Letter to the Editor

Bone impairment in HIV-infected patients and tenofovir-induced osteomalacia as a differential diagnosis

Thiago Quadrante Freitas¹, André Silva Franco¹, Camila Nobre Bulhões¹, Rosa Maria Rodrigues Pereira¹

Bone impairment is well described in people living with HIV and taking antiretrovirals due to direct and indirect effects of both the virus and the medications on bone and immune cells¹,². Osteopenia and osteoporosis have a prevalence of up to 67% in this population³, and is frequent even in antiretroviral-naive patients². Such finding could suggest that unchecked viremia affects bone metabolism through its persistent systemic inflammatory properties¹. However, an in vitro study showed that HIV promotes direct osteoblast apoptosis through TNF-alpha activation⁴, providing evidence that bone impairment may be explained by viremia itself.

Hence, the use of antiretrovirals with a goal of undetectable viral load should lead to higher bone mineral density, but some of them may also affect bone metabolism. Indeed, a meta-analysis found that osteoporosis had an odds ratio of 2.5 in patients treated with antiretrovirals, compared to those without treatment¹, which suggests that such medications are responsible for another component of bone loss in HIV patients.

Protease inhibitors are the antiretrovirals that most frequently affect bone homeostasis: reduced bone mineral density is significantly more common in patients treated with such medications, compared to those in other treatment schemes⁵. However, tenofovir alone was also associated with increase in bone turnover markers and accelerated bone mineral density loss⁶, even when used in the absence of HIV infection⁷.

In addition to affecting bone resorption, tenofovir may also induce proximal renal tubular toxicity and hypophosphatemic osteomalacia⁸, another factor that could contribute to bone alterations in HIV patients. Increased tenofovir concentrations in proximal renal tubule cells induces mitochondrial dysfunction, which leads to phosphate depletion⁹. Tenofovir-induced proximal renal tubular acidosis has an estimated prevalence of 17% in HIV-infected patients taking the drug¹⁰, and may appear years after treatment initiation¹⁰. Approximately 0.5% develop hypophosphatemic osteomalacia, especially if its use is concomitant with ritonavir-boosted protease inhibitors and non-steroidal anti-inflammatories¹¹.

¹ Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR.
² Corresponding address: Av. Dr. Arnaldo, 455, 3rd floor, room 3193. Sao Paulo, SP, Brazil. CEP: 1246-903. E-mail: thiago.f@fm.usp.br.
The most common clinical finding is diffuse bone pain due to multiple stress fractures, and should be suspected whenever low phosphate serum levels, increased alkaline phosphatase and increased fractional excretion of phosphate are found, which rule out osteoporosis, that presents without electrolyte laboratory alterations. Making the right diagnosis prevents inappropriate treatment with bisphosphonates, which depletes even more phosphorus, leaving no substrate with which to mineralize the bone, worsening pain and fractures.

Therefore, clinicians should be alert to hypophosphatemic osteomalacia in patients with low BMD receiving tenofovir, since it can be easily mistaken and incorrectly treated as osteoporosis, worsening bone pain, fractures and hypophosphatemia.

REFERENCES


Submitted for publication: June 18, 2018
Accepted in: June 21, 2018