28S rRNA molecule post processing occurs in two species of planarians (Girardia tigrina and Girardia sp.) possibly due to a gap deletion

Autores

  • Bárbara Rosa Penha Universidade do Vale do Paraíba
  • Matheus Salgado de Oliveira Universidade do Vale do Paraíba https://orcid.org/0000-0001-8650-0361
  • Karla Andressa Ruiz Lopes Universidade do Vale do Paraíba
  • Flavia Villaça Morais Universidade do Vale do Paraíba
  • Nádia Maria Rodrigues de Campos Velho Universidade do Vale do Paraíba

DOI:

https://doi.org/10.11606/issn.1984-5154.v22p7-13

Palavras-chave:

Gap region; , ribosomal RNA;, secondary structure.

Resumo

Several studies have shown atypical migration of the 28S rRNA molecule, when exposed to heat denaturation dissociates into two subunits (28Sα and 28Sβ), this event is due to a ‘gap deletion’ in the molecule. In the majority of the organisms that present the gap region, rRNA degradation has been correlated to a UA-rich conserved segment, located inside a loop of the secondary structure predicted for this region of the 28S rRNA, and upstream of a conserved 5´-CGAAAGGG-3´motif. We showed that this event, the atypical 28S rRNA molecule migration, occurs in planarians Girardia tigrina and Girardia sp.. The presence of these conserved motifs in the 28S rRNA molecule of Girardia tigrina was confirmed. The UA-rich segment was absent. The 5´-CGAAAGGG-3´ motif was present, indicating that the dissociation 28S rRNA is independent of the UA-rich signal. We propose the existence of a putative secondary structure for the D7a segment of the 28S rRNA molecule, and suggest that the atypical RNA profile observed may occur across the Girardia genus.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Álvarez-Presas M, Baguna J, Riutort M. 2008. Molecular phylogeny of land and freshwater planarians (Tricladida, Platyhelminthes): from freshwater to land and back. Molecular Phylogenetics and Evolution, 47:555–568.

Bellaousov S, Reuter JS, Seetin MG, Mathews DH. 2013. RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Research 41(Web Server issue), W471–W474.

Edlind TD, Chakraborty PR. 1987. Unusual ribosomal RNA of the intestinal parasite Giardia lamblia. Nucleic Acids Research, 15(19):7889-7901.

Fujiwara H, Ishikawa H. 1986. Molecular mechanism of introduction of the hidden break into the 28S rRNA of insects: implication based on structural studies. Nucleic Acids Research, 14(16):6393–6401.

Garcia-Fernández J, Baguñà J, Saló E. 1991. Planarian homeobox genes: Cloning, sequence analysis, and expression. Proceedings of the National Academy of Sciences of the United States of America, 88(16):7338–7342.

Gillespie JJ, Yoder MJ, Wharton RA. 2005. Predicted Secondary Structure for 28S and 18S rRNA from Ichneumonoidea (Insecta: Hymenoptera: Apocrita): Impact on Sequence Alignment and Phylogeny Estimation. Journal of Molecular Evolution, 61(1):114-37.

Gillespie JJ, Johnston JS, Cannone, JJ, Gutell RR. 2006. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta:Hymenoptera): structure, organization, and retrotransposable elements. Insect Molecular Biology, 15(5):657-86.

Goda SK, Minton NP. 1995. A simple procedure for gel electrophoresis and Northern blotting of RNA. Oxford University Press, 23(16):3357–3358.

Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for 95/98/NT. Nucleic Acids Symposium Series, 41:95-98.

Kjer KM, Baldridge GD, Fallon AM. 1994. Mosquito large subunit ribosomal RNA: simultaneous alignment of primary and secondary structure. Biochimica et Biophysica Acta, 1217(2):147-155.

Macharia RW, Ombura FL, Aroko EO. 2015. Insects’ RNA profiling reveals absence of ‘‘Hidden Break’’ in 28S ribosomal RNA molecule of onion Thrips, Thrips tabaci. Journal Nucleic Acids, 2015:1-8.

Masek T, Vopalenskya V, Suchomelovab P, Pospiseka M. 2005. Denaturing RNA electrophoresis in TAE agarose gels. Analytical Biochemistry, 336(1):46-50.

Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences of the United States of America, 101(19):7287-7292.

McCarthy SD, Dugon MM, Power AM. 2015. ‘Degraded’ RNA profiles in Arthropoda and beyond. PeerJ, 3:e1436.

Melen GJ, Pesce CG, Rossi MS, Kornblihtt AR. 1999. Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an ‘intron’ bearing a hidden break site. The EMBO Journal, 18(11):3107–3118.

Ogino K, Eda-Fujiwara H, Fujiwara H, Ishikawa H. 1990. What causes the aphid 28S rRNA to lack the hidden break? Journal of Molecular Evolution, 30(6):509–513.

Oliveira MS, Lopes KAR, Leite PMSCM, Morais FV, Campos Velho NMR. 2018. Physiological evaluation of the behavior and epidermis of freshwater planarians (Girardia tigrina and Girardia sp.) exposed to stressors. Biology Open, 7: bio029595.

Park Y, Fallon AM. 1990. Mosquito ribosomal RNA genes: characterization of gene structure and evidence for changes in copy number during development. Insect Biochemistry, 20(1):1-11.

Reuter JS, Mathews DH. 2010. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11:129.

Rio DC 2015a. Denaturation and electrophoresis of RNA with glyoxal. Cold Spring Harbor Protocols, (2):223-6.

Rio DC. 2015b. Denaturation and electrophoresis of RNA with formaldehyde. Cold Spring Harbor Protocols, (2):219-22.

Riutort M. 1993. GenBank:M58343.1. Unpublished https://www.ncbi.nlm.nih.gov/nuccore/M58343.1 [Accessed:22/05/2018].

Sambrook J, Fristsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press New York, NY, USA. https://www.cabdirect.org/cabdirect/abstract/19901616061[Accessed:22/05/2018].

Seetin MG, Mathews DH. 2012. RNA Structure Prediction: An Overview of Methods. Methods in Molecular Biology, 905:99-122.

Skrypina NA, Timofeeva AV, Khaspekov GL, Savochkina LP, Beabealashvilli RSH. 2003. Total RNA suitable for molecular biology analysis. Journal of Biotechnology, 105(1–2):1–9.

Solà E, Álvarez-Presas M, Frías-López C, Littlewood DTJ, Rozas J, Riutort M. 2015. Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms. PLoS ONE, 10(3): e0120081.

Sun S, Xie H, Sun Y, Song J, Li Z. 2012. Molecular characterization of gap region in 28S rRNA molecules in brine shrimp Artemia parthenogenetica and planarian Dugesia japonica. Biochemistry (Moscow), 77(4):411-417.

van Keulen H, Mertz PM, LoVerde PT, Shi H, Rekosh D.M. 1991. Characterization of a 54-nucleotide gap region in the 28S rRNA gene of Schistosoma mansoni. Molecular and Biochemical Parasitology, 45 (2):205-214.

Ware VC, Renkawitz R, Gerbi SA. 1985. rRNA processing: removal of only nineteen bases at the gap between 28S alpha and 28S beta rRNAs in Sciara coprophila. Nucleic Acids Research, 13(10):3581-97.

Winnebeck EC, Millar CD, Warman GR. 2010. Why does insect RNA look degraded? Journal of Insect Science, 10(1):159.

Zarlenga DS, Dame JB. 1992. The identification and characterization of a break within the large subunit ribosomal RNA of Trichinella spiralis: comparison of gap sequences within the genus. Molecular and Biochemical Parasitology, 51(2):281-9.

Downloads

Publicado

2022-08-31

Edição

Seção

Artigo

Como Citar

Penha, B. R., de Oliveira, M. S., Lopes, K. A. R. ., Morais, F. V., & de Campos Velho, N. M. R. (2022). 28S rRNA molecule post processing occurs in two species of planarians (Girardia tigrina and Girardia sp.) possibly due to a gap deletion. Revista Da Biologia, 22(1), 7-13. https://doi.org/10.11606/issn.1984-5154.v22p7-13