous section (Definition 3.1) will be the classes 
determinated by some particular "vias". 

We begin presenting a way of comparing Banach spaces. Let A and B be 
Banach spaces. 

Definition 4.1. i) (Transport from A into B). A linear continuous map
ping 'IjJ : A -7 B is a transport from A in to B if and only if 'IjJ is injective 
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and 'Ifl(A) is a closed set in B. Whenever'lfl is a transport we may also say 
that A is transported into B by 'Ifl. 
The Open Mapping Theorem guaranties that 'Ifl is an isomorphism, i.e., 
linear homeomorphism, betweem the Banach spaces A and 'Ifl(A) C B. Ob
serve that the composition of transports is still a transporto 

~ ~ 

ii) (~). We will write A~B if and only if A can be transported in to B , 
i. e., there is 'Ifl : A -7 B, 'Ifl transporto 

Since ~ is refiexive and transitive, ~ defined by A~B {::} (A~B 1\ B~A) is 
an equivalence relation. We will denote by [Ã] the equivalence class modulo 

~ 

~ of A. Note that ~ induces an order, ~, in the set of classes defined by 

[Ã] ~ [B] {::} A;;B. lt is easily checked that ~ is well defined and, it is an 
~ 

order relation. For simplicity of notation we will write ~ instead of ~ for 
Banach spaces too. The equivalence relation that will be used in this work 

is contained in ~ and is given by: 
iii) A == B {::} A and B are isomorphic, i.e., there exists 'Ifl subjective 
transport from A onto B. 

Clearly, A == B ::::} A~B. We observe that if A and B are Hilbert spaces 
then we have A~B {::} A == B . We will denote [A] the equivalence class of 
A modulo ==. Observe that if A ~ B and 'Ifl is a transport from A into B 
then A == 'Ifl(A). 

Proposition 4.1. Let be given non zero vectors u,v E X. Then there is a 
transport 'IjJ : X -7 X such that 'IjJ(u) = V. 

Proof. If v = tu for some tE]R* then take 'Ifl(X) = tx. If u and v are linearly 
independent then, using Hahn-Banach Theorem, it is possible to choose W 
a closed subspace of X with co-dimension 2 such that X = ({ u , v}) EB W 
Let 9 be a transport from ({u,v}) onto ({u,v}) such that g(u) = v, a 
multiple of rotation for example. Now, take 'Ifl E L(X, Y) given by 
'Ifl(x) = g(XI) + x2 where x = Xl + X2, Xl E ({u,v}) and x2 E W. O 

Now we define what we will call a "via of Banach spaces". This definition 
is solely dependent on the equivalence classes of Banach spaces. 

Definition 4.2. Let AI , BI, ... ,Ak,Bk,k E N*, be Banach spaces. The 
k-tuple of ordered pairs (([Ad , [BtJ), ... , ([Ak], [Bk])) will be called a via of 
Banach spaces with length k if and only if AI ~ BI ~ ... ~ Ak ~ Bk' 
We will use the notation (AI, BIL .. jAk, Bk) for the via and will ojten 
denote vias by greek letters. Let 1l' be a via. lts length will be denoted by 
1(1l'), its first element, [AI], bya(1l') and its last element [Bk] by w(1l'). 
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Definition 4.3. Given a Banach space A, we say that a via 7T is A
admissible if and only if W(7T) ::::: A. 
Observe that, given vias 7TI, ... , 7Tm , such that 7Ti is 0:( 7Ti+d admissible, 1 ::::: 
i ::::: m - 1, we can form the via 7T = 7TL7TL,.,_7Tm in a natural way and we 

m 

will have l(7T) = L l(7Ti)' 
i=1 

Now we are in position to define the concept of 7T-differentiability of a 
function f : U --+ Y, at Xo E U, U open set in X for an X -admissible via 7T. 
In the same way of the previous section, we are interested in the existence 
of a continuous linear operator T E L(X, Y), that we will calI 7T-derivative 
(7T-differential) of f at xo, such that the relation (1) is fulfilled for f thraugh 
alI sets S C X that are characterized by the via 7T as follows: If 7T = (A, B) 
or 7T = O'_(A, B) , O' an A-admissible via, the set S is the transport into 
X of the image of some embedding fram A to B. These embeddings are 
topological when 7T = (A , B) ar of class C1 , in the O'-differentiability sense, 
when 7T = O'_(A,B). These sets S are said to be of type 7T . 
The notions of 7T-differentiability on 7T-type sets are made precise in the 
folIowing definition, where we used recursion over k = l(7T). 

Definition 4.4. Let f : U --+ Y, Xo E U open set of X be given and 7T be 
an X -admissible via with l(7T) = k. 
lf k = 1, 7T = (A,B), we will say that S C X is a set oftype 7T (or a 7T-type 
set) if and only if statement (i) holds and that f is 7T-differentiable at Xo if 
and only if statement (ii) holds. 

(i) 3'IjJ : B --+ X transport 3')' : U"( C A --+ B topological embedding, ° E U"( 
open set of A, ')'(0) = 0, such that S = 'IjJ(')'(U"()) . 
(ii) 3T E L(X, Y) such that relation (1) if fulfilled for f with T through S , 
for all S C X, S a 7T-type set. 

We will call the linear operator, T, a 7T-derivative of f at Xo or, equivalently, 
a 7T-differential of f at Xo· 
lf k > 1 let 7T = O'_(A, B), l(O') = k - 1. By recursion we assume that all 
sets S C X of type À, for all Banach spaces X and all X -admissible vias 
À with l(À) < k, are already defined. Analogously, for all Banach spaces 
Y, we assume that the À-differentiability of functions 9 : Ug C X --+ Y at 
x E Ug open set of X, are also already defined. 
We will say that S C X is of type 7T (or a 7T-type set) if and only if relation 
(iii) holds. 

(iii) item (i) with the additional conditions that "lu EU,,!, ')' is O'-differen
tiable at u and that there is a continuous function r : U"( --+ L(A, B) such 
that for all u E U"(, r(u) is not only a O'-derivative of')' at u but also a 
transport from A into B, 
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Having defined 7r-type sets, we define 7r-differentiability oJ J at Xo by (ii). 

Observe that the definition of 7r-type sets for a given via 7r does not de
pend on the particular Banach spaces that form the via but only on their 
equivalence classes. We will denote 1fSx the class of 7r-type sets in X, and 
when X is fixed, we can write simply S1f ' 

Proposition 4.2 (Uniqueness). Under the same notation as in Defi
nition 4.4, if f is 7r-differentiable at xo, the operator T that appears in 
relation (ii) is unique. 

Proof. Consequence of the following facts: 
Every continuous linear function J is 7r-differentiable at alI points of its 
domain whatever the X-admissible via 7r is, since T = J is its 7r-differential. 
Given a via, 7r = (A,B) or 7r = (i_(A,B), and a vector v E X, v t= 0, the 
straight line ({v}) is contained in a set S = 'lj;(-y(A)) for some transport 
'Y E L(A, B) and 'lj; from B into X. Observe that 'Y is (i-differentiable 
at u, 'lu E A, and that 'lj; is chosen, if necessary, as a composition of a 
transport from B into X and another transport from X into X where we 
use Proposition 4.1 to obtain ({v}) C S. 
Letting TI, Tz E L(X, Y) satisfy (1), given an arbitrary v E X, v t= 0, take 
a 7r-type set S such that ({v}) C S. Then, by Lemma 2.2, we have, for 
i = 1,2 

lim J(xo + h) - J(xo) - Ti(h) = lim J(xo + h) - f(xo) - 'n(h) = O. 

h~({~}) Ilhll ~E'~ Ilhll 
Now, h -t 0, h E ({v}) means h = tv, t E IR, t -t ° which implies TI (v) = 

Tz(v) and TI = Tz. O 

We will denote the 7r-derivative of J at Xo by 1f J' (xo) or 1f df (xo). 

Definition 4.5. Let 7r be an X -admissible via. The class of 7r-differentiable 
functions at Xo is the set 

7rxo (X, Y) = {J : U ~ Ylxo E U open set oi X and f is 7r-differentiable at xo}. 

Proposition 4.3 (Operation rules). With pointwise addition and scalar 
multiplication, 7rxo (X, Y) is a real vector space and the operator Dxo defined 
by 

Dxo : 7rxo (X, Y) -t L(X, Y), Dxo(J) =1f f'(xo), is linear. 

Proposition 4.4 (Leibniz rule.). Let Y be a Banach Algebra and define 
the product of J and 9 in 7rxo (X, Y) as the pointwise product. lf f or 9 is 
continuous at Xo then Jg E 7rxo (X, Y) and 

1fd(Jg)(xo) =1f df(xo)g(xo) + J(xo) 1fdg(xo) E L(X, Y). 
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The proof of both propositions above follow the steps of the proofs of analo
gous propositions for Fréchet-differentiable functions, using the uniqueness 
of via derivate and Lemmas 2.1 and 2.2 for calculating limits through sets. 
For simplicity of notation when dim A = m < 00, that is A == ~m , we will 
denote the via (A,B) by (m,B). If B == ~n, m::; n, we will simply write 
(m,n). 
Taking 7r = (m, n) an X -admissible via (that is, m, n E N x, m ::; n), we 
see that S(m,n) is exactly the saroe given in Definition 3.1. We can say the 
saroe for vias (m, X) and (X, X), that is, S(m,X) and S(X,X) are the same 
as the ones given in Definition 3.l. 
Then the sets (m,n)xo(X,Y), (m,X)xo(X,Y) and (X,X)xo(X,Y) each 
one seen as the set of 7r-differentiable functions at Xo for 7r = (m, n), 7r = 
(m, X) and 7r = (X, X), respectively, are the same sets given in Definition 
3.2. 
To see that the other classes S given in Definition 3.1 are also the type 
sets of particular "vias" and to identify the corresponding vias, let us first 
show: 

Proposition 4.5. For every Banach space Y the following are valid: 

i) The vias Uk = (1, 1L .. j1, 1) with Z(Uk) = k, k E N*, are all equivalent 
in the sense that (Uk)xo(X, Y) = Gxo(X, Y) with Uk f'(xo) = 8f(xo,.) 
for all f E (Uk)xo (X, Y). Moreover, 7rxo (X, Y) C Gxo (X, Y) for all x
admissible via 7r and 7r f'(xo) = 8f(xo,.) for all f E 7rxo (X, Y). 
ii) lf f E (7rI)xo(X,Y) n (7r2)xo(X,Y) where 7rl and 7r2 are X-admissible 
vias, then 7rl f'(xo) =7r2 f'(xo). 
iii) The vias (X,X), O"_ (X,X), where O" is any X-admissible via, and 
(1, X) are all equivaZent, in the sense that (1, X)xo (X, Y) 
O"_(X,X)xo(X,Y) = (X,X)xo(X,Y) = Fxo(X,Y), with (X,X)f'(xo) = 
f'(xo) for all f E (X, X)xo (X, Y). Moreover Fxo (X, Y) C 7rxo (X, Y) for 
all X -admissible via 7r. 

Proof. i) Vk E N*, S C X is a set of type Uk if and only if S is an 
open neighbourhood of O in some one-dimensional subspace of X, that is, 
SUk = S(1,I). 

Then, from Proposition 3.1(a) we have (Uk)xo(X, Y) = (1, l)xo (X, Y) = 
Gxo(X, Y). From uniqueness of Uk f'(xo) we have Uk f'(xo) = 8f(xo, .). 
Given 7r an X-admissible via and v E X, v =1= O, choose a 7r-type set S C X 
such that ({v}) C S. Let f E 7rxo (X, Y) and T =7r f'(xo). Then 

lim f(xo + h) - f(xo) - T(h) = O ~ lim f(xo + tv) - f(xo) - tT(v) = O 
h~O Ilhll hO t 
hES tER 

by Lemma 2.2, and so, f E Gxo(X' Y) and T =7r f'(xo) = Jf(xo, .). 
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This completes the proof of (i) and it also proves (ii) since, under the 
hypothesis of item (ii), we have 1rI f'(xo) = 1r2 f'(xo) = of(xo, .). 
iii) Since S(X,X) = Su_(X,X) is the class of alI open neighbourhood of ° 
in X, we have ojX,X)xo(X, Y) = (X,X)xo(X, Y) and from Proposition 
3.1 (b) we have (X,X)xo(X,Y) = Fxo(X,Y), and (X,X)f'(xo) = f'(xo) 
'ri f E (X, X)xo (X, Y). 
N ow, given an X -admissible via 7r, using S = S7r in the proof of Proposition 
3.1 (c), we conclude that Fxo(X, Y) C 7rxo (X, Y). 
Let us prove now that (I,X)xo(X, Y) = Fxo(X, Y). 
We already have Fxo(X, Y) C (1, X)xo(X, Y). 
Suppose that there ís a function f E (I,X)xo(X, Y) which is not in 
Fxo (X, Y). Since f ís not Fréchet differentiable at Xo we have 'rIT E L(X, Y) 
3€o > ° such that V8 > 0, 3hó E X, ° < Ilhóll < O with 
(5) IIf(xo + hó) - f(xo) - T(hó)11 

Ilhóll :::: €o 
and, in particular, this statement is true for T =(1,X) f'(xo). 
Construct {odiEI'! a sequence of positive real numbers, 8i 1 0, and a se
quence of points {hihEN, hi = hÓi in such a way that (5) ís valid for alI 
í E N and ° < Oi+1 < Ilhói 11/2 < od2. This guaranties the monotonicity of 
the sequence {hdiEN, Le. Ilhilll O. 
Now observe that there can not be any vector v E X, v i- 0, such that 
the line ({v}) contains infinitely many points hi , since the subspace ({v}) 
is oftype (I,X) and, being f E (l,X)xo(X,Y), (1) is valid for f through 
S = ({v}) for ali v E X ,v i- O. Take u E X, ui- ° and W C X such that 
X = ({u}) EB W. Let 

X+ = {tu + wlw E W, tE lR+} and X_ = {tu + wlw E W, tE lIL}. 

Now, infinitely many h i must belong to either X+ or X_o Without 10ss of 
generality suppose they are in X+ and rename them hj so that we write 
the sequence {hj hEN C X+. 
Given x, y E X. Let us denote the set {px + (1 - p)ylp E [O, I]} by [x, yJ 
and the open ball centered at x with radius r by B(x, r). 
Choose a subsequence {hjkhEN C {hjhEN such that j1 = 1 and, for all 

k-l 

k E N*, jHl is such that ° 1c [hjk+I' hj,.J and B(O, 8j k+l) n( U [hjl+ 1 ' hj1J) = 
1=1 

0. This can be done because ({ hjk }) contains at most finitely many point 
hj and, by construction, Oi 1 O and 11 hi 111 o. For simplicity of notation, call 
{hjkhEN simply {hm}mEN' 
Now we can construct a polygonal "( : (-1,1) -t X which image is the set 

00 

(-u,OJ U( U [hm, hm+d) by writting "(t) = tu for -1 < t :::; 0, and 
m=l 
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for all mE N*, ,(i) = Pm(i)hm+1 + (1 - Pm(i))hm 
1 
--i 

where Pm(i) = 1 m 1 

m m+1 

1 1 
for -- <i<-. 

m+ 1 - - m 

419 

Observe that, byeonstruetion, (-u, O] C X_i [hm+1,hm] C X+ for alI 
mE N* and, for alIm, l E N*, m i= l, [hm+1,hm]n [hl+1, htl C {hm+1,hm}, 
so that , has no self erossings. 
CIearIy, ,(i) -+ ° as i -+ O. Now, , is an homeomorphism over its image 
and, as we ean take 'l/J : X -+ X the identity map, S = ,( ( - 1, 1)) is a set 
oftype (1, X). 
On the other hand, (1) ean not be true for f through S sinee {hm } C S 
and (5) holds for hm. This is a eontradiction with f E (1, X)xo (X, X). 
So, f is Fréehet differentiabIe at Xo and we have (1, X)xo (X, Y) 
Fxo(X, Y). 

o 

Taking in view Proposition 4.5 (iii), we see that (A,A)_(A,B) and 
a_(A, A)_(A, B), with B ~ X, have the same class of embedded manifolds, 
precisely: 
S(A,A)_(A,B) = S"'_(A,A) _(A,B) = S(A,B) = {'l/Jh(UI')) C XI'l/J is a transport 

from B into X" : UI' C A -+ B, C1 - embedding in Fréehet sense, UI' open 
neighbourhood of ° in A, ,(O) = O}. 
Then, in particular, we have that the classes S{m,n) and Sem,X) given in 
Definition 3.1 (with m, n E Nx m ~ n), are the classes for the vias 
(m,m)_(m,n) and (m,m)_(m,X) respeetively. 
Then the classes of functions (m,n);;o(X, Y) and (m,X);;o(X, Y) given in 
Definition 3.2 are the classes of funetions (m, m L( m, n )-differentiable at Xo 
and (m, mL(m, X)-differentiable at xo, respeetively, that is: 

(m , n);o (X, Y) = (m, m) _(m, n)xo (X, Y) and 

(m,X);oeX,Y) = (m,m) _(m,X)xoeX,Y). 

Now we see that all classes of differentiabilities of previous section are 
included and generalized with the eoneept of via-differentiability. 
The notions of type unions and strong-differentiability are also generalized 
for vias following the same way of what Was done in previous section. 
We point out all this here. 
Let 7r, an X-admissible via, be given: 

Definition 4.6. We will call W C X a 7r-type union if and only if W is 
an S-iype union (see Definition 3.3) for S = S7r' 
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Proposition 4.6. f E 7I"xo (X, Y) with rr df(xo) = T E L(X, Y) if only if 
(3) is valid for f with S = Srr , that is, 
'it> O, 3W C X a 7I"-type union l'ih E W, IIf(xo+h)-f(xo)-Thll :s: tllhll· 

Proof. Same proof of Proposition 3.2. 

Proposition 4.7. For every Banach space Y we have: 

(a) the statements (i) and (ii) are equivalent: 
(i) lf W C X is a 7I"-type union, then W is a neighbourhood of O in X. 

(ii) 7I"xo(X, Y) = Fxo(X, Y). 

o 

(b) lf7l"xo(X, Y) 1= Fxo(X, Y) we can findfunctions f,g in 7I"xo(X, Y) which 
are not in Fxo (X, Y) $uch that f satisfies (O)xo and g doesn't satisfy (O)xo' 

Proof. Same proof of Proposition 3.3, using S = Srr, Sxo(X, Y) = 

7I"xo(X, Y), sdf(xo) =rr df(xo) . O 

Definition 4.7. We will say that a function f E 7I"xo(X,Y) is strongly 
7I"-differentiable at xo, and write f E Exo(X, Y), if f satifies (O)xo' 

By Proposition 4.7 (b), if 7I"xo(X, Y) 1= Fxo(X, Y), then 
Fxo(X, Y) ~ Exo(X, Y) ~ 7I"xo(X, Y). 
Also, for f E 7I"xo(X, Y), if we take any 7I"-type union W given in (3), for 
any t > O, then the inequality IIf(xo + h) - f(xo) 11 :s: Mllhll is satisfied for 
h E W. 
For what we saw in previous section, we know that 
(n,n)_(n,X) (X, Y) = Hxo(X, Y), 'in E Nx . 
~~--':'''''':'''~Xo 

Let us see now some general properties of 7I"-differentiability. 
Observe that there is a natural bijection between 7I"xo(X, Y) and 7I"Xl (X, Y), 
Xo and Xl in X, since for every f E 7I"xo(X, Y) we can define l: (; -> Y by 
lCx - Xo + Xl) = f(x), which yields 1 E 7I"Xl (X, Y). 
This observation was made in order to make clear that the definitions that 
follow will not depend on the particular Xo E X, so that we can take it to 
be O E X. 
In order to compare vias, let 71" (X, Y) = 7I"o(X, Y). 

Definition 4.8. i) Given 71"1, 71"2, two X -admissible vias, we will say that 
71"1 is weaker than 71"2, equivalently, 71"2 is stronger than 71"1, and write 7I"1~7I"2 
if and only if 71"1 (X, Y) =:) 71"2 (X, Y) for each Banach space Y. 
As the relation ~ is reflexive and tmnsitive we can obtain an equivalence 
relation over the vias defining 
ii) 71"1 == 71"2 {:} 71"1 (X, Y) = 71"2 (X, Y) for each Banach space Y. 
As previously done, ~ induces an order relation :s: in the set of equivalence 
classes of vias. We denote the equivalence class of 71" by [71"] and we will 
also use :s: instead of:S for vias. 
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By Proposition 3.4 we have: (m,m) ::; (n,n) ::; (l,l)_(1,X) Vm,n E 
Nx, m::;n. 
If dimX = n < 00 we have (n,n) == (1, l)_(1,X) 
If dim X = 00 we have (1,1) ::; (2,2) ::; ... ::; (n, n) ::; ... ::; (1,1)_ (1, X) 
Vn E N*. 
By Proposition 4.5 we have: (1,1) ::; 7r ::; (X, X) V7r, X-admissible via. 
Let 7r1, 7r2 be X -admissible vias. The following results are immediate: 

Proposition 4.8. (a) lf S/f! C Slr2 then 7rl ::; 7r2. 
(b) lf for each S E SirI we have :3S E Slr2 with S C S, then 7rl ::; 7r2 . 
(c) lf for each S E S7r1 we have :3 S E S7r2 and S E S7r1 with S C S n S, 
then 7r1 ::; 7r2. 

Proof. Given a Banach space Y, take f E 7r2(X, Y). Then (1) is valid for 
f with T =7r2 df(O), through S, VS E S7r2. 

(a) If S7r1 C S7r2' given S E S7rI' (1) is valid for f through S, since S E S7r2. 

Then f E 7r1 (X, Y) . 
(b) Given S E S7rl' take S E S7r2 with S C S. Since (1) is valid for f 
through S, by Lemma 2.2, (1) is valid for f through S. Then f E 7r1 (X, Y). 
(c) Given S E S7rl' take S E S7r2' S E S7r1 with S C S n S. Since Se S 
and S E S7r1 means that S is an open neighbourhood of O in S, and since 
(1) is valid for f through S, by Lemma 2.2, we have both, (1) is valid for 
f through S and also through S. Then f E 7rl(X, Y). 

Theorem 4.1. lf A::; B ::; X then 

(i) (A, A) == a_(A, A) for all A-admissible via a. 
(ii) (A, B) ::; (B, B) 
(iii) lf X is a Hilbert space then (A, A) ::; (B, B). 

o 

Proof. (i) Since So-_ (A,A) = S(A ,A) = {V C E C XIE subspace of X iso
morphic to A, V open neighbourhood ofO in E}, we have a_CA, A)(X, Y) = 

(A, A)(X, Y) for each Banach space Y. 
(ii) If S E S(A,B) then :3 E subspace of X isomorphic to B and S open 

neighbourhood of O in E, that is, S E S(B,B), such that S C S. By 
Proposition 4.8 (b) we have (A,B) ::; (B,B). 
(iii) The finite dimensional case is already proved in Proposition 3.4. 
If dimX = 00, write X = l2(r), for some infinite r. There is a family 
{Vs}sH of linearly independent vectors of X that form a Bessel base for X 
and B ::; X {:} B ~ l2(Í') for some Í' C r. 
If S is an (A, A) type set, S is an open set of a subspace of X that is 
isomorphic to A. Now, by its turn, a subspace of X isomorphic to A is 
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contained in a subspace 8 of X isomorphic to B, when A :::; B, since we 
can write A = h (fi) , B = 12(Í') with fi C Í' C r and we can complete fi 
with linear independent vectors to form Í'. Since 8 E S(B,B) and 5 C S, 
by Proposition 4.8 (b) we have (A, A) S (B, B). 

Corollary 4.1. Let a be an X admissible via. Then aS (w(a),w(a)). 

Proof. a is either (A, B) or ÀJA, B) with B S X, and (w(a),w(a)) 
(B,B). 

o 

Since S>dA,B) C S(A,B), by Proposition 4.8 a) we have ÀJA, B) S (A, B) 
and the proof follows by Theorem 4.1 ii). O 

Theorem 4.2. lf ~m S ~n S A S X, then (m,m)_(m,A) < 
(n, n)_(n, A) :::; (A, A). 

Proof. If X = A the proof is the same given in Theorem 3.2. In the general 
case, to see that (n,n)_(n,A)(X,Y) C (m,m)_(m, A)(X, Y) we use the 
same arguments of Theorem 3.2 using A instead of X in the following way: 
If 5 E S (m,m) _ {m,A) then 5 is written as 5 = 7/'(-y(V)), 7/' a transport from 
A to X, and ,: V C IRm -+ A as in the proof of Theorem 3.2. Thus we 
put M = ,/(o)~m C A, A = M (JJ W and everything goes the same way of 
there to obtain ti C V, open set in V, and 81 an (n, n)_(n, A) type set in 
A such that ,(ti) C 81. 

Then S = 7/'(-YCV)) C 8 = 'l/J(81) which is an (n,n)_(n,A) type set in X, 
that is , 8 E S (n,n)_{n,A)' Since S is an open neighbourhood of O in 5, by 
Proposition 4.8 (c), we have (m, m)_(m, A) :::; (n, n)_(n, A). 
Now, note that if 5 E S{m,m)_(m,A), we have 5 = 'l/J(-y(V)) as before and 
then 5 C 8 for some open neighbourhood of O in E = 7/'(A), that is, for 
some 8 E S{A,A)' 

Thus, by proposition 4.8 (b), we have (m,m)_(m,A):::; (A,A). O 

Theorem 4.3. lf~n S A S X then (n,n)_(n,A) == (1, l) _(l,A). 

Proof. The proof follows the steps of the proof of Theorem 3.3 using Corol
lary 3.1 and the fact that if 8 E S(n,n)~(n,A), 8 = 'l/J(-y(V)), 7/' a transport 
from A to X, V open neighbourhood O in IRn, , : V -+ A Cl-embedding 
in Fréchet-sense; then, in particular, 'l/J o , is an homeomorsphim from V 
on 8. O 

Corollary 4.2. For all n E Nx we have (n,n) == (1, l)_(l,n). 

Proof. Taking A == IRn in Theorem4.3wehave (n,n)_(n,n) == (1, l)_(l,n). 
Since S(n,n)_(n,n) = S{n,n) = S(n,n) we have (n,n)_(n,n) == (n,n). O 
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Theorem 4.4. lf IJ is a via such that w(lJ) == ]Rm :::; X, then we have 
IJ == (m,m). 

Proof. The via IJ is written in one of the two forms, either IJ = (k, m) or 
IJ = À_(k, m), for k = 1,2, .. . m. Now we have (1,1)_(1, m) == (k, k)_ (k, m) 
(Theorem 4.3). 8ince S(k,k) _ (k ,m) = S(lk ,m) C S>--(k,m) C S(k,m) we have 
(k,k)_(k,m) :::; À_(k,m) :::; (k,m) (Proposition 4.8(a». Also we have 
(k,m):::; (m,m) (Theorem4.1 (ii» and (m,m) == (l,l)_(l,m) (Corollary 
4.2). Then (l , l) _ (l,m):::; (k,k)_(k,m):::; À_(k,m):::; (k,m):::; (m,m):::; 
(1, 1)_ (1, m), that is, these vias are all equivalent. O 

Corollary 4.3. For X = ]Rn there are exactly n different types of via
differentiabilities. 

Proof. By Proposition 3.4 we have (i =I- j) ==> (i, i'Jt- (j, j) and the conclu
sion follows from Theorem 4.4. O 

Theorem 4.5. lf 7r == lJ_ e where w(lJ) == ]Rm :::; et(e), then 7r == (m, m) _ e. 

Proof. By induction on l(e) = k E N x . 
For k = 1, e = (A, B) and given a Banach space Y, 
f E (m ,m)_(A,B)(X,Y) means that (1) is fulfilled for f through S, for 
all S = 'Ij{y(V» where, among other things, 'Y : V C A -- B is (m, m)
differentiable. But from Theorem 4.4, 'Y is (m , m)-differentiable if and only 
if 'Y is IJ-differentiable. 
80 f E (m,m) _ (A, B)(X, Y) {:} f E IJ_ (A, B)(X, Y) thus (m, m)_(A, B) == 
IJ_(A , B). 
Now, if k > 1, e = À_ (A,B), and f E (m,m) _ À_(A,B)(X, Y) means that 
(1) is fulfilled for f through S, for alI S = 'IjI(-y(V» where, among other 
things, 'Y : V C A -- B is (m, m)_À differentiable. 
But from induction hypothesis, since l(À) = k - 1, we have that 'Y is 
(m,m)_À differentiable if and only if'Y is IJ_ À differentiable. 
80 (m, m)_À_(A, B)(X, Y) = IJ_ À_ (A, B)(X, Y) and IJ_() == (m, m) _ (). 

O 

Theorem 4.6. For every X -admissible via 7r and ali et( 7r) -admissible via 
À, the following "inequalities" are valid: 

(i) À_ 7r :::; 7r if l(7r) is odd. 
(ii) 7r :::; À_7r if l (7r) is even. 

Proof. We will prove (i) and (ii) together using induction over k = l(7r) E 
Nx. If k = 1,7r = (A,B), it is clear that if S C X is of type À_7r then it 
is of 7r-type since condition (iii) of Definition 4.4 implies its condition (i). 
Thus, given a Banach space Y, if f E 7r(X, Y) and S is of type À_7r then 
relation (1) holds for f with T =7l" 1'(0) through S, which implies that f E 
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.À-7f(X, Y) and À_1r f'(O) =1r f'(O). 80, for k = 1, À_7f(X, Y) ~ 7f(X, Y), 
Le., .À- 7f ::; 7f. 
For k > 1, assuming that (i) and (ü) are true for ali CT with l(CT) < k, we 
write 7f = CT_(A,B), l(CT) = k-1. 
8uppose k is even. 
Let f E À_7f(X, Y) = À_CT_(A, B)(X, Y). Thus (1) is valid for f with 
T =À-1r f'(O), through S, for ali S of type À_7f. 8ince l(CT) is odd, from 
induction hypothesis À_CT ::; CT, that is, CT(A, B) C À_CT(A, B) which implies 
that CTu(A, B) C À_CTu(A, B) for all u E A. Now, if "( : U-y C A ........ B 
satisfies condition (iii) of Definition 4,4, for the via CT, it will also satisfy 
this condition for the via À_CT, with the same function f : U-y ........ L(A, B) 
where f(u) =" "('(u) =À-" "('(u) is a transport from A into B for all u E U-y. 
This means that all S of type CT_(A, B) = 7f are of type À_CT_(A, B) = À_7f 
and so, (1) will be true for f through every S of type 7f. Thus f E 7f(X, Y) 
with 1r f'(O) =À_1r f'(O). 80 7f ::; À_7f. 
The argument for odd k is similar. O 

Note that if 7f = (Ak, Bk)- ... _(AI' Bl), by Theorem 4.6, we can write the 
following comparison of vias: 

(A2 ,B2 )_(A1,Bt) ::; (A4,B4) - ... - (At,Bt) ::; ... ::; 7f::; ... 
::; (A3, B3) - (A2 , B2 )- (AI, Bt) ::; (AI, BI). 

Now we present vias which strong-differentiabilities lie between Hadamard 
and Fréchet ones. 

Proposition 4.9. For n E Nx and CT an ]Rn-admissible via we have 
(n,n)_(n,X) ::; CT_(n,X) ::; (n,X) . 

Proof. 8ince S(n,n) _(n,X) = S[n,X) C S,,_(n,X) C S(n,X), the proof follows 
from Proposition 4.8 (a). O 

Proposition 4.10. For k, m, n E Nx with k ::; m ::; n we have 

(n,n)_(n,X)::; (m,m)_(n,X)::; (k,k)_(n,X)::; (n,X)::; (X,X). 

Proof. For every via CT with w( CT) ==]Rm we already know that 
(n,n)_(n,X) ::; CT_(n,X) == (m,m)_(n,X) ::; (n,X) (Praposition 4.9, 
Theorem 4.4). Now, since if "( : V C ]Rn ........ X is a Cl-embedding in 
(m, m)_ sense then it is a Cl-embedding in (k, k)_sense; we have that 
S(m,m) _(n,X) C S(k,k)_(n,X); and the proof follows fram Proposition 4.8 
(a). O 

8ince (n, n)_(n, X), in conjunction with condition (O)xo' is Hadamard 
differentiability, the praposition above shows that there are possibilities 
for via differentiabilities between Hadamard and Fréchet differentiabilities. 
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To end this section, let us define the set of all X -admissible vias, 

X = {7fI7f is an X - admissible via }, 

and let O C X be an arbitrary non void subset of X. 
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Observe that, given a Banach space Y, we have 0 t L(X, Y) C 

(X, X)(X, Y) C n 7f(X, Y). Now we can define a completion of X by 
7rEO 

writing 

x = { n 7f(X, Y) 0 t O C X}, 
7rEn 

Le, an element of xis the set {f: U C X ----+ YI O E U open set, :lO C X, i 
is 7f differentiable at O for all 7f E O}, and try to study this completion. 
Some questions naturally appear. If O is a chain of vias, that is, O has the 
property that for all 7f and (Y in O either 7f :::; (Y or (Y :::; 7f, then is it true that 
there is an element >. E X such that n 7f(X, Y) = >'(X, Y) ? Under what 

7rEO 
conditions on O, X and Y we can solve the equation n 7f(X, Y) = >'(X, Y) 

7rEO 
for some via>. E X? 
Remember that (1, 1)(X, Y) ::J (2, 2)(X, Y) ::J ... ::J (n, n)(X, Y) ::J ... 
::J (1,1)_(I,X)(X,Y). Is is true that there is 7f an X-admissible via such 
that n (n, n)(X, Y) = 7f(X, Y) or does the limit via n (n, n)(X, Y) lie 

~N n~ 

outside X? 
Observe that for X such that l2(N) :::; X, n (n, n)(X, Y) in conjunction 

nEN 
with (0)0 is less than and not equal to (1,1)_(I,X)(X,Y) = Ho(X,Y). 
This can be verified, similarly to what was done in Proposition 3.4, by 
taking i : l2(N) ----+ Y such that Ili(4)(t))11 = 114>(t)11 and i(x) = O otherwise 
where 4>(t) = (t, t2 , •.• , t n , ... ) for t E ]R., Itl < 1, and noting that for alI 
n E N* ,(n,n) di(O) = O and (1) is not fulfilled for i, with T = O, through 
S = 4>(( -1,1)) an (1,1) _ (1, X) type set. 

5. Applications 
In the section we apply the concept of via differentiability in two different 
contexts to obtain interesting results. 
The first one, a consequence of Corollary 3.1 is a reciprocal statement of 
the following well known elementary calculus resulto Let i : ]R.n ----+ ]Rm be 
such that there exists lim i(x) = l. Then for every embedded CI-curve 

x ...... xo 

C : (- f, f) ----+ ]R.n, such that eCO) = Xo, we have limt ...... o i(c(t)) = I. We 
remark that we are assuming only embedded Cl-curves in the hypothesis 
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of the reciprocal theorem, since by Corollary 301, every (1,1)_ (1, n) type 
union, translated from O to xo, contains an open neighbourhood of XOo 
Now we apply this theory to linearize a discrete dynamical system in lRn 

around its fixed point where it is not Fréchet differentiable. We present 
one situation where there is local conjugacy between the system and its 
linearized form, that is, where a Hartman Grobman type theorem is valid; 
and another situation with no local conjugacy though the derivative at the 
fixed point is hyperbolic. 
The first situation shows that there is the possibility of linearizing a non
Fréchet differentiable system with the newly defined derivatives and still 
have a good linear approximation on neighbourhoods of the fixed pointo 
Now we construct the dynamical system. Let O < a < b :S 1 and R C 

lRn, n 2 2, be given by 
R = {(t,PIt2,.0.,P(n_1)tn) E lRnlt > O, a :S Pj :S 2b - a, 1 :S j :S 
(n - 1)}0 Take the linear isomorphism g: lRn --t lRn, g(XI,ooo,Xn) = 
(axI, a2x2, 000' anxn) and define the homeomorphism f by f = 9 outside R 
and 
f(t ,PIt2, ooo'P(n_l)tn) = ((b - z)t, (b - z)2PIt2, 0'0' (b - z)np(n_1)tn) where 
z = max{lb-pjl 11:S j:S (n-1)}0 Note that for each A = (PI, ooo,P(n_ I)) E 

lR(n-l) the curve PA : lR --t lRn, PA(t) = (t,PIt2, ,0"P(n_1)tn) is invariant 
under both actions of 9 and f and that we can write R as the union of 
the images of all curves PA, for positive t and A in [a,2b - a]n- Io Since 
f(PA(t)) = PA(at) when PA(t) ri- R and f(PA(t)) = PA((b - z)t) other
wise, the inverse r-I is such that f-I(PA(t)) = PA(t/a) outside R and 
f - I(PA(t)) = PA(t/(b - z)) in Ro 
Clearly f is an homeomorphism and it is not Fréchet differentiable at O, 
since O is in the closure of Ro 
However, for every m dimensional subspace E of lRn , m < n, we can find 
an open neighbourhood V C E of O in E which is disjoint of R as can be 
seen in the proof of Proposition 3.40 Now f = 9 in V and (m,m) 1'(0) = 9 
which is attractive, thus hyperbolic. 
The situations mentioned above correspond respectively to the cases b < 1 
and b = 1 as is shown as follows: 
In case b < 1, f is attractive and the fundamental domain B - f(B) , where 
B is some closed ball in lRn centered at 0, is homeomorphic to B - g(B) 
which is a fundamental domain for g. This permits us to construct a global 
conjugation between the two systemso Finally, if b = 1, every point in the 
set F = {( t, t2 , o o o, tn)li 2 O} is a fixed point of f and no conjugation with 
9 is possible since O is an accumulation point of F. 
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